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Application of Spectral Analysis to Editing a
Large Data Base

Khoan Tan Dinh’

Abstract: This paper provides a simple statis-
tical procedure to minimize respondent
reporting errors and data entry errors in a
data base. The procedure has been applied
successfully to a large data base consisting of

1. Introduction

Several procedures for editing data can be
found in the literature. However, a spectral
analysis technique has not yet been addressed.
This paper discusses a method for applying
spectral analysis to minimize respondent
reporting errors and data entry errors in a
large data base. To illustrate this method, the
data collected from electric utilities by the
Energy Information Administration were
used. About 5 600 monthly time series were
obtained from 3 000 electric plants that use
different types of procedures (i.e., hydro
electric, internal combustion, etc.) and fuel
(i.e., light oil, natural gas, etc.). A plant may
have different combinations of procedures
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plants.
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and fuel types. These different combinations
result in different time series models. Using
spectral analysis, 5 600 time series were classi-
fied into three groups: white noise, seasonal,
and trend. Then, for each group an appropri-
ate statistical test to identify a new datum was
employed. The classification method is
discussed in Section 2. The statistical tests
used for the identification of errors are provi-
ded in Section 3 and editing procedures are
discussed in Section 4. Finally, some numeri-
cal examples are shown in Section 5.

2. Classification of Time Series

Given a time series, X,,t = 1,2,...,n, acom-
mon method of analysis is to decompose the
series into three components —a “trend com-
ponent,” a “seasonal component,” and a
“random component.” That is,
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where p is the constant mean, 7, is the trend
component, the summation term is the season-
al component, g, is the error term, and n is the
number of observations,
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The periodogram is used to detect and esti-
mate the amplitude of a cyclical component.
A detailed discussion of the periodogram can
be found in Fuller (1976), or Jenkins and
Watts (1968). The periodogram is defined by

n
I(w) =5 @+ D), @)
where k=1,2, ... ,m-1,

a,if nis even,
l(w,) =
(a% + b2),if nis odd.
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The quantity in (2) is the sum of two squares
associated with frequency w;. Therefore, for
an even number of observations the total sum
of squares may be partitioned into m + 1
components. One component is associated
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with the mean (1 degree of freedom (df)).
Each of the next m—1 components is the sum
of two squares (2 df) associated with the m~1
nonzero frequencies. The last component is
the single square (1 df) associated with the
frequency equal to ;. These results will be
used to form the classification of the time
series.

A time series is called white noise if it con-
sists of the constant mean and the error term
only. A trend time series consists of the con-
stant mean, the trend component, and the
error term. A seasonal time series is gener-
ally expressed in (1). In the seasonal time
series, the trend component may or may not
be eliminated. Based on the following tests, a
time series can be classified as either white
noise, trend, or seasonal. The following is a
discussion of these tests.

2.1. White noise test

The white noise (wn) test is the test to deter-
mine whether a time series is white noise or
not. To do that, we test the null model, X, =
u + &, versus the alternative model in (1).
That is, we test a white noise time series
against a non-white noise time series. For this
test, Fisher (1929) suggested the statistic £
which is expressed as follows:

p-m=UM (3)
,Ell(wk)

where M = MAX (I{wy), ..., I(®,,_1) )-

The percentage points for the statistic E,
demonstrated by Fisher and Fuller (1976, p.
284), are listed in the column “wn” of a more
general case in Table 1.

If E is less than the corresponding value of
wn in Table 1, then the null model is accepted.
The time series is called white noise. When
the null hypothesis is rejected, the seasonal
test is used to identify the category of the
time series.



Dinh: Spectral Analysis in Editing a Large Data Base

2.2. Seasonal test

The purpose of the seasonal test is to deter-
mine whether a time series is trend or season-
al. For a time series which has been rejected
by the white noise test, the seasonal test is
used to test a trend time series versus a season-
al time series. That is, test the null model, X,
=+ T, + ¢, against the alternative model in
(1). The statistic for the seasonal test can be
suggested as follows:

6 2nk
z1(%)
p="12 @
11 m 6 2ntk
2102, 1(5;)

where n = 12p for some integer p.

The statistic F in (4) follows the F-distribu-
tion with df (11, n—12), because the numera-
tor and denominator are independent, and
their sums of squares have 11 df and (n-1)-11
= n—12 df, respectively.

When the seasonal test is significant at the
10% level, the time series is called seasonal.
Depending upon the magnitude of F in (4),
we determine the type of the seasonal time
series as follows:

1. If F is greater than the 1% critical
value, then the time series is very cycli-
cal. It is called “seasonal strong” (ss).

2. If F is less than the 1% critical value
but greater than the 5% critical value,
then the time series is somewhat cycli-
cal. It is called “seasonal moderate”
(sm).

3. If Fis less than the 5% critical value
but greater than the 10% critical value,
then the time series is mildly cyclical. It
is called “seasonal weak” (sw).
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The critical values of wn, sw, sm, and ss cor-
responding with the »n observations are de-
rived from (3) and (4) and are shown in
Table 1.

Table 1. Critical values

n wn SW sm SS
36 4.86 1.86 222 3.10
48 5.13 1.79 2.07 2.82
60 5.35 1.72 2.01 2.16
72 5.68 1.69 1.96 1.17

If a time series has been rejected by the white
noise test, but not significant for the seasonal
test, then it is called the trend time series.

3. Statistical Test for Editing

Let G; be a time series generated from a
plant associated with the type of procedure
and fuel collected in the ith month and jth
year during the past J years. Having deter-
mined the category of the time series G;; (i =
1,2,...,12andj =1, 2, ... ,J) through the
classification method, we use statistical tests
as shown below to test a new datum. In the
following tests, we call the value of the new
datum collected in the month i of year J + 1
(current year) as “N.”

3.1. Overall t-test

In a white noise time series, all observations
vary around the overall (constant) mean. To
check a new datum from this time series, the
overall -test (ott) is suggested. The statistic
OT for the ott is defined as:

IN-@]
5

OT= > (5)

where {1 and 6 are the mean and the standard
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deviation computed from the time series Gj;.
That is,

2
Z 2 Gy
L=l =1
VY I
12 J g%j
and 6 = DD

Il
—_
-

where g; = G;—[i.

3.2.  Differenced t-test

A common method to eliminate the trend
component from a trend time series is to take
the difference between two consecutive
observations. To check a new datum from
the trend time series, the differenced #-test
(dtt) is proposed. The statistic DT for this
test is:

| (N-L) -]
o

DT= , (6)

where (i, and 6, are the mean and standard
deviation of the differenced series for two
consecutive months during J years, and L is
the observation preceding N.

The mathematical formulas for {i; and 6,
are shown as follows:

Let D= G- Gy, ifi=2,3,...,12andj =
1,2,...,J,andlet Dy = GGy,

D.
Thenﬂd=1—2,"T1— ,
A\ /2 4
and 6= i=21j=21 127-2

where d,] = D,'j - ﬁd‘
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3.3. Weighted t-test

Depending on the seasonality of the time
series, the current month’s mean, the pre-
vious month’s mean, and the next month’s
mean will have different effects on a new
datum; therefore a weighted f-test (wtt)
should be used to check a datum from a sea-
sonal time series. To obtain the statistic WT'
for the wtt, we have to define first the weight-
ed mean based on the current month’s mean,
the previous month’s mean and the next
month’s mean. That is, let G; be the ith
month mean, G; = £ G;/J. Then the weight-
ed mean for the ith month is defined as:

fi=G;W+ Gi—ll_T+G:+1 %V,
ifi=2,3,...,11,
aw1=(‘7,W+Gul‘2W Gzl_zw,and
fiz =G W+ (_;111_2W + G, 1_2W ,

where

1.00, if the time series is seasonal strong,

W ={ 0.50, if the time series is seasonal moderate,

0.33, if the time series is seasonal weak.
The statistic for the wtt is:

WT= -
Oy

; ™)

where 0, is the seasonal standard deviation of
the data obtained from the monthly standard
deviation, 6,,;,i = 1,2, ... ,12. That s,
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; 2
A 8ij
where 6,,; = z 24

pat T-1 and g,] = Gij_Gi'

4. Editing Procedure

Based on the category of the time series
being determined, a new observation from
the time series is tested for possible respon-
dent reporting errors and data entry errors.

4.1. From a white noise time series

Suppose a new datum is obtained from a
white noise time series. To test a possible
error, the ott is used. If this test is not signifi-
cant, then the new datum is acceptable.
Otherwise, there may be an error and it must
be checked.

4.2. From a seasonal time series

Suppose a new datum is from a seasonal time
series, then the wtt is used to test the new
datum. If this test is not significant, then the
new datum is acceptable. Otherwise, the dtt
is used. Suppose that the dtt is significant, the
new datum must be checked. Otherwise, this
datum is acceptable.

For an observation from a seasonal time
series, we might use two statistical tests (wtt
and dtt) to test the new datum, because in the
model of the seasonal time series, the season-
al component is significantly different from
zero, but the trend component may or may
not be significant. Therefore, we need the dtt
to take care of the trend effect.

4.3. From a trend time series

Finally, if a new datum is associated with a
trend time series, the dtt is used to test the
new datum. If this test is not significant, the
datum is acceptable. Otherwise, the new
datum must be checked.

5. Illustrated Examples

We illustrate the classification method and
the editing procedure with two examples.
The first example is for a white noise time
series, and the second for a seasonal moderate.

Example 1

The first example consists of data on the
amount of energy, expressed in thousand
kilowatthours (kWh), and produced by a
plant where the procedure is the internal
combustion engine and the fuel is natural
gas. These data were collected in 1979-1983
and are shown in Table 2.

Table 2. Series A

Month 1979 1980 1981 1982 1983
1 5614 2746 2421 2702 1284
2 6107 2476 2583 2131 1227
3 5077 2583 2111 2279 1365
4 5266 4563 1731 1973 683
5 4706 1800 1760 1882 5
6 2058 2018 1786 2070 497
7 2426 3149 2928 3458 2069
8 3160 3356 2816 3480 2390
9 2876 2099 2730 2411 406

10 3670 1891 1904 2093 9

11 2455 1812 1871 1313 64

12 2110 2293 2307 1339 986

The data set of series A contains 60
observations. Therefore, we have 30 perio-
dogram ordinates as shown in Table 3. The
white noise test is not significant at the 10%
level. Because the statistic, E = 5.07,in (3) is
less than the 10% critical value, 5.35, from
Table 1, the time series is classified into the
white noise category.
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Table 3.  Periodogram of series A

k Frequency  Period Periodogram
(E+4)
1 0.10 60.0 1111
2 0.21 30.0 1679
3 0.31 20.0 1117
4 0.42 15.0 801
5 0.52 12.0 260
6 0.63 10.0 683
7 0.73 8.6 481
8 0.84 7.5 506
9 0.94 6.7 465
10 1.05 6.0 1062
11 1.15 5.5 5
12 1.26 5.0 159
13 1.36 4.6 126
14 1.47 4.3 10
15 1.57 4.0 118
16 1.68 3.8 77
17 1.78 3.5 177
18 1.88 33 13
19 1.99 32 62
20 2.09 3.0 312
21 2.20 2.9 136
22 2.30 2.7 51
23 2.41 2.6 2
24 2.51 2.5 53
25 2.62 2.4 5
26 2.72 2.3 1
27 2.83 22 7
28 2.93 2.1 79
29 3.04 2.1 29
30 3.14 2.0 1

Since series A is white noise, we use the ott to
test a new datum collected in 1984. The
accepted region of the ott is limited by the
upper and lower bounds which are computed
as follows:

U=(+256 , (8)
L=03-256 , ©9)

where U and L are the upper and lower
bounds, and i and 6 are the sample mean and
standard deviation. The numerical values of
i, 6, L, and U are shown in Table 4.

The monthly data collected in 1984 are test-
ed by comparison with the upper and lower
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bounds in Table 4. For example, the plant
associated with the internal combustion
engine and natural gas reported the electric
utilities (in thousand kWh) from January to
August 1984 as shown in Table 5.

Table 4. Parameters for the ott

Standard Lower Upper
Mean deviation bound bound
2356 1275 -832 5544

Table 5. New data from series A

Month
Gene-
ration

Jan Feb Mar Apr May Jun Jul Aug

1760 201 308 14 2 471 15 141

All these data are accepted, because they are
between the upper and lower bounds.

Example 2

The data for the second example are also col-
lected from the same plant with the same pro-
cedure as in the first example, but the fuel is
light oil. The data set is shown in Table 6.

Table 6. Series B

Month 1980 1981 1982 1983
1 233 269 286 175
2 249 203 228 139
3 232 203 202 149
4 199 176 126 115
5 199 180 164 2
6 224 180 202 60
7 351 325 275 234
8 352 224 283 226
9 201 303 335 60

10 189 196 205 1

11 173 177 138 10

12 208 219 159 116
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The data set of series B contains 48 observa-
tions. We have 24 periodogram ordinates
which are shown in Table 7. The statistic, E
= 7.77, obtained from (3) is greater than the
10% critical value, 5.13, as shown in Table 1.
series B is not white noise. Therefore, the
seasonal test must be used. The statistic, F =
2.40, derived from (4) is between the 5% cri-
tical value, 2.07, and the 1% critical value,
2.82. Hence, series B is a seasonal moderate
time series.

Table 7. Periodogram of series B

k Frequency  Period Periodogram
1 0.13 48.0 63 439
2 0.26 24.0 45 227
3 0.39 16.0 18 539
4 0.52 12.0 11 864
5 0.65 9.6 11 707
6 0.79 8.0 3738
7 0.92 6.9 434
8 1.05 6.0 104 672
9 1.18 5.3 10 744

10 1.31 4.8 2 855

11 1.44 4.4 4126

12 1.57 4.0 4 616

13 1.70 3.7 4932

14 1.83 3.4 2 246

15 1.96 32 21762

16 2.09 3.0 5602

17 2.23 2.8 3280

18 2.35 2.7 1203

19 2.49 2.5 378

20 2.62 2.4 638

21 2.75 2.3 2169

22 2.88 22 466

23 3.01 2.1 4 089

24 3.14 2.0 6 567

Because series B is seasonal moderate, we
may use the wtt and dtt to test a new datum
collected in 1984. For the wtt, the weighted
mean is computed from Section 3 with the
" weight equal to 0.50, and the boundary
values corresponding to ith month of year
1984 are obtained as follows:

Uy, =fu,;+256, , (10)

Lwi = p"wi_z'5 63‘ s (11)

where

U,;: Upper bound of the wtt for month i,
L,,;: Lower bound of the wtt for month i,
m,,;: Weighted mean for the month i, and

6,: Seasonal standard deviation.

The numerical values of the weighted
mean, upper bound, and lower bound are
shown in Table 8.

Table 8. Parameters for the wtt

Standard Weighted Lower Upper

Month Mean deviation mean bound bound
1 241 49 215 181 250
2 205 48 212 177 246
3 197 35 188 154 222
4 154 40 160 126 195
5 136 91 148 114 183
6 167 73 191 157 226
7 296 52 258 223 292
8 271 60 266 232 300
9 225 124 217 183 252

10 148 98 161 127 196
11 125 78 143 109 178
12 176 48 179 145 213

If a monthly datum of series B collected in
1984 fell outside of the accepted region deter-
mined by (10) and (11) as shown in Table 8,
we use the dtt to test this datum again. The
boundaries of the dtt are given as follows:

U;=fg+256, (12)

Ly=0,-2564 , (13)
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where

U,: the upper bound of the dtt, and
L,: the lower bound of the dtt.

The numerical values of {i;, 64, Uy, and Ly
are shown in Table 9.

Table 9. Parameters for the dtt

Diff. Standard Lower Upper
mean deviation bound bound
-2 71 -179 174

Now the new data of series B are collected
from January through August 1984, and their
differences are calculated as reported in
Table 10.

Table 10. New data from series B

Month Jan Feb Mar Apr May Jun Jul Aug

Gen. 227
Diff.

38 55
-189

9 45 69
17 45 36

4 27
24 64 23
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In January, the observation, 227, is between
the two boundaries (181, 250) of the wtt as
shown in Table 8. It implies that this datum is
good. The others are outside the wtt bound-
aries. We thus compare these differences with
the dtt boundaries as shown in Table 9.
Between February and January the diffe-
rence data, —189, is less than the lower
bound, —179, of the dtt. Therefore, one must
check the February datum for possible
errors. The other differences are inside the
dtt boundaries and hence are accepted.
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