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Applying Pitman’s Sampling Formula to Microdata
Disclosure Risk Assessment

Nobuaki Hoshino’

Ewens’s sampling formula (Ewens 1972), which is mainly studied in statistical ecology, has
been used to assess the microdata disclosure risk. Pitman (1995) considered an extension of
the Ewens sampling formula, and in the present article we evaluate the usefulness of the Pit-
man sampling formula in the disclosure field. First we clarify some theoretical implications of
the Pitman model as a tool for assessing the risk. We then compare various models based on
the Akaike Information Criterion (AIC) by applying them to real data sets from the Japanese
labor force survey. Our comparison strongly supports the Pitman model. These results suggest
that the Pitman sampling formula is very promising for the microdata disclosure problem as
well as for statistical ecology.
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1. Introduction

In releasing a microdata set, the statistical agency must exclude individual records that are
identifiable to the individual. A record is composed of fields that correspond to categorized
attributes of an individual. Attackers might identify an individual using information on
records. In practical terms, we may consider individuals that are unique in the population
with respect to the categorization in the sample data to be identifiable. The number of
population uniques is thus an important control object in the context of microdata dis-
closure, and it is important to estimate the number of population uniques from sample
data at hand. After estimating the number of population uniques, we may regard the
number of the uniques times the sampling ratio as the estimate of the number of population
uniques contained in the sample. It is unsafe to disseminate a data set that contains many
population uniques.

To estimate population uniques, Bethlehem et al. (1990) introduced the Poisson-gamma
model, which is the first application of the superpopulation model in the field of the
microdata disclosure problem. Under the superpopulation model based approach, we
assume that the population is generated by an appropriate (prior) distribution. By means
of the assumption on the prior distribution, the risk inference is reduced to the problem
of parameter estimation. We should be pragmatic since it is impossible to know the
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true mechanism of generating population. Here we adopt the empirical Bayes method;
what is required is a prior distribution flexible enough to describe various populations.

We briefly survey various superpopulation models used in the literature. Several
authors apply the Poisson-gamma model to actual data sets, but reported fits are bad.
See Skinner (1992) or Skinner and Holmes (1993). Skinner and Holmes (1993) applied
the Poisson-lognormal model and the logarithmic series distribution to U.S. and Italian
data sets. These models have mainly been studied in ecology, where frequencies of species
are estimated from sample frequency structure. The stochastic abundance model (Engen
1978) is used for modeling the populations consisting of large numbers of species in
statistical ecology. Hoshino and Takemura (1998) clarified relations between various
superpopulation models and revealed that the superpopulation model based approach
in respect of the disclosure problem has a connection with the stochastic abundance
models. The Poisson-lognormal model is studied, for example, in Bulmer (1974) and in
Aitchison and Ho (1989). Fisher’s classical logarithmic series model (Fisher et al. 1943)
leads to many versions of superpopulation models; see Section 3.2 of Engen (1978) and
Johnson et al. (1993). Hoshino and Takemura (1998) noted, on the basis of an inter-
pretation of Anscombe (1950), that a limiting Poisson-gamma model becomes a logarith-
mic series model different from that of Skinner and Holmes (1993). Takemura (1999)
considered a sampling distribution from the Poisson-gamma model and derived the
Dirichlet-multinomial model. Takemura (1999) also identified that the Ewens sampling
formula originally developed in genetics is a limiting form of the Dirichlet-multinomial
model. See Ewens (1990), Sibuya (1993), and Johnson et al. (1997) for the Ewens distri-
bution. In Hoshino and Takemura (1998), we showed that the Ewens model is derived
from the logarithmic series model by the same conditioning argument as the Dirichlet-
multinomial model is derived from the Poisson-gamma model. Watterson (1973) referred
to the Ewens distribution as a version of the logarithmic series distribution. Samuels
(1998) applied the Ewens distribution to real microdata sets. However, it is stated that
the fitted parameter values were too small to provide proper risk inference.

Pitman (1995) considered the random partition of the positive integers, and obtained
a new generalization of the Ewens distribution. See Pitman (1996), Pitman and Yor
(1997), and Yamato et al. (1999) for the context. The obtained distribution is the Pitman
sampling formula. Samuels (1998) negatively mentioned the Pitman model, because the
objective was to set larger parameter values for the Ewens model. We will later show
that the Pitman model is not suitable for this purpose. However, this model is flexible
in nature; it contains the Ewens model and the Dirichlet-multinomial model as special
cases. Thus the fit of the Pitman model is at least as good as those of these models,
although the degree of freedom decreases.

If the Pitman model greatly improves prediction of the disclosure risk, then the super-
population model based approach becomes much more relevant not only for the disclosure
problem but also for the stochastic abundance model fitting. It is important to apply the
above superpopulation models to actual data sets and compare each model on the same
appropriate criterion.

The present article treats the method of applying the Pitman model to the disclosure
problem and provides a comparison of the Pitman model with the other models. In
Section 2 we derive some relevant moments of the Pitman model. Estimation with the
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Pitman model is discussed in Section 3. Section 4 demonstrates the applicability of the
Pitman model. After discussing model selection policy, we compare the Pitman model
with other superpopulation models by applying them to Japanese labor force survey
data sets. Section 5 offers motivation for the Pitman model and some concluding remarks.
In the rest of this section we provide notation and define the existing superpopulation mod-
els compared in Section 4.

1.1. Notation and summary of existing superpopulation models

Consider a discrete population of size N. Let K denote the total number of cells and let F;,
j=1,...,K, denote the size of the j-th cell. Under the superpopulation model approach
we consider F »i=1,...,K, as random variables; the population size N = Zf:l F;
may or may not be a random variable. Let S; denote the number of cells of size i. In terms
of the indicator function

I, Fj=i

I(szi):{o’ Fo

the number of cells of size i is expressed as

K
Si=Y I(F;=i),i=0,1,...,

j=1

which are called size indices (Sibuya (1993)) or frequencies of frequencies (Good 1965).
These ideas correspond to equivalence class (Greenberg and Zayatz (1992)) in the con-
text of the disclosure problem. In the risk assessment, the number of population uniques
S, is of particular importance.

Obviously

Y Si=K > i-S=N

i=0 i=1
Here K is the total number of cells including the number of the empty cells S,. In the fol-
lowing we denote the number of nonempty cells by

U=K—SO=§:S,-

i=1

One important difference between the disclosure problem and statistical ecology is
the handling of U and K. In statistical ecology we usually only consider the marginal
distribution of (S, ...), and do not include K in the models. The reason is that species
of frequency zero in a population have little meaning and there is no obvious means to
specify S, in statistical ecology. However, as far as the microdata problem is concerned,
we can set K as the product of the number of categories in variables assessed. Generally K
becomes huge. The limiting process of K — oo is thus reasonable.

In the following we summarize existing superpopulation models. We classify these
models by paying attention to the following two points: (a) whether the population size
N is a random variable or not, and (b) whether S, is defined or not. Models in which S,
is not defined are described without explicit dependence on K.
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Poisson-gamma model: The population size N is a random variable having the nega-
tive binomial distribution, and S, is defined. Let Xp; be the Poisson random variable
with mean Nyu, and p has the gamma distribution with its density: f(u) =

w ! exp(—u/B)/(I'(v)BY). The parameters v and 3 are assumed to satisfy the restriction
'yB = 1/K. The unconditional distribution of Xp; becomes the negative binomial distri-
bution. Under the Poisson-gamma model, Fi,j= 1,...,K, are assumed to be indepen-
dently and identically distributed as Xps. In summary the Poisson-gamma model is
defined by the joint probability function of F;’s as

HP(F ) o N8
T(y)F;! T=NB+ 1’

1
P(Fy,... =1- =— @
(Fy,....F P g9 B ¥ (D

The expected population size is E(N) = KE(F;) = KNyy8 = Ny

Poisson-lognormal model: The population size N is a random variable, and S is defined.
As in the Poisson-gamma model, Xp; is the Poisson random variable with mean A. In
addition, log A is normally distributed with mean M and variance V. We assume
that F;, j=1,...,K, are independently and identically distributed as Xp;. The Poisson-
lognormal model is defined by
K 1 "
P(F,,...,Fx) = H JAFH exp(—\ — (log A — M)*12V )d\ )

j=1 F‘j!\/ 27['VO

The expected population size becomes K exp(M + V/2). In the present article we restrict
the model such that K exp(M + V/2) = N,. Thus M = log Ny — log K — V/2, and V is the
unique parameter.

Dirichlet-multinomial model: The population size N is fixed, and S, is defined. The
Dirichlet-multinomial model is the conditional Poisson-gamma model given N and
defined by

P(So,...,SN)Z

KT N N 1
NK (K’Y)H< (v+l)) 3)

LKy +N) -5\ T'(yi!

Logarithmic series model: The population size N is a random variable, and S is not
defined. Fisher’s logarithmic series model is defined in terms of the joint distribution
of size indices S;, i = 1. Let

i—1

)\_Nopq

i=1,2,...

where Ny > 0,0 < p < landg = 1 — p. Here S, is an independent Poisson random variable
with mean ;. The joint probability function of the size indices (S, S,, ...) becomes
a )\?i exp(—N\y)
PSSy = [[* = —

i=1

“

Here only a finite number of S;’s are nonzero. This model is the limiting form of the
Poisson-gamma model as K — oo with K+ fixed.
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Ewens model: The population size N is fixed, and S, is not defined. Applying the limiting
process K — oo to the Dirichlet-multinomial model with Ky = 1/8 = 0 fixed, we obtain
the Ewens model with parameter 6:

8V NI

P(sl,...,sN)ZWN— )]

[1#s:

i=1

where 0™ =00 + 1)@ +2) @ +N -1, U=3" S,

2. Some Theoretical Results on the Pitman Sampling Formula

In this section we introduce the Pitman model and derive some moments of the model
needed for the estimation.

Sibuya (1993) describes the urn scheme construction of the Ewens sampling formula.
It is instructive to consider a similar urn model construction of the Pitman model. Let
us consider the following random clustering process: suppose that n balls (individuals)
are distributed over u urns (cells) such that no empty urn exists; the number of balls in
the j-th urn is denoted by f;; we then put the n + 1-st ball into an urn; with the probability
of

0+ uo
0+n

(6)

we put the ball into the u 4 1-st urn that was empty; otherwise the number of nonempty
urns remains unchanged, and the ball is put into one of the nonempty u urns; the prob-
ability of choosing the j-th nonempty urn is

fi—«
é (N
+n
where j = 1,...,u. Starting the process with n = u = 0, we can inductively derive the

Pitman sampling formula. See Proposition 9 of Pitman (1995), which gives a more formal
description of the process.

For each pair of real parameters « and 6, such that either0 = o < 1 and 0 > —a, or@ < 0
and 6 = —ma for some natural number m, the Pitman model is defined by

G[UZOI] N a- a)[jfll Sj 1
P(Sy,...,Sy) = N! - —
( 1 N) O[N] ]1;[1< J! ) SI'

®)

where 619 = 0(0 + o) (0 + (U — Da), 6™ = 66 + 1)---(@ + N — 1). If « equals zero,
(8) amounts to the Ewens model (5). Assuming that « < 0, let§ = —Ka >0,y = —a > 0.
Then (8) amounts to the Dirichlet-multinomial model (3).

Write

SN,UZ{SZ(SI""’SN)|ZiSi=N7 ZSZZU}

i=1 i=1
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In the following we consider Uy = Zf\]: 1 S; as a random variable given N. The equations
(6) and (7) imply that

P(Uy ., = U) =P(Uy,, = UlUy = UP(Uy = U)

+PUy =UlUy=U—-1DP(Uy=U—-1) 9
and
0+ Ux N - U«
P(UN+l=U+1|UN=U)=ma P(Uyy 1 =UlUy=U) = SEN (10)

Yamato et al. (1999) give the explicit form of P(Uy = U), although it is complicated.

Theorem 1 Suppose that size indices are distributed according to (8). Then

(—a)“—” N-j+1
E(S; = 0 E(U —_— 11
i) O+ o <N,>>H0+NJ (an
where
E(Uy_)=———— — 1+— 12
Uy = 0+N—l—1 ; 0+1 H(Wﬂ) (12)
Proof First we show (11).
N [U:a] N =1\ S
0 (1—-w 1
= NU j=1
B i N'H[UZO(] ﬁ ((1 _a)[jl]>s,i ((1 _a)[il]>5i 1
U=1SESyy o J=1G#D J! 5t i! (i — D!
N [U:a] N [j—11\ Si [i—1]
0 1— 11—
-y 3w () Y
U=15E€Sy 11 i=1 J: it v
N i—1] i
(11— N-I1+1
= 0+ U—-1Da)PUy_;=U-—1 13
U; g HHN_I(H ))P(Uy _; ) (13)
Since ZZ:](U — DP(Uy_; =U—1)=EUy_,), (11) is proved.
To prove (12) we utilize a recurrence relation:
E(U, E(U([14+—— +L (14)
N+D = EEN 6+N 0+N

where E(U,) = 0. Assuming that (14) is true, we can easily prove (12) by induction.
Using (9) and (10),

E(Uy1|Uy =U) = UP(Uy; = UlUy =U)+ (U + DPUy 41 =U + 1{Uy = U)

a 0
= 1+—— - 15
U< +0+N>+0+N (13)
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The relation of (14) holds by taking the expectation of (15) over U. Q.E.D.
We can similarly calculate the factorial moment:

N N (R) plU:a] N =1\ %
)\ N6 (1 -0 _
E(HSj ) = Z O+ N— 1)(R)6[Ur:a]jl;[1( PUy_r=U-r)

]
j=1 U=1 J:

(16)
where r = Z;V:l r, R= Z]N:l jr; and n® =nn—1)(m—R+1). The higher
moments of Uy are evaluated through recurrence relations like (14). For example
N+0+ 2 20 + o

0
2 el v
SLN E(Uy) + E(Uy) +

N
EUy+1) = 6+N 0+ N

In particular we obtain

N6 + NaE(Uy_ ;)

ES) =5y (17)
NP0+ aUy_5)]1 -«

E(SZ)ZE{ O@+N—1)? } 2 (1%)
N®@O + aUy_,)(0 Uy_,+1

E(S(lz)) _ E[ 0+ (g+21)\§ _+1t)>é) N2+ 1) (19)

from (11) and (16). These expectations lead to moment estimators discussed in Section 3.

3. Estimation with the Pitman Model

Here we consider the estimation of the disclosure risk under the Pitman model. All the pro-
positions in this section are proved in the Appendix. We denote sample size by n and
sample size indices by s = (sq,...,s,). The total number of nonempty cells or clusters
is u=>7_, s;. Suppose that n individuals are drawn with simple random sampling
without replacement.

3.1. The estimation of the parameters

The Pitman model enjoys the property of exchangeability with respect to individuals in a
population, assumed in Lemma 1 of Takemura (1999). Accordingly the marginal distribu-
tion of sample individuals coincides with the prior distribution of values of n individuals
directly drawn from the superpopulation. That is to say,

o[u:a] n - O[)[j_l] 5j 1
Poeeas =t [T (29— o 20)
J

is obtained by replacing N and U in (8) by n and u. We can show the result in another way.
Suppose that N objects are partitioned into classes according to a probability distribution
pn- A partition structure (Kingman 1978) is a sequence py, p,, . . . of distributions wherein,
assuming that an object is deleted uniformly at random from the N objects, the partition
of the N — 1 remaining objects is distributed according to py_;. The Pitman sampling
formula is known to have a partition structure, with the result that (20) holds.
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We then construct the Maximum Likelihood Estimators (MLE) of § and «. Let the
logarithm of the right hand side of (20) be L. The MLE is the solution of

and
aL u—1 i n i—1 1
= . S
oo 0+ia = l;j—oz

These simultaneous equations can be solved by the Newton-Raphson method using second
derivatives:

a2L u—1 1 n—1 1
W2_2(0+ia)2+z(0+i)2

i=1 i=1

aZL u—1 i2 n i—1 1
Gor = i G- @

i=1 i=2 j=1

o°L S
—_—=— — <0
900 ; (o + 0)?

To solve the ML estimation, we investigate approximate moment estimators for the
starting values of the Newton-Raphson procedure. Our moment estimators are

9:nuc—s1(n—1)(2u+c) 22)
251U+ s;¢c — nc
&= 0(s; —n)+ (n— s, 23)

nu

where ¢ = s; (s; — 1)/s,. The derivation is given in the Appendix. In six of seven cases in
Section 4, except for Case 1, these estimators gave convergences in the Newton-Raphson
procedure. In Case 1 the author reached the solution by random starting value generation.

We show a useful result for such random generation of « and 6; Proposition 1 enables
us to restrict the ranges of parameter values that will be explored.

Proposition 1. Let the ML estimates of the Pitman model be denoted by o and 6%, and
let the ML estimate of the Ewens model be denoted by 0. Then 0 < g unless o* < 0.

In view of Proposition 1 we can understand why Samuels (1998) objected to the Pitman
model. Samuels found that 8z was too small for his data set and attempted to obtain a larger
estimate of the Ewens parameter 6 by the Pitman parameter 8*. Actually Proposition 1
shows that 6* is smaller than 0 in the usual cases of positive o*. However, our experience
of applying the Pitman model to various data sets suggests that the flexibility gained by the
additional parameter « greatly improves the fitting.

3.2.  Risk inference

In the following we discuss some statistics concerning the disclosure risk under the Pitman
model. We state three propositions useful for the disclosure problem.
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As regards the risk inference, we will evaluate the expectation of the number of popula-
tion uniques E(S;) with the ML estimates of the parameters. However necessary moments
given in Section 3 are not in convenient forms to compute. From Theorem 1 we investigate
simple forms of the moments.

Proposition 2 If a# 0, the expectation of Uy under (8) is reduced to

0 ((0+ )
B =& (S 1)

The result of Yamato and Sibuya (1999) coincides with (24). We can rewrite (24) using
the gamma function. Based on the asymptotic property of the gamma function, we find a
useful approximation of E(Uy), which is a special case of Lemma 2 in Yamato and Sibuya
(1999). If N is sufficiently large

P@+at MO |\ _TO+D .
I'(0 + N0+ a) ol'(0 + o)

(24)

0
E(Uy) = — (25)
o
for o # 0. Our expression of E(S;) depending on E(Uy _) then becomes simpler. We

obtain

NI@+a+N-DI'O+1) _TO+1D .,

S =" nro+a  TO+a" (26)

As a result, the evaluation of E(S;) is not very hard, once the ML estimates are obtained.

We denote the proportion of population uniques in the sample to sample uniques by p,,.
This is often an index of the disclosure risk. Let us denote the sampling ratio by f = n/N.
It is natural to estimate the proportion by

8
pu=—"f 27)
S

where Sl would be E(S)).
The following propositions may have interesting implications regarding the disclosure
problem.

Proposition 3 Suppose that size indices are distributed according to (8). Then, for o« =0

m EG) _ o
N==E(Uy)

Proposition 3 suggests that the ratio of population uniques to the number of nonzero
frequency groups is «, which is smaller than unity; the implication is consistent with
the author’s experience that the Ewens model (i.e., « = 0) tends to underestimate the
number of population uniques. This tendency seems to be in line with other authors’
experiences. Since the Ewens model is a limiting form of the conditional Poisson-gamma
model, these models give similar population unique estimates, as can be seen in Section 4.
It is suggested that the poor performance of the Poisson-gamma model and related models,
including the logarithmic series distribution, occurs when population uniques constitute
no negligible proportion of the population. In other words these models might be suitable
only for safe data sets.
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Based on Proposition 3, we propose a simple estimator of «:
S

&= (28)
u

We could replace the previous moment estimator (23) by (28); see Table 8 of Section 4.

Proposition 4 Let n/N = f be fixed. If we assume (8) and (20) then

E(S))

-«
Jim S =1 (29)

The left-hand side of (29) corresponds to p, in (27). Combining the simple estimate
of (28), we can roughly evaluate the risk of a data set by f =% where the sampling ratio
fis known. This simple procedure is useful because the data editing for anonymization
requires repeated trial and error.

4. An Application to Japanese Labor Force Survey Data

In this section we examine performances of the Pitman model and other superpopulation
models by applying them to real data. The data are given by Takemura (1998), from the
Japanese labor force survey. First we consider how to compare performances of super-
population models. Second, we discuss the application results.

4.1.  The methodology of comparison

Among the superpopulation models considered above, no model is universally the best on
logical grounds. Rather we should evaluate the appropriateness of each model to a given
data set. Our risk evaluation will then proceed as follows: (a) fix a group of models, (b)
measure the difference between each model in the group and the given data set, and (c)
adopt the estimation given by the best model for the data set. The problem is how to meas-
ure the goodness of fit of a model to data. In the following we discuss some criteria for the
measurement.
An x* type statistic like

(s; — B(s))
; 56 (30)

is conventionally used to evaluate the goodness of stochastic abundance model fitting.
If (sy,...,s,) is multinomially distributed given u, then (30) is the classical x2 test. The
symmetrical model description in terms of independent F;’s can be converted in terms
of S;’s, where

K o
P(Sy,...) = ( ) P(F = i) (31)
sos, ) 1
is in the form of multinomial distribution. Since the marginal distribution of the multi-
nomial distribution becomes multinomial, the x> type statistic might be suitable for the
Poisson-gamma model and the Poisson-lognormal model. However, the assumption seems
to be inappropriate for the other superpopulation models. As described in Section 7.2 of
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Engen (1978), we can only use (30) to ‘‘form a picture of the similarity’’ between s;’s and
E(s;)’s. In the disclosure context, Zayatz (1991) used the Kolmogorov-Smirnov goodness
of fit test for the Poisson-gamma model and found a significant lack of fit at the .01 level.
Skinner and Holmes (1993) calculated (30) and likelihood ratio statistics for the logarith-
mic series distribution and the Poisson-lognormal model. These ideas are based on the
theory of testing hypotheses, and we can only, at best, tell whether the model assumption
is acceptable or not. In other words these statistics are not comparable between differ-
ent models. They are especially inappropriate for models with different numbers of
parameters.

There is also a problem of truncation. Chen and Keller-McNulty (1998) recognized
that the size indices of microdata tended to have a heavy upper tail (i.e., the largest i on
which s; is not zero is often large). They proposed fitting a model mainly for small cells
(i.e., 1, 5, and so on) and disposing the information of the tail. Skinner and Holmes (1993)
recommended censoring such a tail. They stated that a truncated lognormal distribution
fitted well to microdata. Similar truncation is popular for lognormal fitting in statistical
ecology, although its objective seems to be data description rather than parameter estima-
tion. Many people consider that the frequency distribution of small cell sizes may be more
important than the upper tail. However, it is not valid to measure the fit by only small cells.
For instance, let us consider a fixed population that has size indices Sy, ..., Sy. From this
population, we choose n individuals by simple random sampling without replacement.
It was shown by Greenberg and Zayatz (1992) that

N . N_i N
E(sj>=Zs,-<;)(n_;)/<n), j=1l..n (32)
i=1

Thus it is very likely that even small cells in the sample are composed of small and
large cells in the population. It might seem that the information of s,, 53, ... does not con-
tain information on population uniques, because a population unique is also unique in the
sample. However, through such dependency as (32), correct estimation of whole size
indices is important even for the estimation of population uniques. In any case it is better
to utilize the whole information of the sample.

A possible solution is to use the Akaike Information Criterion (AIC), which is a
standard tool for model selection. Let the number of parameters in a model be A. Let
the log likelihood of the model maximized with respect to the parameters be denoted
by L. The AIC selects the model that has the lowest A = —2L + 2\. See Atkinson
(1980) or Konishi and Kitagawa (1996), for example.

Hereafter our model selection is based on the AIC. We next consider the calculation

Table 1. The relationship between a model and its sampling distribution

Population model Sampling distribution
Poisson-gamma: (1) Dirichlet-multinomial: (34)
Poisson-lognormal: (2) Approximate Poisson-lognormal: (35)
Dirichlet-multinomial: (3) Dirichlet-multinomial: (34)
Logarithmic-series: (4) Ewens: (33)

Ewens: (5) Ewens: (33)

Pitman: (8) Pitman: (20)
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of AIC value A for the models discussed in Section 1.1. The likelihood depends on
the sampling mechanism; we assume simple random sampling without replacement. In
the following we list the sampling distribution of each model. The results are summarized
in Table 1.

The sampling distribution of the Pitman model was shown in (20). Similarly, the
sampling distribution of the Ewens model is again the Ewens model:

0" n!
. 9sn) = 0[”] n
.5
| I is;!

i=1

P(sy, . . (33)

Hoshino and Takemura (1998) show that the sampling distribution of the Fisher logarith-
mic series model is the Ewens model (33). See Sibuya (1991) or Hoshino and Takemura
(1998) for the parameter estimation of the Ewens model.

According to Takemura (1999), the sampling distribution P(sy, ... |n) of the Poisson-
gamma model given the sample size n becomes the Dirichlet-multinomial model:

_ n!K'T'(K7y) ﬁ I'(y + i) S"i
- F(K'Y+”)i:o T'ty)i! ) s;!

P(sg,...,s,) 34)
Also, the sampling distribution of the Dirichlet-multinomial model is (34).

Under simple random sampling without replacement, the sampling distribution
P(sg,...|n) of the Poisson-lognormal model is hard to manipulate. Therefore for this
model we assume the Bernoulli sampling (Sdrndal et al. 1992) in which each individual
is drawn as if a coin with some success probability comes up in heads. This scheme is
a convenient approximation to simple random sampling without replacement, but it is
more natural in ecological sampling than simple random sampling without replace-
ment. When the success probability is n/Ny, we obtain the sampling distribution
P(sg,...) of the form (31) replacing N, by n. Another approximation we use is the
normal approximation of the sample size distribution. The variance of the sample size
becomes T = K(exp(M + V/2) + exp(2M + 2V) —exp(2M + V)), and the expected
sample size is set to n. Therefore we set the probability of the sample size being n as
1/4/2xT. Consequently the conditional Poisson-lognormal model P(s, ...)/P(>_ is; = n)
approximated by

Si

K n 1T
P(sp,...n) = ( ) H . J)\H exp(—\ — (log X — M)*12V)d\ 3 \/2xT
S0 Sy i=0 l!\/ 27rV0

(35)

where M = logn —log K — V/2. We need numerical integration to evaluate the model.
A transformation suited to the Hermitian integration is discussed in Aitchison and Ho
(1989). The author programmed the numerical integration with the GNU C compiler,
checking the results against Grundy (1951).

In short we can compare all the models presented in Section 1.1, by calculating AIC
values for the Ewens model (33), the Dirichlet-multinomial model (34), the Pitman model
(20) and the approximate Poisson-lognormal model (35).
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4.2.  An application

Now we sketch the data to be assessed. The purpose of the labor force survey is to eluci-
date the current state of employment and unemployment in Japan. The data at hand was
collected in January 1995. The population of the survey is composed of all individuals
15 years old and over usually residing in 47 prefectures of Japan. However, the data at
hand consists of individuals only in nine prefectures near Tokyo. The sample size n is
27,230. The corresponding population size N is about 35.85 million. For simplicity we
assume that individuals are drawn simply at random without replacement, although
the actual sampling scheme is more complicated. Seven different combinations of
“‘global recoding’’ and ‘‘global suppression’’ are applied to the data. See Willenborg
and de Waal (1996) for these techniques of anonymization. The size indices are enu-
merated with respect to the categorization of nine (Cases 1-2), eight (Cases 3—6) and
seven (Case 7) variables. These variables are geographical codes, classified number of
individuals in the household, relationship to head of household, sex, age, and marital sta-
tus. Table 2 provides more information on the categorization. The results of our model fit-
ting are summarized in Tables 3 to 6. The estimated p, is given by (27), where S, equals
the estimated E(S)).

The Pitman model highly dominates in all the cases, and the Poisson-lognormal model

Table 2. The number of categories for each variable (Cases 1-7 of Section 4)

Variable Case 1 Case 2 Case 3
(A) Prefecture code ©)] ©)] )
(B) - zone code 824 824 824
(C) Individuals 15 years old and over 8 3 3
(D) - under 15 years (male) 6 3 2
(E) - under 15 years (female) 5 3 D)
(F) Relationship to the head 12 5 5
(G) Sex 2 2 2
(H) Age 100 20 10
(I) Marital status 4 4 4
K (Cell total) 1,898,496,000 17,798,400 1,977,600
Variable Case 4 Case 5 Case 6 Case 7
(A) Prefecture code 9 9 9 9
(B) - zone code X X X X
(C) Individuals 15 years old & over 8 8 8 8
(D) - under 15 years (male) 6 6 4 6
(E) - under 15 years (female) 5 5 4 (D)
(F) Relationship to the head 12 12 12 12
(G) Sex 2 2 2 2
(H) Age 100 20 20 20
(I) Marital status 4 4 4 4
K (Cell total) 20,736,000 4,147,200 2,211,840 829,440

NOTE: “‘x”’ indicates that the variable is suppressed. The underlining indicates that the number of categories
is smaller than that of Case 1. ‘“(D)’’ indicates that the information on the variable is represented by the
variable (D).
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Table 3. Cases 1-2 of Section 4

Journal of Official Statistics

Case 1 Case 2
Total cell number (K) 1,898,496,000 17,798,400
Total nonempty cell number (u) 25,923 21,851
Sample uniques (s;) 25,046 18,275
Maximum cell size 28 28
Ewens parameter 6 by MLE 280628.969879 52004.115657
Log likelihood (AIC) —518.9 (1039.7) —245.3 (492.6)
Estimated population uniques E(S;) 278449.3 51928.8
Estimated p,, 0.84% 0.22%
Dirichlet-multi parameter y by MLE 0.000148 0.002928
Log likelihood (AIC) —518.9 (1039.8) —246.3 (494.6)
Estimated population uniques E(S;) 278244.1 51044.0
Estimated p,, 0.84% 0.21%

Pitman parameters «, by MLE
Log likelihood (AIC)

0.917448, 16389.753923
—111.8 (227.6)

0.520587, 21297.598824
—100.9 (205.8)

Estimated population uniques E(S;) 19000174.4 1017904.0
Estimated p,, 57.6% 4.23%
Poisson-lognormal parameter V by MLE  10.530755 8.524957
Log likelihood (AIC) —547296.6 (1094595.2) —5750.6 (11503.1)
Estimated population uniques E(S;) 11950655.9 1773952.1
Estimated p,, 36.2% 7.37%
Table 4. Cases 3—4 of Section 4

Case 3 Case 4
Total cell number (K) 1,977,600 20,736,000
Total nonempty cell number (1) 18,221 12,390
Sample uniques (s;) 12,919 8049
Maximum cell size 41 54
Ewens parameter § by MLE 24249.278863 8804.206385
Log likelihood (AIC) —142.0 (286.1) —686.0 (1374.0)
Estimated population uniques E(S;) 24232.9 8802.0
Estimated p,, 0.14% 0.083%
Dirichlet-multi parameter v by MLE 0.012424 0.000425
Log likelihood (AIC) —143.8 (289.6) —686.7 (1375.4)
Estimated population uniques E(S)) 22427.7 8769.8
Estimated p,, 0.13% 0.083%

Pitman parameters «, 6 by MLE
Log likelihood (AIC)

0.140768, 19948.932049
—131.4 (266.8)

0.501239, 2585.173765
—101.9 (207.7)

Estimated population uniques E(S;) 57260.1 308054.4

Estimated p,, 0.34% 291%
Poisson-lognormal parameter V by MLE ~ 5.166813 14.268244

Log likelihood (AIC) —4235.1 (8472.2) —14134.2 (28270.4)
Estimated population uniques E(S;) 357874.6 495826.6

Estimated p,, 2.10% 4.68%
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Table 5. Cases 5—6 of Section 4

Case 5 Case 6
Total cell number (K) 4,147,200 2,211,840
Total nonempty cell number (1) 6,657 6,653
Sample uniques (s;) 3,813 3,805
Maximum cell size 154 154
Ewens parameter 6 by MLE 2813.718472 2810.978767
Log likelihood (AIC) —997.1 (1996.2) —993.1 (1988.2)
Estimated population uniques E(S;) 2813.5 2810.8
Estimated p, 0.056% 0.056%
Dirichlet-multi parameter y by MLE 0.000679 0.001271
Log likelihood (AIC) —998.6 (1999.3) —996.0 (1993.9)
Estimated population uniques E(S;) 2795.9 2778.0
Estimated p,, 0.056% 0.055%

Pitman parameters «, § by MLE

0.505272, 523.377001 0.504301, 525.742679

Log likelihood (AIC) —219.7 (443.3) —219.7 (443.5)
Estimated population uniques E(S) 145294.2 144053.2
Estimated p, 2.89% 2.88%
Poisson-lognormal parameter V by MLE 14.370145 13.053184
Log-likelihood (AIC) —13291.8 (26585.5) —10398.8 (20799.7)
Estimated population uniques E(S;) 320562.6 199167.2
Estimated p,, 6.39% 3.98%
Table 6. Case 7 of Section 4

Case 7
Total cell number (K) 829,440
Total nonempty cell number (u) 5,682
Sample uniques (s;) 2,974
Maximum cell size 154
Ewens parameter § by MLE 2188.670938
Log likelihood (AIC) —759.9 (1521.7)
Estimated population uniques E(S;) 2188.5
Estimated p, 0.056%
Dirichlet-multi parameter v by MLE 0.002646
Log likelihood (AIC) —764.8 (1531.6)
Estimated population uniques E(S;) 2138.9
Estimated p, 0.055%

Pitman parameters «, § by MLE
Log likelihood (AIC)

0.443278, 524.588977
—228.2 (460.3)

Estimated population uniques E(S;) 72949.3
Estimated p, 1.86%
Poisson-lognormal parameter V by MLE 9.209263
Log likelihood (AIC) —10761.7 (21525.4)
Estimated population uniques E(S) 108974.3
Estimated p,, 2.78%
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Fig. 1. Fits of E(s;)’s under ML estimates (Case 7, Section 4)

shows the least performance. Engen (1978) and Skinner and Holmes (1993) reported
relatively good fits of the Poisson-lognormal model based on the x> type statistic in
(30). It might be the case that for the Poisson-lognormal model the maximization of the
marginal likelihood on (sy,...,s,) gives a different estimate. Figure 1 illustrates the fits
of the Ewens model, the Pitman model and the Poisson-lognormal model in Case 7.
The vertical axis corresponds to E(s;)’s under the ML estimates of the parameters, and
the horizontal axis corresponds to i = 1,..., 15. The actual sample size indices are plotted
in the same scale. Under the Poisson-lognormal model, E(s;) shows enormous overshoot.
This may indicate that the inclusion of zero frequency groups causes the lowest fit of
the Poisson-lognormal model. It should be noted that the Pitman model ignores the restric-
tion that K is finite. Thus for fairer comparison, we explore K = K* in which the Poisson-
lognormal model attains the smallest AIC value; it is a kind of marginal fitting. Chen and
Keller-McNulty (1998) give a similar kind of marginal fitting for the Poisson-gamma
model. Our results are provided in Table 7. The Pitman model still dominates except
for Case 3. We accordingly observe the strong support of the Pitman model.

Table 7. Poisson-lognormal model fits with optimized K (Section 4)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
K* 657,385 198,613 71,065 36,594 10,258 10,254 7,883
Log likelihood —635.2 —1575 —1225 —864.9 —2153.4 -—-21484 -2103.6
AIC 1272.4 316.9 246.9 1731.9 4308.7 4298.7  4209.3
E(S;) with K* 3894.5 431.9 1.5 5.3 0.0 0.0 0.0

E(S)) with K 33902689.2 4076872.5 104255.6 4273132.0 480176.7 147338.8  8979.4
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Table 8. The simple estimates of the Pitman parameter o (Section 4)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

s1/u 0.97 0.84 0.71 0.65 0.57 0.57 0.52
aby MLE 092 0.52 0.14 0.50 0.50 0.50 0.44

However, we further analyze the results for more detailed evaluation. Case 3 shows
some peculiarity when we apply the simple estimator (28) of «. Table 8 lists differences
between the MLE and (28); there is a large difference in Case 3 of Table 8. We may
be able to regard (28) as a model check. Actually, it seems that the p, estimated by the
Pitman model is small in Case 3. Since there exists no all-purpose estimation procedure,
we should probably examine the possibility of an alternative approach.

Let us then return to Table 7. We first realize that K is much larger than K*, and E(S)
with K* is very small. These facts suggest that the fit of the Poisson-lognormal model
has no robustness in withstanding changes of K. The presence of structural zeros, for
example caused by the cross-classification of age and marital status, may lead us to accept
a claim that true K is smaller than the product of the number of categories in the variables
assessed. Although the author considers that structural zeros are also realizations from a
superpopulation, let us consider the possibility of such a decrease in K. We may regard
K™ as an estimate of the true K, but it seems that K* is too small; a large underestimate
of K implies an underestimate of population uniques. Concerning the risk inference,
an underestimate should be more heavily penalized than an overestimate. It is thus not
persuasive to believe that K* equals the true K. Note that arbitrariness cannot be eliminated
in determining the true K. It is therefore preferable that the risk inference does not depend
on K. However, this independence does not seem to hold in the Poisson-lognormal
model. Furthermore Engen (1978) provides an example where the parameter of the
Poisson-lognormal model estimated by marginal (excluding zero groups) fitting varies
with respect to the size of the sample from the same population. It suggests that the use
of K* by marginal fitting leads to an erroneous estimate of population uniques.

Figure 1 clearly represents a typical tendency of model fitting in the disclosure field.
We often observe a large difference between s; and s,. The author considers that a
‘‘shape’” parameter is required to describe this kind of nonsmoothness. In view of the
urn model implication, the Pitman parameter o specially adjusts the rate of unique cells.
This fact would be the reason why the Pitman model dominates.

5. Discussion

5.1. The Pitman model and the lognormal distribution

Construction 16 of Pitman (1995) provides another derivation of the Pitman sampling
formula. In this section we observe that it gives a justification similar to that of the log-
normal distribution for the Pitman model. This interpretation may motivate the Pitman
model.

The lognormal distribution has long been used to describe various populations of
species, savings in households, mineral gains and numerous seemingly unrelated objects.
Halmos (1944) gave the following justification of the wide applicability of the lognormal
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distribution. Let W = (W, W,, . ..) be a sequence of random variables, where 0 = W; = 1,
i=1,2,....Define W; = 1 — W,. Let

=Wy Wil Wi i=12,... (36)

Then P = (P, P,,...) constitutes a random classification where the i-th group has pro-
portion P;. Equation (36) implies that P, = (1 — P — P, — --- — P;_)W,. Hence the pro-
cess allocates the residual. The logarithm of (36) equals

logP, =log W, + --- +logW;_, + logW;

The right-hand side is a sum of random variables. Thus under appropriate regularity
conditions the central limit theorem holds, and log P, is normally distributed. That is to
say, P; is subject to the lognormal distribution in many cases.

Assume that X;, j=1,...,N, are independently identically distributed given P with
P(X; =ilP) =P, i=1,2,.... Here X; is the j-th sample from the infinite population of
individuals. We can interpret P; as the long-run relative frequency of the i-th group.
The marginal distribution of the frequency F; = Z]N:l I(X; = i) given P is the binomial
distribution:

N ,
P(F,-=y|P>=( )P?(l—P,-)Nx y=0,1,...,N
y

It is well known that the binomial distribution above is approximated by the Poisson dis-
tribution with mean N P,. If log N P; = log N + log P is subject to the normal distribution,
then the marginal frequency of the i-th group is approximately the Poisson-lognormal.

We now turn to the Pitman model. Let us suppose that W; of (36) independently
possesses the beta distribution with parameters (1 — «,0 4+ i), where 0 =a <1,
0 > —a. Now we can explicitly derive the distribution of the samples X, ..., Xy. Accord-
ing to Pitman (1995), the size indices of the samples are then subject to (8): the Pitman
model.

We have observed that the same residual allocation structure induces the Pitman model
and the lognormal distribution. The Pitman model may consequently have a motivation for
use in the disclosure field, because the Poisson-lognormal model has been used to measure
the risk. Yamato et al. (1999) clearly explain the derivation of the Pitman model from the
beta distribution. The corresponding derivation of the Ewens model is given in Johnson et
al. (1997). The process of (36) with independent W; is known as the residual allocation
model. See Pitman (1996) for a survey.

5.2.  Concluding remarks

On the Japanese labor force survey data sets, the Pitman model provided the most plausi-
ble inference among the existing models. It should also be emphasized that the computa-
tion on the Pitman model is not so heavy as the Poisson-lognormal model. Thus it seems
that the Pitman model is a promising tool for the disclosure risk assessment. This section
appends a few arguments in this regard.

The uniques constitute the lower tail of a distribution. We generally face difficulties
in estimation problems concerning a tail. For instance, even the approximation of simple
random sampling without replacement by the Bernoulli sampling might considerably
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affect the distribution of the lower tail; preferable models are those that employ no
approximation in the sampling scheme. The Pitman model, because of its partition struc-
ture, is consistent with the sampling scheme in the disclosure field. With a stratified
sampling structure, we may apply the Pitman model in each stratum.

However, we should note that the Pitman model ignores the restriction of K. If there
is a large difference between the sample size and the population size, then a disregard
of K may cause an overestimate of the risk; it is, in the extreme, possible that U becomes
larger than the disregarded K. In applying the Pitman model, we should check whether U
is too large compared to K.

Appendix

We first derive the moment estimators (22) and (23). For simplicity we use E(s;) and
E(s;(s; — 1))/E(s,) to estimate § and «. We denote the total number of clusters given
n—1landn—2byu,_; and u,_,. By (17)

_ (0 +n—1E(s;) —nb

nE(u, ) 67
Referring to (18) and (19), we derive
o EGi(si = 1) _ 210 + aw, 2)(0 + o, > + 1)]
~ E(s») (1 — )E(0 + aut,, _5)
__2E@ + a(u, > + 1))
(1-a
Then
C—20
“T2Ew, y+C+2 (%8)
From (37) and (38),
_ nE(u,_)C — (n— DE(s)(2E(y, _») + C +2) (39)

~ (E(s) — m(2E(u, _p) + C +2) + 2nE(u, )

Now we give the moment estimator of . Ignoring the relation E(u,_;) = (6 + n)/
@+ n+ a)Ew,) —0/(0+n+ ), we replace E(u,_;) of (39) by u and E(u,_,)
by u — 1, whereby the estimator becomes simpler. Let C = ¢ = s1(s; — 1)/s,. Substituting
E(s;) of (39) by s;, we obtain (22). Equation (23) is a direct consequence of (37).

In the following we show the propositions stated in Section 3.
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Proof of Proposition 1. Note that 8, is the conditional ML estimate of the Pitman model
given o = 0. It is widely known that the Ewens distribution belongs to the exponential
family. Thus dL/06 < 0 for § > 6, with o = 0 (see p. 417 of Lehmann (1991), for example).
By (21), dL/d0 <0 for 6 > 6, with o > 0. Consequently, 6* is never larger than 6, if
a* > 0. Q.E.D.

Proof of Proposition 2. We derive (24) from (12). The proposition is shown by the
relation that

oE(Uy) o N=2 o M <0+j+a)
0 0+N—-1 ;O—FZJ‘H] 0+
0+N—-1+a« = o MNP 0+j+ oY
Y @
0+N—1{ +Z@+@£L<a+j>+o+N—z

_@+N-1+a)0+N-2+a)
N @+N—-1O+N-2)

o 1+1§ a Nl:f 0+j+a n o
—0+1 0+j 6+N-3

j=I+1

_ 6+ o™

o QED.

To prove Proposition 3, we need the lemma below.

Lemma 1. Fora=0,

Jlim E(Uy) = o

Proof. With respect to nonnegative «, E(Uy) is monotonically increasing. Thus it
suffices to show that E(Uy) diverges at o = 0. When « equals zero

PO
EWUy) = ) -—
s 0+1

from (12), and it is well known that the right-hand side diverges as N — oo. Q.E.D.

Proof of Proposition 3. From (11) we obtain

ES)  Na E(UN,I)_’_ N6 1
E(Uy) 0+N—1 EWUy) 6+N—1E(Uy)

Since

o 0
E(Uy) =E 1
(U (UN“)< +6+N—1)+0+N—1

from (14), E(Uy)/E(Uy_1) — 1 as N — . Also 1/E(Uy) — 0 by Lemma 1. We conse-
quently obtain the formula. Q.ED.
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Proof of Proposition 4. By the relation of (26),

E(S;)) NT(@0+a+N— IO+ n)
E(s;) nT'@+NI@+a+n—1)

The formula then holds because of the asymptotic relation of the gamma function.
Q.ED.
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