
An Implementation Strategy for Efficient Convergence
of the Lavallée and Hidiroglou Stratification Algorithm

Patricia Gunning1, Jane M. Horgan1, and Gary Keogh1

The iterative procedure of Lavallée and Hidiroglou (1988) for stratifying skewed populations
into a certainty stratum, where all the units are examined, and a number of noncertainty strata,
which are sampled, has been found to have convergence problems. In this article we present a
strategy for implementing the algorithm, which improves its convergence and in many cases
results in smaller sample sizes than those obtained with the traditional implementation.
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1. Introduction

Lavallée and Hidiroglou (1988) have presented an iterative procedure for stratifying

skewed populations into a certainty stratum, where all the units are examined, and a

number of noncertainty strata, which are sampled. The stratum boundaries are derived in

terms of a known auxiliary variable assumed to be closely related to the information being

collected by the survey. The algorithm starts with a set of initial boundaries and replaces

them iteratively, using a procedure suggested by Sethi (1963), until boundaries are

obtained that minimise the sample size for a given level of precision.

Many researchers have encountered numerical difficulties when using this Lavallée and

Hidiroglou algorithm. Detlefsen and Veum (1991) showed that the final boundaries

depend on where the initial boundaries are set, often so that the minimum sample size

attained is a local but not necessarily a global minimum. Slanta and Krenzke (1994)

reported slow convergence, also not converging to the true minimum sample size. Rivest

(2002) had similar problems, with failure to reach the global minimum sample size.

In this article we propose a strategy for improving the convergence of the Lavallée and

Hidiroglou algorithm. The key lies in the choice of initial boundaries, which we simply

take in geometric progression. We illustrate using real populations that the convergence

and efficiency of the algorithm improves with the new strategy. In Section 2 we give a

brief overview of stratification, and in Section 3 we outline the implementation of the

Lavallée and Hidiroglou algorithm. In Section 4 we describe our new strategy, and in
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Section 5 we compare its performance with that of the traditional implementation of the

algorithm. A summary of the conclusions is given in Section 6.

2. Stratification

A stratified sample design partitions a population of size N into L mutually exclusive

strata, containing Nh ðh ¼ 1; 2; : : : ; LÞ units. The population mean is

�X ¼
1

N

XL
h¼1

XNh

i¼1

Xhi ð1Þ

where Xhi is the value of the i th unit in the h th stratum and N ¼
PL

h¼1Nh:

From each stratum a simple random sample of size nh # Nh is drawn without

replacement. The total sample size is the sum n ¼
PL

h¼1nh of the units selected from each

stratum.

The mean of the sample selected from stratum h is

�xh ¼
1

nh

Xnh
i¼1

xhi ð2Þ

where xhi is the value of the i th unit selected from the h th stratum. The overall stratified

sample mean is obtained by

�xst ¼
XL
h¼1

Wh �xh ð3Þ

where Wh is the weight of stratum h, given by

Wh ¼
Nh

N
ð4Þ

It is easy to show (Cochran 1977) that (3) is an unbiased estimator of the population

mean �X; with variance given by

Vð�xstÞ ¼
XL
h¼1

W2
hVð�xhÞ ð5Þ

Simple random sampling of nh units from Nh yields

Vð�xhÞ ¼ 1 2
nh

Nh

� �
S2
h

nh
ð6Þ

where Sh
2 is the variance of the h th stratum:

S2
h ¼

1

Nh 2 1

XNh

i¼1

ðXhi 2 �XhÞ
2 ð7Þ
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and X̄h is the mean of all the units in the h th stratum:

�Xh ¼
1

Nh

XNh

i¼1

Xhi ð8Þ

Putting (6) into (5) we have

Vð�xstÞ ¼
XL
h¼1

W2
h 1 2

nh

Nh

� �
S2
h

nh
ð9Þ

For any given number of strata, L, stratification designs may differ with respect to

1. where the stratum boundaries are put;

2. how the sample is allocated among the strata.

Both the boundaries and the sample allocation are chosen either to minimise (9), the

variance of the sample mean, for a fixed sample size, or to minimise the sample size for a

fixed precision of the mean.

3. The Lavallée and Hidiroglou Algorithm

Designed specifically for stratifying skewed populations, the Lavallée and Hidiroglou

algorithm is an iterative procedure which arranges the data in ascending order, and obtains

L strata defined by the cut-off points k0 , k1 , k2 ,; : : : ;, kL21 , kL where k0 ¼

minðXÞ and kL ¼ maxðXÞ. The boundary point kL21 creates the top stratum for which all

of the NL units are examined. The remaining n 2 NL units are allocated to the L 2 1 strata.

It is obviously assumed that n . NL.

The objective is to choose the boundaries to minimise the sample size n for a given level

of precision usually stated by requiring the coefficient of variation, cvð�xstÞ, of the sample

stratified mean �xst to be a specified level between 1% and 10%, where

cvð�xstÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Vð�xstÞ

p

�X
ð10Þ

With a top certainty stratum, the variance in (9) may be written as

Vð�xstÞ ¼
XL21

h¼1

W2
h 1 2

nh

Nh

� �
S2
h

nh
ð11Þ

If we denote ah ¼ nh=ðn2 NLÞ; the proportion of the n2 NL sampling units allocated to

the stratum h, 1 # h # L2 1, then ah satisfies
PL21

h¼1ah ¼ 1; nh ¼ ahðn2 NLÞ and (11)

can be written as

Vð�xstÞ ¼
XL21

h¼1

W2
h 1 2

ðn2 NLÞah

Nh

� �
S2
h

ðn2 NLÞah
ð12Þ
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Solving (12) for the sample size n yields:

n ¼ NL þ

XL21

h¼1
W2

hS
2
h=ah

Vð�xstÞ þ
XL21

h¼1
WhS

2
h=N

ð13Þ

Writing Vð�xstÞ ¼ �X2cvð�xstÞ
2, (13) becomes:

n ¼ NL þ

XL21

h¼1
W2

hS
2
h=ah

�X2cvð�xstÞ
2 þ

XL21

h¼1
WhS

2
h=N

ð14Þ

Lavallée and Hidiroglou (1988) suggested that, in (14), n be treated as a function of the

stratum boundaries k1; k2; : : : ; kL21. Then the optimum boundary points, i.e., those that

minimise n for a given cvð�xstÞ, are obtained by getting the partial derivatives of (14) with

respect to kh and setting them equal to zero:

›n

›k1

¼
›n

›k2

¼ · · · ¼
›n

›kL21

¼ 0 ð15Þ

From (15) Lavallée and Hidiroglou (1988) obtained a series of what look like quadratic

equations for the boundary points kh:

ahk
2
h þ bhkh þ gh ¼ 0; 1 # h # L2 1 ð16Þ

The solution of these equations, however, is no easy matter, since the coefficients ah, bh

and gh are functions of Wh, Sh, �Xh and the allocation method ah, which in turn depend not

only on kh but also on kh21 and khþ 1. The situation is much more complicated than when it

comes to solving a quadratic equation. Lavallée and Hidiroglou (1988) provided the

following iterative procedure for solving these equations.

1. Sort the population values in ascending order.

2. Start with arbitrary initial boundaries k 01 , k 02 ,; : : : ;, k 0L21.

3. Based on these boundaries, calculate the stratum weights W 0
h, the stratum means

�X0
hand the stratum variances ðS 0hÞ

2 given in (4), (8), and (7), respectively, for each

stratum h ¼ 1; 2; : : : ; L2 1.

4. The sample size n is calculated using (14).

5. All the NL units in the top stratum are selected into the sample, and the remaining

n 2 NL sample units are selected from the L 2 1 lower strata using an appropriate

allocation method.

6. Replace the initial set of boundaries by taking the larger root of (16):

k
00

h ¼
2b

0

h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb

0

hÞ
2 2 4a

0

hg
0

h

q
2a

0

h

7. Repeat Steps 3, 4, 5, and 6 with the new set of boundaries, continuing until two

consecutive sets are either identical or differ by negligible quantities.
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In practice the stratum boundaries are derived in terms of a known auxiliary variable X.

Since this is assumed to be closely related to the unknown variable being estimated, it is

not unreasonable to deduce that the minimum n obtained for a fixed Vð�xstÞ; will

approximate the required minimum sample size.

There is SAS program available for the implementation of this algorithm at

www.mat.ulaval.ca/pages/lpr. Steps 2 and 5 in the algorithm are discretionary. Regarding

Step 2, the SAS program allows user specified starting points for the stratum boundaries,

and the default situation is that the initial boundaries are taken in such a way that each

stratum has the same number of population units. With respect to Step 5, the sample

allocation method, Neyman (1934) showed that for a fixed sample size the variance Vð�xstÞ

is minimised provided the nh are allocated among the noncertainty strata so that the

proportion ah of sampled units satisfy

ah ¼
NhShXL21

j¼1
NjSj

; 1 # h # L2 1 ð17Þ

Neyman allocation is commonly used when the cost of sampling each unit is constant

and when the stratum variances are likely to differ substantially, which is usual in skewed

populations. Since the Lavallée and Hidiroglou algorithm is designed specifically for

skewed populations, one might expect Neyman allocation to be used.

Users of the algorithm have had problems with this approach. Slanta and Krenzke

(1994) encountered numerical difficulties with Neyman allocation. Specifically they found

convergence was slow, and that sometimes the algorithm did not converge to the true

minimum sample size n. Rivest (2002) reported similar difficulties, and observed that the

algorithm became more stable if Neyman allocation was replaced by power allocation.

Power allocation determines the allocation nh so that the proportion ah ¼ nh=ðn2 NLÞ of

sampled units satisfies

ah ¼
ðNh

�XhÞ
pXL21

j¼1
Nj

�Xj

� �p ; 1 # h # L2 1 ð18Þ

where p is some value in [0,1].

Power allocation is the method of allocation most commonly invoked by users of the

Lavallée and Hidiroglou algorithm; indeed it was also the preferred option of Lavallée and

Hidiroglou themselves, who noted that power allocations have the

“peculiarity that under relatively simple assumptions and for a suitable choice of p, the

coefficients of variation for the non-certainty strata tend to be equalized without a

significant increase in the overall coefficient of variation.”

Lavallée and Hidiroglou (1988) tested their algorithm by taking p ¼ 0:25; 0:50 and 1 in

(18) and showed that the variation in the value of p has only a minor effect on the resulting

sample size for any given level of accuracy.

In what follows we propose a strategy for the Lavallée and Hidiroglou algorithm which

uses Neyman allocation and which overcomes the convergence problems experienced

by users.
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4. Geometric Starts

Lavallée and Hidiroglou (1988) observe that

“for skewed populations stratum coefficients of variation tend to be equalised with

optimal design.”

When we (Gunning and Horgan 2004) investigated the consequence of this assumption, we

made a curious discovery: setting the coefficients of variation in each stratum cvh ¼ Sh= �Xh

equal, i.e.,

S1

�X1

¼
S2

�X2

¼ : : : ¼
SL
�XL

ð19Þ

produces boundaries that are in geometric progression. We briefly outline the argument.

Following Dalenius and Hodges (1959), we assume that X is approximately uniformly

distributed in each stratum. Uniform density of X in stratum h implies

�Xh <
kh þ kh21

2
ð20Þ

and

Sh <
1ffiffiffiffiffi
12

p kh 2 kh21ð Þ ð21Þ

The coefficient of variation of stratum h is therefore

cvh ¼
Sh
�Xh

<
2 kh 2 kh21ð Þffiffiffiffiffi
12

p
kh þ kh21ð Þ

ð22Þ

With approximately equal cvh it follows that

khþ1 2 kh

khþ1 þ kh
¼

kh 2 kh21

kh þ kh21

ð23Þ

which reduces to

k2
h ¼ khþ1kh21 ð24Þ

and means that the stratum boundaries are the terms of a geometric progression.

Gunning, Horgan, and Keogh (2006) generalised this result and showed that when the

data follow a Pareto distribution (Evans, Hastings and Peacock 2000), commonly used to

model skewed distributions, geometric breaks give exactly equal coefficients of variation

in the different strata.

Lavallée and Hidiroglou (1988) were not alone in their assertion that optimum strata have

equal coefficients of variation. Cochran (1961) also observed that for skewed populations:

“with near-optimum boundaries the coefficients of variation are often found to be the

same in each stratum.”

Our proposed new strategy is to start with geometric breaks and use Neyman allocation.
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5. The Comparisons

In this section, we implement our new strategy on real skewed data, and compare its

performance with some of the traditional implementations of the Lavallée and Hidiroglou

algorithm.

5.1. The Data

The data used in the comparisons are four specific positively skewed populations, detailed

in Gunning and Horgan (2004):

1. An accounting population of debtors in an Irish firm (Population 1);

2. The number (in thousands) of inhabitants of U.S. cities (Population 2);

3. The number of students in four-year U.S. colleges (Population 3); and

4. The resources (in millions) of dollars of a large commercial bank in the U.S.

(Population 4).

These four populations are illustrated and summarised in Table 1 in decreasing order of

skewness.

The populations given in Table 1 are divided into 4, 5, and 6 strata using two different

sets of starting points:

1. Geometric starting points where the initial stratum breaks are chosen so that they are

in geometric progression;

2. Default starting points where the initial stratum breaks are chosen so that each

stratum has the same number of units.

These breaks are presented in Table 2, along with the coefficients of variation of the

strata (cvh).

Examining Table 2, we note that the actual initial boundaries obtained with the two

methods differ considerably.

The default initial bounds of the Lavallée and Hidiroglou algorithm method put 25% of

the populations in each of the four strata when L ¼ 4, 20% in each of the five strata when

L ¼ 5 and approximately 17% in each of the six strata when L ¼ 6. Since the populations

are not uniform, it is unlikely that the optimum stratum breaks will be such that the strata

contain an equal number of units, consequently the default breaks are unlikely to be near

the optimum.

On the other hand with positively skewed populations containing a large number of

small units and a small number of large units, the optimum stratum breaks are more

Table 1. Summary statistics for four real populations

Population N Range Skewness Mean Variance

1 3,369 40–28,000 6.44 838.64 3,511,827
2 1,038 10–200 2.88 32.57 924
3 677 200–10,000 2.46 1,563.00 3,236,602
4 357 70–1,000 2.08 225.62 36,274
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Table 2. Stratum coefficients of variation with initial starting boundaries

Population Starting Method L ¼ 4 L ¼ 5 L ¼ 6

1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

1 Geometric
kh 205 1,057 5,443 147 549 2,037 7,552 119 355 1058 5153 9397
% of N 42% 41% 14% 3% 31% 37% 22% 8% 2% 25% 31% 27% 11% 5% 1%
cvh 0.45 0.44 0.48 0.50 0.37 0.38 0.40 0.37 0.41 0.32 0.32 0.30 0.31 0.26 0.35

Default
kh 117 290 700 673 198 410 888 81 151 290 500 1088
% of N 25% 25% 25% 25% 20% 20% 20% 20% 20% 17% 17% 17% 17% 17% 17%
cvh 0.32 0.27 0.25 1.18 0.28 0.20 0.22 0.22 1.07 0.24 0.18 0.19 0.17 0.22 0.99

2 Geometric
kh 20 43 93 17 32 59 108 16 27 44 73 120
% of N 44% 38% 13% 5% 35% 40% 13% 8% 4% 26% 41% 15% 9% 6% 3%
cvh 0.22 0.20 0.22 0.22 0.18 0.14 0.15 0.16 0.15 0.15 0.14 0.14 0.13 0.14 0.12

Default
kh 16 23 33 15 20 26 40 14 18 23 27 46
% of N 25% 25% 25% 25% 20% 20% 20% 20% 20% 17% 17% 17% 17% 17% 17%
cvh 0.16 0.11 0.10 0.56 0.13 0.08 0.07 0.16 0.50 0.12 0.08 0.08 0.05 0,16 0.46

3 Geometric
kh 526 1386 3,653 433 941 2,043 4.434 381 727 1387 2646 5046
% of N 20% 51% 19% 10% 14% 38% 29% 11% 8% 11% 26% 34% 14% 8% 7%
cvh 0.27 0.26 0.26 0.27 0.22 0.21 0.24 0.21 0.21 0.18 0.16 0.16 0.18 0.20 0.19

Default
kh 566 911 1,673 520 763 1,080 1,973 469 673 911 1175 2508
% of N 25% 25% 25% 25% 20% 20% 20% 20% 20% 17% 17% 17% 17% 17% 17%
cvh 0.29 0.14 0.17 0.56 0.27 0.12 0.10 0.20 .49 0.25 0.10 0.09 0.07 0.21 0.42

4 Geometric
kh 134 261 504 118 200 339 576 109 169 262 406 630
% of N 44% 30% 18% 8% 32% 32% 18% 11% 7% 25% 34% 15% 11% 10% 5%
cvh 0.18 0.19 0.19 0.20 0.14 0.14 0.17 0.12 0.16 0.12 0.11 0.10 0.11 0.12 0.11

Default
kh 106 1,447 262 100 131 176 318 96 122 144 208 354
% of N 25% 25% 25% 25% 20% 20% 20% 20% 20% 17% 17% 17% 17% 17% 17%
cvh 0.13 0.08 0.17 0.41 0.11 0.08 0.08 0.18 0.36 0.10 0.07 0.05 0.12 0.17 0.32

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

2
2

0



likely to be such that a large proportion of the population is in the lowest stratum, and

the highest stratum contains fewer but very large units. We see from Table 2 that

geometric breaks do exactly that: in all cases the lowest stratum contains substantially

more and the highest stratum contains substantially fewer units with geometric breaks

than with the default. With geometric divisions, there is never more than 10% of

the population in the top stratum and always larger proportions than the default in the

lower strata. Geometric breaks tend to yield initial bounds which are higher than

the default break points.

But the most important point to note from Table 2 is that geometric starting points give

near equal stratum coefficients of variation cvh in the initial strata, which is not at all the

case with the default method. This is illustrated further in Figure 1.

Recalling the observation of Lavallée and Hidiroglou (1988) that stratum coefficients of

variation tend to be equalised with optimum design, we might reasonably expect the

geometric breaks, which give near-equal coefficients of variation, to get us near to the

optimum at the first stage, avoiding the danger of the algorithm converging to a local

optimum and hence allowing the use of the Neyman allocation without encountering the

instability problems experienced by users of the algorithm (e.g., Rivest 2002; Slanta and

Krenzke 1996). We investigate this in what follows.

Fig. 1. Initial strata coefficients of variation with geometric and default starting points
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5.2. Final Results

We implement the Lavallée and Hidiroglou algorithm using geometric starting points with

Neyman allocation (geomney) and compare its performance with the traditional

implementation which takes initial values so that the strata have an equal number of units,

using two methods of allocation: Neyman (defney) and power (defpower1). When using

power allocation (18), we took p ¼ :5, p ¼ :7, p ¼ :9 and p ¼ 1 and, similar to Lavallée

and Hidiroglou (1988), we found that, for any given level of accuracy, the value of p has

only a minor effect on the resulting sample sizes. We present the results for p ¼ 1

(defpower1), i.e.,

nh

N 2 NL

¼
Nh

�XhXL21

j¼1
Nj

�Xj

; 1 # h # L2 1 ð25Þ

This is referred to as X-proportional allocation and should be near to Neyman allocation

if the Lavallée and Hidiroglou algorithm succeeds in obtaining breaks so that the stratum

coefficients of variation Sh= �Xh are equal.

5.2.1. The Final Break Points

Table 3 gives the final boundaries obtained with each strategy for 4, 5, and 6 strata, and

with accuracy levels of cvð�xstÞ ¼ :05; :025; and :01:

We see that, with cvð�xstÞ ¼ :05, the final boundaries with geomney and defney are

identical in most cases. The discrepancies between defpower1 and the other two are

not large, and in most cases the top certainty strata are identical. When cvð�xstÞ ¼ :025,

the differences between the final boundaries with each strategy are somewhat larger, and

when cvð�xstÞ ¼ :01, substantial differences in the final break points occur.

5.2.2. Sample Sizes

While the differences in break points are interesting to observe, of greater importance is

the sample size required to obtain a given level of precision with each strategy. The final

sample sizes necessary for cvð�xstÞ ¼ :05; :025 and :01 are presented in Table 4, along with

the number of iterations necessary to arrive at the final result.

We see from Table 4 that the sample sizes needed to obtain a given level of precision

with geomney are less than or equal to those of defney and defpower1 for most levels

of precision, with the largest decreases in sample sizes occurring for cvð�xstÞ ¼ :01.

For example, in Population 2 with four strata and cvð�xstÞ ¼ :01, defgeom returned a sample

size of n ¼ 213, compared to n ¼ 247 for defney in Population 2, 34 units of difference.

Also with six strata and cvð�xstÞ ¼ :01, sample sizes of n ¼ 146; 126; and 74 are required

with geomney in Populations 2, 3, and 4, respectively, compared to n ¼ 163; 141; and 81,

respectively, with defney; n ¼ 168; 145; and 81, respectively, with defpower1.

There was just one case in which the defney and defpower1 yielded sample sizes

substantially less than the geomney: in Population 4 with four strata and cvð�xstÞ ¼ :01, the

geomney returned a sample size n ¼ 124 compared to n ¼ 113 with defney, and n ¼ 114

with defpower1. Notably, this is the least skewed of the populations. Gunning and Horgan
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Table 3. Final boundaries

Population Strategy cvð�xstÞ ¼ :05 cvð�xstÞ ¼ :025 cvð�xstÞ ¼ :01

Four strata

1 Geomney 498, 2216, 10133 387, 1476, 5382 333, 1029, 2569

Defney 498, 2216, 10133 367, 1476, 5382 284, 845, 2238

Defpower1 463, 2154, 10227 345, 1422, 5386 245,793, 2221

2 Geomney 21, 53, 195 20, 41, 112 20, 33, 63

Defney 21, 53, 195 19, 39, 110 15, 23, 45

Defpower1 23, 59, 195 20, 43, 110 17, 30, 56

3 Geomney 1366, 3757, 9466 744, 1574, 4171 731, 1328, 2350

Defney 1366, 3757, 9446 744, 1574, 4171 722, 1297, 2300

Defpower1 1279, 3674, 9446 723, 3633, 4159 654, 1266, 2368

4 Geomney 174, 387, 968 150, 277, 566 141, 245, 359

Defney 174, 387, 968 150, 277, 566 116, 171, 279

Defpower1 174, 385, 927 148, 282, 566 112, 172, 278

Five strata

1 Geomney 367, 1248, 3757, 13226 339, 1090, 2970, 7513 249, 670, 1565, 3288

Defney 367, 1238, 3752, 13226 239, 1092, 2972, 7514 230, 572, 1262, 2977

Defpower1 319, 1181, 3761, 13293 282, 995, 2831, 7685 187,495, 1192, 2938

2 Geomney 19, 34, 73, 195 19, 31, 58, 132 19, 31, 55, 91

Defney 19, 34, 73, 195 19, 22, 42, 116 14, 21, 33, 66

Defpower1 20, 42, 95, 195 17, 31, 58, 127 14, 21, 33, 59
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Table 3. Continued

Population Strategy cvð�xstÞ ¼ :05 cvð�xstÞ ¼ :025 cvð�xstÞ ¼ :01

3 Geomney 742, 1534, 3807, 9466 735, 1432, 3049, 6485 579, 925, 1440, 2673

Defney 742, 1534, 3807, 9466 740, 1505, 3566, 7204 511, 857, 1370, 2456

Defpower1 715, 1591, 3932, 9446 709,1551, 3525, 7500 443, 798, 1362, 2463

4 Geomney 118, 195, 405, 968 118, 189, 353, 651 117, 185, 348, 503

Defney 117, 195, 405, 968 116, 173, 289, 599 99, 129, 178,297

Defpower1 149, 283, 557, 968 117, 195, 351, 651 98, 131, 185, 293

Six strata

1 Geomney 269, 741, 1767, 4378, 14915 267, 732, 1688, 3700, 8894 199, 484, 1044, 2125, 3936

Defney 240, 639, 1619, 4295, 14829 267, 732, 1687, 3700, 8893 189, 438, 849, 1722, 3551

Defpower1 229, 678, 1753, 4679, 14961 221, 618, 1479, 3593, 8944 148, 374, 812, 1695, 3586

2 Geomney 19, 31, 57, 110, 195 16, 25, 40, 69, 144 16, 25, 40, 67, 99

Defney 14, 31, 34, 73, 195 13, 20, 31, 58, 139 13, 17, 22, 34, 68

Defpower1 17, 31, 57, 109, 195 14, 21,33, 60, 129 13, 17, 23, 35, 62

3 Geomney 523, 909, 1665, 4133, 9446 512, 869, 1580, 3643, 7789 511, 857, 1363, 2240, 3496

Defney 523, 909, 1665, 4133, 9446 512, 869, 1580, 3643, 7789 428, 683, 969, 1480, 2839

Defpower1 663, 1270, 2321, 4624, 9446 472, 865, 1645, 3623, 7692 415, 682, 991, 1541, 2699

4 Geomney 116, 172, 289, 567, 968 116, 170, 257, 387, 680 116, 170, 256, 380, 516

Defney 116, 172, 289, 567, 968 93, 120, 172, 289,607 93, 120, 179, 256, 387

Defpower1 117, 194, 342, 600, 968 112, 169, 257, 395, 667 92, 121, 171, 256, 384
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(2004) showed that geometric break points work best when L is large and when the

populations are highly skewed.

The boxplots in Figure 2 detail the differences in sample sizes between geomney and

defney (geomney-defney) and the differences between geomney and defpower1 (geomney-

defpower1) for each of the 4, 5, and 6 strata, and for each of the accuracy levels of

cvð�xstÞ ¼ :01 ðcv01Þ, cvð�xstÞ ¼ :025 ðcv025Þ, cvð�xstÞ ¼ :05 ðcv05Þ.

Table 4. Final sample size and number of iterations

Population Strategy n cvð�xstÞ ¼ :05

Iterations

n cvð�xstÞ ¼ :025

Iterations

n cvð�xstÞ ¼ :01

Iterations

Four strata

1 Geomney 92 25 212 16 497 12

Defney 92 30 212 25 498 29

Defpower1 94 32 216 22 509 23

2 Geomney 36 10 88 4 213 11

Defney 38 14 90 12 247 7

Defpower1 37 14 89 13 219 18

3 Geomney 37 25 98 11 188 13

Defney 37 27 98 14 187 25

Defpower1 38 24 99 15 195 33

4 Geomney 24 18 55 9 124 8

Defney 24 26 55 24 113 10

Defpower1 25 20 54 21 114 8

Five strata

1 Geomney 57 24 146 29 384 12

Defney 57 34 146 48 384 37

Defpower1 59 29 154 55 403 34

2 Geomney 20 8 62 5 171 6

Defney 20 20 77 12 179 16

Defpower1 19 24 64 19 182 9

3 Geomney 23 18 70 36 159 18

Defney 23 23 70 53 160 14

Defpower1 23 21 72 48 163 8

4 Geomney 17 9 41 5 103 5

Defney 18 19 43 16 105 7

Defpower1 15 31 41 26 104 4

Six strata

1 Geomney 43 29 109 43 318 16

Defney 43 44 109 65 316 52

Defpower1 44 36 112 46 327 48

2 Geomney 11 23 53 4 146 6

Defney 16 18 55 18 163 11

Defpower1 12 32 55 16 168 11

3 Geomney 20 19 58 11 126 16

Defney 20 27 58 35 143 16

Defpower1 16 41 59 29 145 19

4 Geomney 10 12 32 6 74 6

Defney 10 33 39 9 81 10

Defpower1 11 36 31 30 81 9
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We observe from Figure 2 that the greatest improvements in the sample sizes for

geomney over the other two strategies occur when the number of strata is six and when

cvð�xstÞ ¼ :01 and when the number of strata is six.

5.2.3. Iterations

Our final comparison concerns the convergence rate of the different strategies. The SAS

program for the implementation of this algorithm, www.mat.ulaval.ca/pages/lpr, allows

up to 30 iterations before coming to a halt. We changed this to 100. Looking at the number

of iterations needed to converge to the optimum sample size in Table 4, we see that more

than 30 iterations were necessary many times with defney and defpower1, particularly in

the larger number of strata, while the geomney strategy used less than 30 in all cases.

We see from Table 4 that the number of iterations necessary to converge is smaller in

most cases with geomney. The overall average number of iterations used with geomney is

calculated to be 14.7, while it is 24.5 with defney and 25.1 with defpower1, with increases

of 67% for defney and 71% in defpower1 over geomney. Duncan’s multiple comparison

test indicated that these differences are highly significant (p # :001), while the mean

difference between the two default strategies defney and defpower1 is not significant.

Of course an increase in the number of iterations necessary for convergence may not be

all that important, and indeed it may even go unnoticed by the user, since the Lavallée and

Hidiroglou algorithm is implemented by the computer. More important is whether or not

the Lavallée and Hidiroglou algorithm converges to the true minimum sample size. Our

results indicate that the geometric strategy appears to converge more quickly to a lower

sample size than the two implementations of the traditional strategy that we examined.

6. Summary and Discussion

Users of the Lavallée and Hidiroglou (1988) iterative stratification algorithm have

experienced convergence problems which we show can be overcome by taking initial

Fig. 2. Differences in sample sizes
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starting points in geometric progression and proceeding iteratively using Neyman

allocation at each stage to allocate the sample units among the noncertainty strata. It is

appropriate that the initial geometric set of boundaries yields approximately equal

stratum coefficients of variation, as it was Lavallée and Hidiroglou themselves who

found equal coefficients of variation in the strata to be desirable and “often asked for

by the users of survey data.” What is more important, though, is that these geometric

break points tend to already be close to the global optimum, and hence keep us away

from the instability and convergence problems experienced in the past by users of

the algorithm.

Using real populations, and dividing them into 4, 5, and 6 strata, we compare the

geometric approach with the default strategy of Lavallée and Hidiroglou, which starts with

initial breaks so that strata contain equal number of units. We use two methods to allocate

the sample units among the strata with the default strategy: Neyman allocation and power

allocation with p ¼ 1.

The geometric approach converged more quickly to the optimum bounds, and in many

cases resulted in smaller sample sizes than those obtained with the default strategies. The

greatest improvements in sample size were observed for six strata with coefficient of

variation cvð�xstÞ ¼ :01. The number of iterations needed to converge is smaller in most

cases with the geometric strategy than with the default strategies.

Geometric starting points are extremely easy to implement, and with optimum

allocation overcome the instability and convergence problems experienced by users of the

Lavallée and Hidiroglou algorithm.
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