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Analysis of Sample Based
Capture—Recapture Experiments1

Juha M. Alho?

Abstract: The estimation of population
totals in sample based capture-recapture
experiments is considered. We permit
heterogeneous capture probabilities and
use logistic regression to model them. A
Horvitz—Thompson type estimator is intro-
duced and an estimator for its variance is
given. These formulas appear to be new
even when specialized to the homogeneous
case. Some aspects of experiments that
combine a census with a sample (such as
the U.S. Post Enumeration Survey) are
studied. In particular, we discuss the role
of sampling weights in the estimation of

1. Introduction

Consider capture-recapture experiments
such as the post enumeration surveys (PES)
related to the decennial U.S. censuses (cf.,
Hogan 1992), or estimates of fish stocks or
other wildlife in a given geographic area
(Seber 1982, pp. 328-340). Narrowly
defined, the purpose of such experiments is
to estimate the unknown population size.
More generally, we may be interested in the
sum of the values Z; of some variable in
the population. If Z; =1 for every indi-
vidual i, then we obtain an estimate of popu-
lation size. But Z; can also be some
numerical characteristic, such as income in

I A version of the paper was presented at the Joint
Statistical Meetings in Boston, August 10, 1992.
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capture probabilities, and we show how
purely sample based estimators can be
combined with the census estimates to
reduce variance. Logistic catch effort
models are applied to the optimal allo-
cation of resources to the sampling part
and the capture-recapture part of the
experiments. We show with an analytical
example that there can be a genuine trade-
off between the two sources of error.

Key words: Catch effort; Horvitz-Thomp-
son; optimization; post enumeration
survey; variance estimation.

an economic survey designed to study
taxation, or it can be a weight in a study of
fish stocks. Both are population totals of Z;.
In many applications it is impracticable
to attempt to cover the whole geographic
area for which a population total needs to
be estimated. Instead, the area is divided
into plots (“blocks” in the PES), and a
random sample of the plots will be used to
estimate the population total (Seber 1982,
pp. 19-28). Although the estimation of
population totals is a well-studied area in
cluster sampling (Cochran 1977, ch. 9A),
and the estimation of population size
(Z; =1) is the classical object of capture—
recapture experiments, the estimation of
population totals in a capture-recapture
context appears to have been neglected.
We will first extend the results of Huggins
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(1989) and Alho (1990) that permit the
estimation of heterogeneity in capture
probabilities using conditional logistic
regression. In particular, we will define a
Horvitz-Thompson type estimator for a gen-
eral population total in a sampling context
and derive an estimator for its variance.

Second, we will address some aspects of an
experiment that combines a census with a
sample. Alho, Mulry, Wurdeman, and Kim
(1993) proved the basic feasibility of the
logistic approach with the 1990 PES. In this
paper we will concentrate on two other
issues. We will first show that one aspect of
the weighting scheme used by the U.S.
Bureau of the Census (USBC) leads to an
unnecessary inflation of variance. Then, we
will compare the efficiency of a purely
sample based approach to that of the
census-sample approach. This issue is of
interest, if (unlike in most national cen-
suses) fine geographic detail is not required.
It will also lead to the definition of alterna-
tive estimators that have a smaller variance
than either the purely sample based estima-
tors or the census based estimators.

Third, we will consider the planning of
sample based capture-recapture experi-
ments. These contain two independent
sources of error, one due to sampling
variation, the other due to the uncaptured
individuals in the sample area. This sug-
gests that there may be a trade-off in the
design of such experiments between the
number of plots sampled and the effort
spent in catching individuals within the
sample area. We will use logistic catch
effort models to highlight the issue.

1.1. Notation for a capture-recapture

experiment

Consider a non-sample capture-recapture
experiment in a closed population of size
N. Following the notation of Alho (1990),
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let us define indicator variables for
i=1,...,N as follows. Let u; =1, if i is
captured the jth' time but not the other
time, j = 1,2; and m; = 1, if i is captured
twice. Then, n; = u; + m; is the indicator
of the jth capture with P(n; =1) = pj;,
and M; = uy; + uy; + m; is the overall cap-
ture indicator with P(M;=1) = ¢;. The
captures are assumed to be independent,
S0 ¢; = p1; + pai — P1:pai- Furthermore, we
assume that the capture probabilities
follow logistic models, logit(p;;) = X;aj,
where Xj; are vectors of covariates relating
toi=1,...,N, and a; are vectors of par-
ameters. Conditional maximum likelihood
estimators of the a; can be obtained based
on observed individuals (i.e., those with
M; = 1) only, denote the estimators by a;.
The corresponding maximum likelihood
estimators of p; and ¢; are p;; and &;. The
resulting estimator of population size is
N=M/$i+...+ My/dy. Define also
n=my+...+ny, j=1,2, and similarly
the other sums over individuals i as u;, m,
and M. Under the homogeneity of capture
probabilities the estimator N reduces to the
usual capture-recapture (or dual system)
estimator N = n;n,/m (Alho 1990, p. 628).

We may generalize the definition of N to
give a Horvitz—Thompson estimator of the
population total Z=Z,+...+Zy as
Z=ZM/$pi+ ...+ ZyMy/dy. When
Z; =1, a sufficient condition for the con-
sistency and asymptotic normality of the
estimators is (essentially) the boundedness
of the Xj; (Alho 1990, p. 628). A perusal of
the proof shows that sufficient condition
for the asymptotic results for a general Z
is, roughly speaking, that the Z; are also
bounded.

2. A Sample Based Estimator of Z

Let N be the (unknown) size of a closed
population in a geographic area. Suppose
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the area is partitioned into plots. The object
is to estimate the population total Z based
on a random sample of the plots.

We assume that based on sample design
we know for every plot the probability of
its being included in the sample. This will
also be the probability that the cluster of
individuals residing in the plot will be
included in the capture-recapture experi-
ment. In other words, we know the prob-
abilities f; = P(i is included in the sample
area), for every individual i=1,...,N we
happen to capture. A Horvitz-Thompson
estimator of the population total is then

N
Z=> Z:M/(f:$) (2.1)
i=1
This estimator generalizes the estimator for
population size in Alho et al. (1993, eq. 4,
p- 1132). Note that the definition (2.1)
agrees with the one given in Section 1.1, if
we take f; = 1. This is the way other formu-
las in this section simplify to the non-
sampling case.

Suppose the sampling design is such that
there are S different possible samples. Let
s be a random variable indicating which
sample was chosen, so s takes values in
I={1,...,S} Let I, C {1,...,N} be the
set of individuals belonging to the sample
area. Define N, = number of elements in
I.. With these notations we can make the
dependency of Z on the particular sample
more obvious by writing

Z =Y Z:M/(f:$)

i€l

(2.2)

Note also that conditioning on s, we have
asymptotically (keep the sample plots fixed
and let the population of the sample area

increase) that E[Z|s] = F,, where
Fy=Y_Z/f. (2.3)
iel,
Example 2.1. Suppose Z = Z(1)+

+Z(K), where Z(k) = population total of
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region k=1,...,K. Suppose there are
Q(k) plots in region k, g(k) of which are
selected into the sample with equal prob-
ability. Let Z (k) be the population total
in the sample area in region k. In this case

fi = q(k)/Q(k) for all individuals in region

k, and

K
F,=> Z(k)Q

k=1

Q(k)/q(k). (2.4)

Each of the g(k) sample plots from region k&
has the expected total Z(k)/Q(k). Asymp-
totic unbiasedness follows.

For future reference, let us calculate the
asymptotic variance of E[Z|s] using (2.4).
We have

K
Var(E[Z|s]) = Z

x Q(k)*/q(k)*. (2.5)

Assume now that Z(k)=Z(k,1)+
+Z(k,Q(k)) and denote the variance of
the numbers Z(k, 1),...,Z(k, Q(k)) by S?
(with Q(k) — 1 rather than Q(k) in the
denominator; cf. Cochran 1977, p. 23);
then, (2.5) becomes

Var(E[Z|s]) = ) SFIO(k) — q(K)]
k=1
0(k)/q(k).

We see that (2.6) is minimized if the plots
can be defined so that the population totals
Z(k,j), j=1,...,0(k), are equal within
each region, a familiar result from stratified
sampling.

In practice we can estimate SZ by the
sample variance of the capture-recapture
estimates Z(k,j) from the g(k) sample
plots. This gives an overestimate because
the Z(k,j) are only known up to the error
e(k,j) = Z(k,j) — Z(k,j). A correction is
easily obtained if we subtract from the
sample variance of the Z(k,j), the

(2.6)
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average of the capture-recapture variances
Var(e(k,j)|s) = Var(Z(k,j)|s).m

In the general case all plots may have
different sampling probabilities. This is the
case if the probabilities are proportional to
the areas of the plots, for example. Then,
an estimate of Var(E[Z|s]) can be obtained
from the Corollary of Theorem 9A.5 of
Cochran (1977, p. 261, with the identifica-
tion m =f; and Y, = capture-recapture
estimate of the total of plot j; m; depends
on the sampling method used). A correc-
tion to the variance along the lines of
Example 2.1 is also feasible.

3. Estimating the Variance of Z

Strictly speaking the variance of Z does not
exist. The easiest way to see this is to con-
sider the case of population estimation
under homogeneous capture probabilities,
when Z = N =nn,/m. Since there is a
positive probability that m =0, no
moments exist. Therefore, all the variances
and expectations we consider refer to those
of the asymptotic normal distribution of
Z. We will calculate Var(Z) by using the
well known decomposition

Var(Z) = E[Var(Z|s)]

+ Var(E[Z|s]). (3.1)

The second term in the decomposition
(3.1) can be written as Var(F;). As shown
in Example 2.1, this can be readily esti-
mated from sample data.

Consider the first term of the decomposi-
tion. In practice, we would use the sample
based estimator of Var(Z|s) to estimate
E[Var(Z|s)]. The estimator can be derived
following the steps of the argument for
Z;=1and f; =1 in Alho (1990, pp. 629-
630; we omit the details here). First we get
a representation for the theoretical
variance of the form Var(Z|s) = 1,(s)+
v3(s), where 1,(s) = E[Var(Z|M,s)] and
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v3(s) = Var(E[Z|M,s]), or the condition-
ing is with respect to the M; values
represented by M, in addition to the sample
s. This can be estimated by Vy(s) =
V,(s) + V3(s), where

Vy(s) = "X (X"WX) !XT (3.2)
and
Vi(s) =Y ZIMi(1 - ¢,)/(fid:)>. (33)

i€l
In (3,2), we have that ¥ = (2,...,¢n)"
with
Vi = (Z:M;/f;) exp(Xii)
x (14 exp(X3d,)) /K
":ZN-H' =(Z:M;/f) exp(X}}ﬁz)
x (1 +exp(Xiza))/K?
where
K; = exp(X{a;) + exp(X34,)
+ eXp(X-lriﬁl + X;ﬁz)
fori=1,...,N. Furthermore,
X, 0 (W, W
1 A 1 ) 3
0 X, W; W,
where X; = [X)i,... ,XjN]T, and Wj = (w,;;)
are diagonal N x N matrices, with
Wl =Mi(ﬁji/¢§i —13]2:/5512)7 Jj=12
Wiy = M(pripoi/ $i — ribi/ 97)-
Note that the M; omit those individuals
from the above expressions who were not
in the sample area or were not observed in
the capture-recapture experiment. When
Z;=f;=1fori=1,...,N,then the formu-
las reduce to those in Alho (1990). In parti-
cular, in the case of homogeneous capture
probabilities they reduce to the classical
variance estimator (3.1.2) given below.
The formulas given above define an

estimator of Var(Z|s). It was obtained by
estimating certain of the ¢; by M; for i € I;

X =
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and the parameters g; by their maximum
likelihood estimators. Conversely, when
we need an expression for the theoretical
variance itself, Var(Z|s), it is obtained by
replacing certain M; by ¢; and the para-
meter estimators by the true parameter
values. Details of this and an expression
for E[Var(Z|s)] are given in the Appendix.

3.1. Variance under homogeneity

Assume that p; =p; for i=1,...,N and
j=1,2. It was shown in Alho (1990,
p. 628) that the conditional maximum
likelihood estimators of capture probabil-
ities agree with the classical estimators
p1 =m/ny and p, = m/n;. In the sampling
case N = niny/m is a consistent estimator
of the population size N, of the sample
area. Its variance is N,®, where

®=(1-p)(1-p)/(P1P2)-

This follows from the formulas described in
the Appendix or it can be shown directly
(Alho 1991, p. 125). The well-known
moment estimator of the variance is

(3.1.1)

Vi(s) = mmpuyuy /. (3.1.2)

Recall that in the homogeneous case
¢; = p1 + p» — p1p>- Substituting in the
estimators p; we get that ¢; = mM /(mny).
Therefore, (2.1) can be written as

Z=NM/M (3.1.3)
where
M= ZZ,M,./f,.. (3.1.4)
iel

Based on the Appendix it is easy to see
that Var(Z|s) = v5(s) + v3(s) has

vi(s) = Gs@p1pa/9 (3.1.5)
where
Go= (Zi/f) (3.16)

iel,
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A straightforward, but tedious calculation
shows that

vy(s) = (F?/Ny)@(¢ — p1p)/9-

Note that when Z;,=f;=1,
Var(Z|s) = N,®, as it should.

A formula for E[Var(Z|s)] is obtained by
taking the expectation

(3.1.7)

then

EVar(Z|s)] = E[G,|p\p2/¢ + E[F/N]
X ®(¢ — pip2)/¢- (3.1.8)

Example 3.1.1. In the simple random
sampling of g plots from Q equally likely
plots f; = q/Q. Define I'; = Z{ +...+ 2L,
j=1,2. Then, we see that E[G|]=
(Q/q)T'y. Unfortunately, the term E [F2/N,)
in (3.1.8) does not simplify without further
assumptions. To get an idea of what it
might look like let us resort to a randomiza-
tion argument. Suppose we take first a
sample of the plots, and thereby of the
individuals, with N individuals selected.
Suppose we then assign the Z; values by tak-
ing a random permutation of some known
vector (Zy,...,Zy). In this case a sample
of plots with N; individuals is expected to
have a population total N,I';/N. Further-
more, for any i€ I, E[Z} =T,/N; and
for any i,j € I, i # j, E[Z,Z)] = (T - T)/
[N(N — 1)]. Therefore,

E[F?/NJ) =(Q/9){T2/N + (I} —T)
X (gN/Q —1)/IN(N - 1)]}.
It follows that E[Var(Z|s)] = T, where
T, =(Q/9)T22p1p2/¢ + [2(¢ — P1P2)/ 9]
x (@/q)*{T2/N + (T1 —T)
X (gN/Q@ —1)/IN(N = 1)]}. (3.1.9)

Take K =1 in Example 2.1 and write
Slz = S? for short. From (2.6) we get that
Var(E[Z|s]) = T,, where

T, = S*10 - q10/q. (3.1.10)
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In simple random sampling under homog-
eneous capture probabilities, Var(Z) =
T, + T,. Note that this reduces to N®, if
q=0Q and Z; =1. We will illustrate the
use of (3.1.9) and (3.1.10) in Section 6.

An extension to stratified sampling is
immediate. All parameters above can be
taken to be region specific: ¢ = g(k), Q =
O(k), ®=9%(k), p;j=p;k), I;=T;k),
S = §%(k), and T; = Tj(k), k=1,...,K.
Then, Var(Z) is obtained by summing
T, (k) + T,(k) over the regions k.

4. Estimation in a Census-Sample
Experiment

In the decennial U.S. censuses a complete
count is attempted at census time. In the
PES, capture-recapture (or dual system)
techniques are used on a sample basis to
assess the accuracy of the census. The
census count is subject to various types
of data errors (duplications, fictitious
enumerations, clerical errors, etc.) and it
contains imputations for missing data (cf.
Hogan 1992). A major part of the PES
consists of estimating the net effect of such
factors. The resulting undercount estimates
are smoothed using regression techniques
(Hogan 1992, p. 267).

In Section 4.1. we will address one aspect
of this complex procedure, and show that
the use of sampling weights in the estima-
tion of capture probabilities unnecessarily
inflates variance. Section 4.2. will show
that purely sample based estimation of
population size can, in some circum-
stances, be more accurate than a census-
sample approach. This leads to the defini-
tion of more efficient estimators.

4.1. Variance of the weighted estimator

The analysis of the PES data is currently
carried out by subgroups of population
(defined by age, sex, race, region, etc.) to
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permit the assumption that capture prob-
abilities are homogeneous (cf. Sekar and
Deming 1949). We will confine attention
to one such homogeneous subpopulation
with the size N. The maximum likelihood
estimator of the population N, of the sam-
pleareais N = nin, /m. The problem of esti-
mating the population outside the sample
area, N — N,, remains. Denote the census
count of that area by II. One alternative is
N, =1I1/p,, where p; =m/n, is the max-
imum likelihood estimator of p;. A close
analogue of the estimator the USBC uses?,
is N, = Il#,/m, where

iy =Y nulfy (4.1.1)
i€l
and
m=Y_ mf. (4.1.2)
iel

The rationale of this estimator is that it
attempts to recreate the “target dual system
estimator” (cf. Mulry and Spencer 1991)
that would be obtained if the whole
country were covered by the second count.
We will prove now that the variance of N,
is always smaller than that of N,.

It is easy to see that both N; and N, are
asymptotically unbiased. Note that II is
statistically independent of the n;; and n,,.
Therefore, conditioning on II we have

2 Based on Hogan (1992, p. 267) we can infer that in the
1990 PES the estimator implied for the non-imputed
population outside the sample area can be written as
N = ¢ x Ilfip/m, where II = census count of non-
sample area excluding whole person imputations;
fi, = weighted P-sample total; 77 = weighted estimate
of P-sample cases that could be matched with the
census; and ¢ = estimated fraction of correct non-
imputed census enumerations, which is based on the
E-sample. (Here, P-sample is an independent popula-
tion sample designed to measure the rate of omission in
the census. E-sample is a sample of census enumera-
tions designed to estimate the rate of erroneous inclu-
sions.) The weights reflected sampling probabilities,
corrections for whole household non-interviews, and
estimated probabilities of resolvedness. In our analysis
we will simplify by taking ¢ = 1, and by assuming that
the weights represent sampling probabilities only.
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asymptotically that
Var(N,) = E[I1%] Var(ny/m) + Var(IL/p,)
Var(N,) = E[I1%] Var (i, /) + Var(Il/p;).
Conditioning on s, we have asymptotically

E[ny/m|s| = 1/p, = E[fiy/m|s] for all s.
Therefore,

Var(n,/m) = E[Var(n,/m]|s)]

Var(f,/m) = E[Var(fiy/m|s)].
To compare the variances, we will use a
linear Taylor series expansion (or the delta
method, cf. Rao 1973, pp. 388-389) for
i,/ at Efiy|s| = F;p, and E[m|s] =
F;p,p,. We get the asymptotic expansion

Var(7iy /| s)
= [1/(F,p1p)]* Var(fiz | )
+ [Fepo/ (F,p1p2)** Var (s 5)
— 2[F,pa/ (F,p1p2)’] Cov(fiy, 1| 5).
Take Z;=1 in (3.1.6). We have
that Var(#, |s) = Gpy(1 — p,), Var(m|s) =
G;p1p2(1 = p1p2) and
Cov(#iy, m|s)

= z Cov(ny, m;|s)/f*

iel,

+ . Covl(ny,m|s)/(fif;).
i#j
When i # j, then Cov(ny;, m;|s) = 0 by the
independency of the individuals. For i =j
we have that

Cov(ny, m;|s) = p1pa(1 = py).
It follows that asymptotically
Var(i,/|s) = (G,/F))H (4.1.3)

where
H = [(1-pip2)p1 — p2(1 = p2)l/ (01p2)*

A corresponding variance calculation for
ny/m is obtained by taking f; = 1 for all i.
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Or, we have asymptotically
Var(ny/m) = (1/N,)H. (4.1.4)
It is a direct consequence of the Cauchy—
Schwartz inequality that G,N, > F2.

Therefore, (4.1.3) is always larger than
(4.1.4), with equality only in the case of
simple random sampling when the f; are
constant over i. This completes the proof.
We have shown that the asymptotic
variance of N, is always larger than or
equal to the variance of Nj. It is possible
that for reasons of data correction there
are motives for using N, instead of N;. How-
ever, one should realize that this is done at
the cost of increased variance®. Our result
supports the idea (cf. Alho et al. 1993,
p. 1133) that when there are data errors,
one can estimate the parameters of the
capture-recapture model (here p;) using
somewhat different data than the data used
to estimate population (here N — Nj).
What is an appropriate correction for one
purpose may not be optimal for the other.

4.2. Efficiency of purely sample based
estimation

Since a census is often a very costly operation
one might inquire how well one can estimate
population size if one omitted the census
altogether and based estimates on a purely
sample based capture-recapture experi-
ment. We note that somewhat surprisingly,
in certain circumstances, the purely sample
estimator can be more accurate than the
census-sample based estimator.

Consider the case in which a simple
random sample of size ¢ is taken from
among Q plots, so f;=¢q/Q. Let us
investigate the conditions under which
3 Having assumed that ¢ =1 does not change the
conclusion as far as the PES is concerned. Having
probabilities of resolvedness available does not change
it either, but it leads to several alternative procedures,

some of which are reviewed in Alho et al. (1993,
p- 1133).
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N, = IIn,/m is a more efficient estimator of
the population N — N, (i.e., the population
outside the sample area) than the purely
sample  based estimator N — N =
[(Q — q)/q]n ny/m. Both estimators are of
the form f(X,Y,Z), where f(x,y,z)=
xy/z. In both cases we may take Y =n,
and Z = m. In the case of N; take X =1L
In the case of N—-N take X=
[(Q — q)/q]n,. Using the delta method one
can show (lengthy details omitted) that
Var(N — N) > Var(N,), if and only if

0(Q —29)/[9(Q - 9)]
=Var(Il + ny)/Var(N;p,). (4.2.1)

If the left hand side of (4.2.1) is less than the
right hand side, then the purely sample
based estimator is more efficient. This can
happen if p; is small and the populations
of the plots can be made very nearly equal.
Such circumstances might occur in a census
of wildlife. Considerations of cost might
make a purely sample based approach
preferable to a census for a human popula-
tion as well, if great geographic detail is
not required. Conceivably some of the
geographic detail of a census could be pre-
served if administrative records, or other
lists, could be used outside the sample area
to provide a frame for pro rata estimates.

The result (4.2.1) is also of theoretical
interest. When (4.2.1) does not hold, then
Var(N — N) < Var(N;). But having the
census count available we know n;, and
hence N — N. Therefore, it would seem,
paradoxically, that it is more efficient to
ignore the data II than to use it! The
resolution is to use a weighted average.
Define v, = Var(N;), 5, = Var(N — N),
and 1, = Cov(N;, N — N). Then,

Ny = [(v2 = 12)N1 + (m = 1) (N — N))
/47— 272) (4.2.2)

has a smaller variance than N — N or Ny,
irrespective of (4.2.1). The weights depend
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on p;, p;, and population size (in addition
to Q and ¢), but an iterative estimator
based on (4.2.2) appears always feasible.

The result extends directly to the general
estimation of population totals

Zy=Zyny/pu+ -

+ Zynmin/bin (4.2.3)

which generalizes the census based popu-
lation estimator proposed in Alho et al.
(1993, eq. 5, p. 1132). A weighted average
of (4.2.3) and (2.2) in analogy with (4.2.2)
can be superior to both (4.2.3) and (2.2).

5. Logistic Catch Effort Models

Both in a purely sample based experiment
and in a census-sample experiment there
potentially is a trade-off between the inten-
sity of the catch effort within the sample
area and sample size. Suppose that a given
baseline expenditure C* = Cj + C3, with
C; >0 going to the jth capture, j = 1,2,
has yielded in the past capture probabilities
logit(p;;) = XjTiaj, j =1,2. Postulating the
availability of such information, we will
assume that in general the expenditure
C = C; + C, with C; going to the jth cap-
ture will yield capture probabilities of the
form

logit(p;i(C1, C2)) = Xjia; + g;(C;),

i=12, (51

where the g; are known, differentiable,
strictly increasing functions such that
g;(C;) = 0. In other words, the expenditure
C; versus the expenditure C; will yield an
odds ratio of capture equal to exp(g;(C;)),
no matter what the individual covariates
Xj; are. For this reason we will call (5.1) a
logistic catch effort model.

Example 5.1. Perhaps the simplest
model for g; assumes that g; = Gy;, where
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and «; > 0 are catch effort parameters. A
model of this type implies a positive prob-
ability of capture at C; =0, so it cannot
hold for all values of C;. It might hold
approximately when C; is close to C;, how-
ever. Another defect in the model is that it
implies increasing returns in the probability
of capture per unit investment, when
p;i(C1,C,) < 1/2, and decreasing returns
only when p;(C,C;) >1/2. Tt follows
that the model (5.2) might be applicable
only in cases in which capture probabilities
are large, such as the PES.m

Example 5.2. Assume that g;(C;) =
G»(C;), where

G2j(Cj) = K’j log(Cj/Cj*)a J = 172" (53)

where k; > 0 are catch effort parameters.
Note that in this case p;(0,0) =0 and
pji(C,C;) = 1, as C; — oo. From the
second derivative of p;; we see that (5.3) is
guaranteed to define p; as a concave
function of Cj, if k; < 1, no matter what
C; and X;aj are. Therefore, if it is realistic
to assume that 0 < x; < 1, (5.3) might be
taken to hold globally, for all C; >0, in
some applications. We will illustrate its use
in Section 6.1

In practice, (5.2) and (5.3) require that the
k; are known from past data. Rough esti-
mates may be obtained even from a single
PES type experiment, if one can determine
how much more intensive the sample study
was as compared to the standard census
(thus yielding two probabilities of cap-
ture), and how much extra one had to pay
for the improvement (C* = census cost per
plot; C =sample cost per plot). The
accounting of shared costs (permanent
personnel, basic training, computers,
maps, etc.) is a major challenge in such a
calculation. A more refined analysis
requires a better replication of experiments
at different levels of expenditure. Then,
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standard techniques of variable selection
and goodness-of-fit testing (analogous to
those proposed for standard logistic regres-
sion in Hosmer and Lemeshow 1989, chs. 4
and 5) can be used in modeling.

Above, the logistic catch effort models
were introduced as a mathematically con-
venient representation. In some applica-
tions the following argument may be used
to lend further credibility to the models.

Define p(C|X) as the probability that a
person with covariates X is captured when
the level of expenditure is C. Suppose that
an important factor in capturing indi-
viduals is the flow of information from
those captured to those not yet captured.
Then the effect of increased expenditure
from C to C + k could be to intensify the
flow of information. In such circumstances
we might assume that, as in the theory of
epidemics

p(C+h|X)—p(C|X)
=v(C)p(C1X)(1 = p(C|X))h + o(h)
(5.4)

where »(C) is some continuous, non-
negative function, and o(h)/h — 0, as
h — 0. Dividing (5.4) by & and letting
h — 0, we get a differential equation

P(C1X) =v(C)p(C|X)(1 - p(C|X)).
Suppose we have the initial condition
p(C"|X) = exp(A(X))/(1 + exp(A(X))),

where A4 is a known function. Then, the
well-known solution (e.g., Boyce and
DiPrima, 1970, pp. 48—49) is

p(C|X) = exp(g(C) + A(X))
/(1 +exp(g(C) + 4(X)))

where

C
g(C) = J v(y)dy.
EA
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By taking 4(X) = XJ-T,-aj and g = g;, we get
(5.1). For example, if v(y) =k;, then
g =Gy, and if v(y) = K;/y, then g = Gy,
defined by (5.2) and (5.3), respectively.

6. Optimization

The practical planning of sample based
capture-recapture experiments involves
both sampling design and the design of the
capture experiment. Based on the results
of Sections 2 and 3 (Examples 2.1 and
3.1.1, for example) we get a formula for
the variance of the estimator of the popu-
lation total. A priori values for the par-
ameters permit the numerical evaluation of
loss functions for different designs pro-
vided that the losses are functions of the
variance.

Analytical solutions appear to be feasible
only in the simplest case of population size
estimation under homogeneous capture
probabilities and simple random sampling.
We will go through one analysis in this
simple setting and show that there can be
a genuine trade-off in the allocation of
funds to the sampling part and capture—
recapture part of the experiment.

Let us assume that Z;=1, p;=p;
and that a sample of g is selected from
among Q equally likely plots. In this case
Var(E[N|s]) = T, as given by (3.1.10).
Correspondingly, E[Var(N|s)] =T, as
defined by (3.1.9), where Z; =1 implies
that I'; = I'; = N. It follows that

Var(N) = (0/q){N® + S*(Q — 9)}.
(6.1)

Suppose now that an amount C=
C, + C, is spent for catch effort per plot,
with C; going to the jth capture. Assume
that the capture probabilities depend on
expenditures through (5.3). How should C
be allocated to the captures? We see from
(6.1) that the allocation has an effect on
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the variance through ® only. We have
@ = (CH)™ ()= C M Cy™. (6.2)

Substituting C, = C — Cy, and by differen-
tiating we get that the minimum of &
occurs at

Cj = K,jC/H, ] = 1,2, (63)

where k = k; + k,. Or, the optimal alloca-
tions are proportional to the catch effort
parameters ;. The minimum value of @ is
£CT", where

= (CH"(C3)™ Ky " ky K.

Assuming that a given amount C is allo-
cated optimally between the captures we
get that

Var(N) = (Q/q){NEC™ + S*(Q — q)}.
(6.3)

Suppose we have a total expenditure
D >0 that can be used for the sample
based capture-recapture experiment. With
C going to each plot and ¢ plots sampled,
we have D = qC. Substituting C = D/q
into (6.3) we can express the variance in
terms of sample size

Var(N) = Q{NéD """
+S((Q/q) — 11}

By considering the derivative of (6.4) with
respect to g we note that the derivative is
always negative, if k < 1. For those values
it is optimal to sample all plots, or take
g = Q. If k > 1, then the minimum occurs
at

(6.4)

- SZQ 1/k
q—D{Ng(TT)} ~

The optimal sample size is an increasing
function of the variance S$* and a decreas-
ing function of N/Q. In this case there is a
genuine trade-off between sample size and
catch effort.

(6.5)
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An interesting theoretical problem con-
nected with (6.5) is caused by the fact that
q is a function of uncertain parameters ;.
The uncertainty may derive either from
sampling variability, or it may be subjec-
tive, if the parameters represent expert
judgement. It is important to analyze how
sensitive g is to the uncertainty.

The practical application of the opti-
mization results may require additional
considerations. In the PES, for example,
the so-called E-sample of census
enumerations is designed to estimate the
rate of erroneous enumerations. Only the
independent population sample, or the P-
sample, properly corresponds to a capture
experiment. Hence, both the loss functions
and the accounting of cost are more
complex than the ones considered here.

7. Further Aspects

We have discussed some aspects of the
analysis of sample based capture-recapture
experiments based on the variance of the
population total estimator. Future research
on the optimal allocation of funds should
address questions of bias for three reasons,
at least. First, an important way in which
increased expenditure per sample plot can
influence the analysis is that it may permit
the recording of more explanatory
variables. If those variables are relevant,
then the added expenditure would be better
seen as reducing the bias of the estimator
for a population total, rather than reducing
its variance. Second, it is possible that an
increased sample size will permit us to
study the possible variation in the
coefficients of the logistic regression
models. If variation exists, then a more
complex (perhaps region specific) par-
ametrization is called for. In this case
allocation to sample size would tend to
reduce the bias of the capture-recapture
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estimates, in addition to reducing the
sampling variance. Third, increased expen-
diture may be used to improve data quality,
thereby reducing data errors. Data errors
typically cause bias in logistic regression,
so also in this case the improvements
would not be seen in the variance.
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Appendix 1. Expression for Var V4 |$)

Define a sampling indicator for individual i
as follows. Let §;(s)=1, if i€, and
8;(s) = 0 otherwise. Consider V;(s) of (3.3)
first. Extend summation to i=1,...,N.
Replace M; by ¢;6;(s), and parameter
estimates by true values, to get u3(s).
Defining v; = E[v3(s)] we can uncondition
the effect of sampling by further replacing
6i(s) by fi-

Consider (3.2) now. Replace M; by 6;(s)
(not by ¢8(s)) in < and Py,

Journal of Official Statistics

i=1,...,N, and parameter estimates by
true values. Furthermore, replace W by
W (s) which consists of diagonal N x N
matrices W;(s) = (wifc(s)), with

Wz{(s) = 68i(s)(pji —P];i/ﬁbi)y j=12,
W?i(s) = 6;(5)(P1iP2i — P1:P2:/ b1)-

This yields v,(s). With these notations we
can write Var(Z|s) = v,(s) + v5(s).

In general the calculation of E[Var(Z|s)]
is hard. Although the expression for v; was
easily obtained, an expression for
vy = E[1y(s)] is not. A first order approxi-
mation is obtained by replacing §;(s) by its
expected value f;.
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