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This article develops a bias indicator, a computational tool useful for selecting auxiliary
variables likely to be particularly effective for reducing nonresponse bias in estimates
obtained by calibration.

The weights used in the calibration estimator are computed on information about a specified
auxiliary vector. Even the best among the available auxiliary vectors will leave some bias
remaining in the estimator. The objective is to reduce this remaining bias as far as possible,
through the choice of a “best possible” auxiliary vector.

The theory in the article is inspired by the survey environment in the Nordic countries and
in other North European countries, where many reliable administrative registers provide rich
sources of auxiliary variables, in particular for surveys on individuals and households. The
many potential auxiliary variables allow the statistician to compose a wide range of auxiliary
vectors. There is a need to compare and rank these vectors to assess their effectiveness for bias
reduction. The indicator examined in the article serves this purpose.

The indicator is computed on the auxiliary vector values known for the sampled units,
responding and nonresponding. It has the advantage of being independent of the study
variables, of which the survey may have many. A large value of the indicator suggests a low
nonresponse bias, independently of the study variable.

The main body of the article explores the relationship existing between the indicator and the
amount of bias in the estimator. The concluding sections are devoted to empirical studies. One
of these involves a constructed finite population. The potential auxiliary vectors are ranked
with the aid of the indicator. A second empirical illustration illustrates how the indicator is
used for selecting auxiliary variables in a large survey at Statistics Sweden.

Key words: Calibration weighting; nonresponse adjustment; nonresponse bias; auxiliary
variables; bias indicator.

1. Introduction

When nonresponse occurs in a survey, a pressing objective is to “cleanse” the survey

estimates of bias, through an efficient weighting scheme. The bias must lie at the centre of

our attention, because the squared bias component often dominates the mean squared

error. Unlike the variance, the bias does not approach zero with increasing sample size.

The use of auxiliary variables is important, but even in the presence of powerful auxiliary

information the nonresponse adjusted estimator may have considerable remaining bias,

whether it be constructed by calibration or by any other method.
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Adjustment weighting for nonresponse bias, with the use of auxiliary information, has

been considered by several authors and from diverse angles, for example Bethlehem

(1988), Deville (2002), Folsom and Singh (2000), Fuller, Loughin, and Baker (1994),

Harms (2003), Lundström (1997), Rizzo, Kalton, and Brick (1996), and Thomsen et al.

(2006). Some contributions focus on estimation by calibration, notably those of Deville

(2002), Harms (2003), and Lundström (1997), and so does this article, which further

develops results in the book by Särndal and Lundström (2005).

The calibrated weights are computed from information carried by an auxiliary vector,

more or less powerful. In practice, it is impossible to designate a vector that will

completely eliminate the bias. Even the best of auxiliary vectors leave some bias

remaining in a calibration estimator (or in any other type of estimator). Nevertheless, if

estimates are produced at all in the survey, one must settle for one auxiliary vector for

computing the calibrated weights and the survey estimates.

A pool of potential auxiliary variables is identified in a preliminary step. The search may

involve a matching of different administrative registers. The Nordic countries, The

Netherlands and other countries in northern Europe are privileged, equipped as they are

with many reliable registers. In a typical survey on individuals and households, a pool of

potential auxiliary variables will typically include categorical variables such as sex, age

group, income class, country of origin, region of residence, family size, education level,

professional group and a variety of others.

With a given pool of auxiliary variables, a number of different auxiliary vectors can be

formed. We need to compare these vectors to assess their effectiveness for bias reduction.

A tool for this was proposed on intuitive grounds by Särndal and Lundström (2005).

Sections 2 to 10 of this article give a more complete picture of this bias indicator and its

properties. Section 11 illustrates its use in building an effective auxiliary vector via a

stepwise selection of auxiliary variables.

Desirable features of an auxiliary vector are the following: (i) it should well explain the

response pattern, (ii) it should well explain the study variable(s) in the survey, and (iii) it

should identify the most important domains of interest in the survey. This article focuses

on aspect (i).

This article is organized as follows. In Section 2 we specify the calibration estimator and

discuss the auxiliary information that goes into it. A close approximation to the bias

remaining is given in Section 3. It is a theoretical quantity, depending on values for the

entire population of (a) the study variable yk, (b) the auxiliary vector xk, and (c) the

response probability uk, where k is a typical unit. It is practical to work in terms of

the inverse response probabilities, discussed in Section 4. We call the unknown fk ¼ 1=uk

the response influence of population unit k. If the fk were known, nonresponse bias would

cease to be a problem; they would provide the weights that allow unbiased estimation.

Section 5 derives predictions of the unknown fk in terms of the known auxiliary vector

values. These predictions, discussed in Sections 5 to 7 as theoretical quantities defined for

all N population units and presented in Section 8 as computable, sample-based

counterparts, play an important role in the following sections for developing an indicator

of the nonresponse bias remaining.

The sample-based bias indicator, denoted q 2, is defined in Section 8 as the variance of

the predicted influences for the responding units. An intuitive reason why this variance can
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serve to indicate bias is that a variability in the predicted influences (which are surrogates

for the true influences fk) is desirable in order to reflect the individual differences existing

among the respondents. But more importantly, results in Sections 7 and 8 show that the

nonresponse bias can be expected to decrease linearly, under certain conditions, when the

computed value of q2 increases as a consequence of adding further important variables to

the auxiliary vector xk.

The computation of q2 requires the auxiliary vector values xk for the sampled units,

respondents as well as nonrespondents, but is independent of the study variable values yk.

This independence is an advantage: a large survey involves many y-variables but time and

resources seldom allow a special analysis for each particular y-variable.

The composition of the auxiliary vector becomes critically important. Like the

coefficient of determination R2 in regression theory, q2 increases when further variables

are added to the vector, and the prospects for reduced bias are improved. Section 9

discusses how q2 is used as a diagnostic tool to identify the “best auxiliary vector,” among

those available in the survey.

A constructed population is used in Section 10 to validate the theoretical properties of

the bias indicator. The concluding Section 11 shows the use of the bias indicator in the

Swedish National Crime Victim and Security Study. The auxiliary vector is built through a

stepwise selection of variables, with the aid of the indicator q2.

2. Auxiliary Information for the Calibration Estimator

We consider a finite population U ¼ {1; 2; : : : ; k; : : : ;N}. A probability sample s is

drawn from U with a sampling design that gives unit k the known inclusion probability

pk ¼ Pr ðk [ sÞ . 0. The known design weight of k is dk ¼ 1=pk. Nonresponse occurs.

A response set r is realized as a subset of s. We have r # s # U.

The target of estimation is the population total Y ¼
P

U yk, where yk is the value for unit

k of the study variable y, allowed to be continuous or categorical. An example of the latter

is when yk ¼ 1 if k is unemployed and yk ¼ 0 otherwise; the target parameter Y is then the

number of unemployed in the population. (If A # U is a set of units, we write
P

A forP
k[A .) The value yk is recorded for k [ r only. Refusal, not-at-home, and incapacity to

respond are among the causes for a failure to record yk for all k [ s.

Conceptually, the response set r results when the designated sample s is exposed to an

unknown response distribution such that unit k has an unknown response probability

uk ¼ Pr ðk [ rjsÞ, assumed positive and independent of s. Although called “response

probability,” uk is viewed here more generally as the probability that the value yk will be

recorded for the unit k [ s. With probability 1 2 uk it goes missing, for whatever reason.

Access to auxiliary information is essential for improved accuracy. Many surveys have

information of two types, to which correspond two kinds of auxiliary vector, x*
k and x+k,

with the following features. The vector x*
k carries auxiliary information at the population

level. The value x*
k is known for every k [ U, as when it is specified in the frame; thus x*

k

is known also for every k [ s and every k [ r. This situation is typical of surveys on

individuals and households in Scandinavia and several other North European countries.

Then the population total
P

U x*
k is obtained by simply adding the values x*

k . We allow also

the case where
P

U x*
k is imported from a reliable outside source, as when

P
U x*

k includes
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population counts, derived from reliable demographic sources, on age group by sex by

region. In this article we assume that the individual value x*
k is known for every k [ s and

consequently for every k [ r.

The vector x+k carries auxiliary information at the sample level: its value is observed or

otherwise known for every k [ s and thus for every k [ r. One example occurs when x+k
expresses features of the data collection process, such as the identity of the interviewer

assigned to unit k. As another example, in the case of refusal the interviewer may try the

basic question “with the foot in the door,” as Kersten and Bethlehem (1984) put it. Yet

another example occurs in countries equipped with several administrative registers: it is

cumbersome to match at the level of the population with several million records, but more

manageable to match at the level of the sample; if the register information is transcribed

to the sample data file instead of to the entire population file, it provides material for the

x+k-vector. The vectors x+k and x*
k differ in that

P
U x*

k is known while
P

U x+k is unknown.

Still, the computable unbiased estimate
P

s dkx
+
k is an important input of information to

the computation of calibrated weights.

For a survey admitting both kinds of information, the auxiliary vector and the

information to which we calibrate are

xk ¼
x*

k

x+k

0
@

1
A; X ¼

X
U
x*

kX
s
dkx

+
k

0
B@

1
CA ð1Þ

When the survey has only the first kind of information, then xk ¼ x*
k and X ¼

P
U x*

k .

When only the second kind is available, xk ¼ x+k and X ¼
P

s dkx
+
k.

The basis for estimation is as follows. With the kth population unit is associated

the quadruplet ð yk; xk;pk; ukÞ. Here, pk is recorded for all k [ U, yk for all k [ r, the

component x*
k of xk for all k [ U, and the component x+k of xk for all k [ s. The response

probability uk is defined conceptually; although unobservable for all k [ U, it can

be estimated; the response indicator values are observed: Ik ¼ 1 for k [ r, Ik ¼ 0 for

k [ s 2 r.

The calibration estimator of Y, based on the information X in (1), is given in Särndal

and Lundström (2005) as ŶW ¼
P

r wkyk with weights wk ¼ dkvk, where dk ¼ 1=pk is

the design weight and the factor vk ¼ 1 þ ðX2
P

r dkxkÞ
0ð
P

r dkxkx
0

kÞ
21xk serves the

double objective of bias reduction and variance reduction. The weights are calibrated

to the given information:
P

r wkxk ¼ X. In this article we consider vectors xk with the

following property.

There exists a constant vector m such that

m0xk ¼ 1 for all k [ U ð2Þ

“Constant” means that m must not depend on k, nor on s or on r. Condition (2) is not a major

restriction on xk. A majority of x-vectors of interest in practice are covered. Examples

include the following: (1) xk ¼ ð1; xkÞ
0, where xk is the value for unit k of a continuous

auxiliary variable x; (2) xk ¼ ð1; x0kÞ
0, where the vector x0k contains two or more

continuous variables; (3) the vector representing a categorical x-variable with J mutually

exclusive and exhaustive classes, xk ¼ gk ¼ ðg1k; : : : ; gjk; : : : ; gJkÞ
0, where gjk ¼ 1 if k
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belongs to group j, and gjk ¼ 0 if not, j ¼ 1; 2; : : : ; J; (4) the combination of (1) and (3),

xk ¼ ðg
0

k; xkg
0

kÞ
0; (5) the vector xk used to codify two categorical variables, the dimension of

xk being J1 þ J2 2 1, where J1 and J2 are the respective numbers of classes, and the “minus-

one” avoids a singular matrix in the computation of weights calibrated to the two

arrays of marginal counts; (6) the extension of (5) to more than two categorical variables.

Vectors of Types (5) and (6) are especially important in statistics production at statistical

agencies.

A notable case not covered by condition (2) is xk ¼ xk, for a one-dimensional

continuous variable x with known total
P

U xk. Then ŶW ¼ ð
P

U xkÞð
P

r dkykÞ=ð
P

r dkxkÞ.

Because it has ratio estimator form, it is potentially of interest. But a preferred choice, for

reducing nonresponse bias, is to base ŶW on the vector that includes the constant one,

xk ¼ ð1; xkÞ
0.

In view of (2), the calibration estimator is

ŶW ¼
X

r
wkyk ¼

X
r

dkvkyk ð3Þ

where dk ¼ 1=pk and, with X given by (1),

vk ¼ X 0
�X

r
dkxkx

0

k

�21

xk ð4Þ

3. Expressions for the Bias Remaining

Even with the “best possible” calibration, some bias remains in ŶW . The bias is defined

jointly with respect to the sampling design p(s) with its (known) inclusion probabilities pk

and the response distribution qðrjsÞ with its (unknown) response probabilities uk. The exact

expression, biasðŶW Þ ¼ EpEqðŶW jsÞ2 Y , is intractable, because ŶW is nonlinear. We focus

on the approximation obtained by Taylor expansion, denoted nearbiasðŶW Þ. Särndal and

Lundström (2005), Chapter 9, show that

nearbiasðŶW Þ ¼ ð
X

U
xkÞ

0ðBU;u 2 BUÞ ð5Þ

where xk ¼

x*
k

x+k

0
B@

1
CA;

X
U
xk ¼

X
U
x*

kX
U
x+k

0
BB@

1
CCA; BU;u ¼

�X
U
ukxkx

0

k

�21X
U
ukxkyk;

and BU ¼
�X

U
xkx

0

k

�21�X
U
xkyk

�
The derivation of (5) need not be reproduced here. Similar expressions are given in, or can

be derived from, sources such as Bethlehem (1988) and Fuller (2002), although their

conditions differ from ours. The approximation is close, even for rather modest sample

sizes. Under mild conditions, ð1=NÞðbiasðŶW Þ2 nearbiasðŶW ÞÞ is of order n21=2, where n

is the sample size.

We note that nearbiasðŶW Þ is an unknown theoretical quantity. It depends on ð yk; xk; ukÞ

for all k [ U but is independent of the inclusion probabilities pk. The nearbias is not

reduced by the choice of a more variance-efficient sampling design.
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The presence in (5) of the difference BU;u 2 BU underlines one of the predicaments

with nonresponse: we end up estimating not the desired regression coefficient BU, but the

“tainted” regression coefficient BU;u. Their difference causes a more or less pronounced

bias in ŶW . (The following principle of notation applies for several symbols with two

indices separated by a semicolon: the first index shows the set of units over which the

quantity is defined, and the second shows the weighting, as in BU;u. In the case of equal

weighting, the second index is suppressed, as in BU.)

To achieve nearbiasðŶW Þ ¼ 0 is a farfetched possibility. It would happen if all uk were

equal, an unrealistic hope. As Result 4.1 will show, nearbiasðŶW Þ ¼ 0 holds under yet

another condition, also one that is unlikely to hold in practice. No matter how good the

auxiliary information, some bias remains; what we can do is to try to reduce it.

The approximation (5) of biasðŶW Þ shows that the nearbias is the same whether a given

auxiliary variable is of the x*
k kind or of the x+k kind. An auxiliary variable xk is as efficient

for reducing the nearbias when it belongs in x+k (carrying information to the sample level

only) as when it qualifies for inclusion in x*
k (carrying information up to the population

level). One notes also that

X
U
xk ¼

X
U
x*

kX
U
x+k

0
B@

1
CA

in (5) differs from the information X used in computing the calibrated weights (4) as

soon as xk contains an x+k-component. Noting that
P

Uð yk 2 x
0

kBUÞ ¼ 0 by (2), we can

write (5) as

nearbiasðŶW Þ ¼
X

U
ðukMk 2 1Þyk ð6Þ

where

Mk ¼
�X

U
xk

�
0
�X

U
ukxkx

0

k

�21

xk ð7Þ

The scalar Mk is a derived variable, defined by (7) for all k [ U. This variable is a focal

point in diagnosing the bias.

One objective is to compare alternative xk-vectors in regard to their capacity to control

the bias. A suitable benchmark is then the “primitive auxiliary vector,” xk ¼ 1 for all

k [ U. It gives ŶW ¼ N �yr;d ¼ Nð
P

r dkykÞ=ð
P

r dkÞ, Mk ¼ N=
P

U uk ¼ 1=�uU for all k,

and

nearbiasðN �yr;dÞ ¼ Nð�yU;u 2 �yUÞ ð8Þ

where �yU;u ¼
P

U ukyk=
P

U uk and �yU ¼
P

U yk=N. The vector xk ¼ 1 recognizes no

differences among units and is therefore inefficient for nonresponse adjustment. The

nearbias is large if the theta-weighted mean and the unweighted mean differ considerably,

as when large y-value units respond with low probability.
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We define the nearbias ratio as

P ¼
nearbiasðŶW Þ

nearbiasðN �yr;dÞ
¼

X
U
ðukMk 2 1Þyk

Nð �yU;u 2 �yUÞ
ð9Þ

It shows how well a specified vector xk succeeds in controlling the bias, as compared with

the primitive vector. A highly effective xk-vector brings a near-zero value of P.

4. Response Influence and Zero Nearbias

Under what conditions can the nearbias be zero? One aspect of this is seen by writing

(6) as

nearbiasðŶW Þ ¼
X

U
ukMkek ð10Þ

where ek ¼ yk 2 x
0

kBU is the ordinary least squares regression residual for unit k. That

(6) and (10) are equal follows from
P

U ukMkx
0

kBU ¼
P

U x
0

kBU ¼
P

U yk. As (10)

shows, nearbiasðŶW Þ ¼ 0 holds if ek ¼ 0 for all k [ U, that is, if xk perfectly explains

yk. Most large surveys involve many y-variables. If ek ¼ 0 for all k [ U and for every

one of the perhaps numerous y-variables, then the survey gives unbiased estimation.

This is a vain hope. If we focus instead on the response distribution, there are

conditions under which the nearbias is zero or near zero for every y-variable.

It is convenient to work with the inverse of the response probability uk rather than with

uk itself. We define the response influence of k as fk ¼ 1=uk, assuming that 0 , uk # 1 for

all k. The unknown value fk can be seen as a latent trait of unit k. A high influence fk

accompanies a unit k with a low response probability uk, just as a high sampling weight

dk ¼ 1=pk accompanies a unit with a low inclusion probability pk. Unlike the yk, the fk

remain unknown even for responding units. If the fk were known, they would serve to

compute the unbiased estimator
P

r dkfkyk for Y ¼
P

U yk; nonresponse bias would cease

to be a problem. We call fk “influence” to distinguish it from “weight,” which is a known

number that can be readily applied to an observed variable value. The unknown fk do not

qualify for this purpose.

An ideal auxiliary vector xk is one that perfectly explains the influence fk. It meets the

following condition.

There exists a constant vector l such that

fk ¼ 1=uk ¼ l 0xk for all k [ U ð11Þ

In survey practice, we cannot hope to find an ideal vector xk. But if one existed and could

be used, the nearbias would be zero, as the following result shows.

Result 4.1. If xk meets the condition (11), then nearbiasðŶW Þ ¼ 0.

Proof. When (11) holds, then ð
P

U xkÞ
0ð
P

U ukxkx
0

kÞ
21 ¼l 0ð

P
U ukxkx

0

kÞ�

ð
P

U ukxkx
0

kÞ
21 ¼ l 0, so ukMk ¼ ukl

0xk ¼ 1 for all k [U, and, by (6), nearbiasðŶW Þ ¼ 0.

A simple application of Result 4.1 occurs for the classification vector,

xk ¼ ðg1k; : : : ; gJkÞ
0, where gjk ¼ 1 if unit k belongs to the specified group j and
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gjk ¼ 0 if not; j ¼ 1; 2; : : : ; J. Result 4.1 then states that the nearbias is zero if the

response probability uk is constant for all units within one and the same group. This is in

fact an assumption often made (explicitly or implicitly) in practice. It happens to be

a convenient one. Few would believe it to “hold true,” for example, in regard to a set

of age/sex groups for a population of individuals. The remaining bias can be large. Better

x-vectors are required to effectively combat the bias.

5. Least Squares Prediction of the Influence

The influences fk ¼ 1=uk are unknown and nonobservable. We can, however, obtain

predicted influences, using the auxiliary data xk for k [ s. These predicted values serve in

Section 8 to construct the bias indicator. To motivate these sample-based predictions, we

first derive their population-based counterparts. Let us determine the vector l to minimize

the weighted sum of squared differences WSS ¼
P

U ukðfk 2 l0xkÞ
2. It is mathematically

convenient to work with theta-weighted sums of squares; WSS stands for “weighted sum

of squares.” It is assumed that not all fk are equal. Differentiate WSS with respect to l, set

the derivative equal to zero to obtain the estimating equation
P

U ukðfk 2 l 0xkÞx
0

k ¼ 0 0,

or equivalently,

l 0
�X

U
ukxkx

0

k

�
¼

�X
U
xk

�0

ð12Þ

If the matrix on the left-hand side is nonsingular, the solution is l 0 ¼ l̂
0

U , where

l̂
0

U ¼
�X

U
xk

�0�X
U
ukxkx

0

k

�21

ð13Þ

The resulting predicted value of fk is

f̂Uk ¼ l̂
0

Uxk ¼
�X

U
xk

�0�X
U
ukxkx

0

k

�21

xk ¼ Mk ð14Þ

The quantities Mk reappear here. They were seen earlier to be important in the expression

(6) for the nearbias. We need several properties of the Mk, beginning with the following

result.

Result 5.1. The quantities Mk, defined by (7) for k [ U, satisfy the equations

X
U
ukMkx

0

k ¼
X

U
x

0

k;
X

U
ukMk ¼ N;

X
U
ukM2

k ¼
X

U
Mk ð15Þ

These equations follow by straightforward algebra, the second one with the aid of (2).

The variation of thefk around their theta-weighted mean, �fU;u ¼
P

U ukfk=
P

U uk ¼ 1=�uU ,

is measured by
P

U ukðfk 2 1=�uUÞ
2. A part of that variation is explained by the least

squares predictions f̂Uk ¼ Mk based on a given vector xk. The equation “total variation ¼

explained variation þ residual variation” readsX
U
ukðfk 2 1=�uUÞ

2 ¼
X

U
ukðMk 2 1=�uUÞ

2 þ
X

U
ukðfk 2 MkÞ

2 ð16Þ
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The cross-product term is zero as a consequence of (15). We develop each of the three terms

in (16), use (15), and divide through by N. The resulting equation is

�fU 2 1=�uU ¼ ð �MU 2 1=�uUÞ þ ð �fU 2 �MUÞ ð17Þ

where �fU 2 1=�uU , �MU 2 1=�uU and �fU 2 �MU are nonnegative terms with

�fU ¼
X

U
fk=N; �MU ¼

X
U

Mk=N; �uU ¼
X

U
uk=N ð18Þ

In addition to the unweighted mean �MU ¼
P

U Mk=N, we need the theta-weighted mean
�MU;u ¼

P
U ukMk=

P
U uk. It follows from (15) that

�MU;u ¼ N=
X

U
uk ¼ 1=�uU ð19Þ

Thus �MU;u depends on the response distribution (through the mean response probability �uU)

but is independent of the auxiliary vector xk. By contrast, the unweighted mean �MU depends

on xk. Key properties of �MU are shown in the following result.

Result 5.2. For any given auxiliary vector xk, �MU ¼
P

U Mk=N satisfies

1=�uU ¼ �MU;u # �MU # �fU ð20Þ

where the different means are defined by (18). The lower bound on �MU , 1=�uU , occurs for

the primitive vector, xk ¼ 1 for all k. The upper bound on �MU , �fU , is attained for the ideal

(in practice nonexistent) vector xk that meets condition (11).

The inequalities in (20) follow from the nonnegativity of each of the two terms in

parenthesis on the right-hand side of (17). The stated upper and lower bounds of �MU are

easily verified.

By definition, the influences satisfy fk ¼ 1=uk . 1 for all k [ U. Do the predictions

satisfy f̂Uk ¼ Mk . 1 for all k [ U? The answer is that while this is likely to hold for

a majority of units, it may not necessarily hold for all units. By the nonnegativity of

the first term on the right-hand side of (17), �MU $ 1=�uU . 1, which does not exclude

that a few Mk may fail to exceed unity. This is of no serious consequence for the rest

of the article.

6. Other Moments of the Predicted Influences

To see the relation between the predictions f̂Uk ¼ Mk and nearbiasðŶW Þ we need

further moments of the Mk, in addition to �MU and �MU;u: (i) the theta-weighted

variance, denoted Q 2, (ii) the theta-weighted coefficient of variation, denoted H, and

(iii) the theta-weighted coefficient of correlation between Mk and fk, denoted RMf.

All of Q 2, H and RMf are unknown, theoretical quantities, dependent as they are on

ð yk; xk; ukÞ for all k [ U. Sample-based, computable analogues of Q 2 and H are given

in Section 8.

The theta-weighted variance of the predictions f̂Uk ¼ Mk for k [ U is given by

Q2 ¼
1X
U
uk

X
U
ukðMk 2 �MU;uÞ

2 ð21Þ
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It forms the prototype for the computable bias indicator q 2 in Section 8. Expanding the

square and arranging terms, using Result 5.1 we get:

Q2 ¼

X
U

MkX
U
uk

2
N 2�X

U
uk

�2
¼ ð1=�uUÞð �MU 2 1=�uUÞ ð22Þ

Among the properties of Q 2 are: (a) for any given vector xk, Q2 $ 0, because Q 2 is a

variance, hence nonnegative; (b) the minimum value, Q2 ¼ 0, occurs for the primitive

vector, xk ¼ 1 for all k [ U; (c) the upper bound on Q 2, denoted Q2
sup , would be realized

only for the ideal vector xk that meets condition (11); by Result 5.2 we have

Q 2
sup ¼

X
U
fkX

U
uk

2
N 2�X

U
uk

�2
¼ ð1=�uUÞð �fU 2 1=�uUÞ ð23Þ

(d) extending the xk-vector by adding further x-variables to it will increase the value

of Q 2 (or possibly leave it unchanged). The proof of (d) relies on the fact that

the extended vector produces a value of the term “explained variation” in (16) which is

at least as large as the value of that same term for the vector that excludes those

additional variables.

Another useful quantity is the (theta-weighted) coefficient of variation of the Mk,

defined as the standard deviation Q divided by the corresponding mean �MU;u ¼ 1=�uU ,

so that

H ¼ Q= �MU;u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MU

�uU 2 1
p

ð24Þ

The upper bound on H is H sup ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�fU

�uU 2 1
p

. The theta-weighted coefficient of

correlation between Mk and fk is

RMf ¼

X
U
ukðMk 2 �MU;uÞðfk 2 �fU;uÞ�X

U
ukðMk 2 �MU;uÞ

2

�1=2�X
U
ukðfk 2 �fU;uÞ

2

�1=2

where �MU;u ¼ �fU;u ¼ 1=�uU by (19). Noting that
P

U ukðfk 2 �fU;uÞ
2 ¼ Nð �fU 2 1=�uUÞ,

and using (21) and (22), we get

RMf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MU 2 1=�uU

�fU 2 1=�uU

s
ð25Þ

The quantities Q 2, H and RMf are related in the following way:

1 2 R2
Mf ¼

�fU 2 �MU

�fU 2 1=�uU

¼ 1 2
Q2

Q2
sup

¼ 1 2
H 2

H2
sup

ð26Þ
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7. Towards an Indicator of the Bias Remaining

The nearbias, given by (5) or (6), is expressed in the following result as the sum of a

principal term that is linear in Q 2 (and in H 2) and a residual term, D, which is often small

by comparison.

Result 7.1. Consider a given auxiliary vector xk for the calibration estimator ŶW . Then

nearbiasðŶW Þ ¼ Nð�yU;u 2 �yUÞð1 2 R2
MfÞ þ D ð27Þ

where 1 2 R2
Mf has the alternative expressions given by (26) and D ¼

P
U ukMkEk with

Ek ¼ yk 2 �yU 2 ðfk 2 �fUÞ
�yU 2 �yU;u

�fU 2 1=�uU

ð28Þ

Proof. The values yk and fk are associated with unit k. For any given constants a and b,

we can also associate with unit k the unique value yk 2 a2 bfk. Let us determine a and b

to minimize
P

U ukð yk 2 a2 bfkÞ
2. We get b ¼ B ¼ ð�yU 2 �yU;uÞ=ð �fU 2 1=�uUÞ and

a ¼ A ¼ �yU 2 B �fU . Now insert yk ¼ A þ Bfk þ Ek in (6) and simplify to get

nearbiasðŶW Þ ¼ A
X

U
ðukMk 2 1Þ þ B Nð �MU 2 �fUÞ þ

X
U
ðukMk 2 1ÞEk

But
P

U
ðukMk 2 1Þ ¼ 0 by (15), and

P
U

Ek ¼ 0. Then (27) follows from (26).

The magnitude of the reminder term D is discussed at the end of this section. Result 7.1

states that the principal term of nearbiasðŶW Þ, based on a given auxiliary vector xk, equals

a proportion, 1 2 R2
Mf, of its value, Nð�yU;u 2 �yUÞ, for the primitive vector, for which

R2
Mf ¼ 0. As the auxiliary vector xk improves and approaches its ideal form (11), �MU

increases towards its upper bound �fU , the proportion 1 2 R2
Mf tends to zero, and

nearbiasðŶW Þ approaches zero if D is small. The bias may be considerably reduced if steps

are taken to strengthen the xk-vector. We note the following consequence of (27).

Result 7.2. If the remainder term D is small in comparison with the first term on the

right-hand side of (27) then

P ¼
nearbiasðŶW Þ

nearbiasðN �yrÞ
¼

X
U
ðukMk 2 1Þyk

Nð�yU;u 2 �yUÞ
< 1 2 R2

Mf ¼ 1 2
Q2

Q2
sup

ð29Þ

The nearbias ratio P, which resembles a proportion, depends on ð yk; xk; ukÞ for k [ U. It

measures how well the given vector xk succeeds in controlling the bias, as compared to the

primitive vector. In (29), P is approximated by 1 2 R2
Mf, which depends on ðxk; ukÞ for

k [ U, but is independent of the y-variable. Thus 1 2 R2
Mf represents “the proportion of

the nearbias ratio P that is independent of the study variable.”

The remainder term D in (27) is not in general zero, but it is indeed zero under any one

of the several conditions in the following result.

Result 7.3. Consider a fixed auxiliary vector xk. The remainder term D ¼
P

U ukMkEk in

(27) is equal to zero under any one of the following four conditions: (i) xk is the primitive

vector xk ¼ 1 for all k; (ii) xk satisfies condition (11); (iii) for some constant vector m,
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Ek ¼ m 0ðxk 2 �xUÞ for k [ U, where Ek is given by (28); (iv) for some constants c0 and c1,

yk ¼ c0 þ c1fk for k [ U.

Here, case (iii) states that xk explains perfectly the variation remaining in yk after a

removal of the dependence on fk. Case (iv), stating that yk is perfectly explained by the

influence fk, may be described as “purely nonignorable nonresponse.”

Proof. In case (i), the result follows by noting that Mk ¼ 1=�uU for all k. In case (ii),

nearbiasðŶW Þ is zero by Result 4.1, and the proportion 1 2 R2
Mf in (27) is also equal to

zero, because �MU ¼ �fU by Result 5.2. Hence, D ¼ 0. In case (iii), D ¼ 0 follows from

(15). Finally, in case (iv), simple algebra and the use of (26) show that

nearbiasðŶW Þ ¼ Nð�yU;u 2 �yUÞð1 2 R2
MfÞ ¼ Nc1ð �MU 2 �fUÞ, hence D ¼ 0.

Remark 7.1. When different xk-vectors are at our disposal in a survey, we want to

identify one that is likely to effectively control the bias of all study variables y.

Formula (29) shows that the nearbias ratio is roughly a linearly decreasing function of

Q2 ¼ Q 2ðxkÞ, the constant Q2
sup being independent of xk. Hence we should seek an xk

for which Q 2 is large. When a certain xk-vector is replaced by “an improved one,”

with an accompanying increase in the value of Q 2, we expect the nearbias ratio P to

drop in a roughly linear manner. Ideally, the chosen vector xk should bring a value

of Q 2 close to the upper bound Q2
sup , guaranteeing near-zero bias for all y-variables.

If Q 2 and H were computable in a survey, either one would serve as an indicator of

bias remaining. But both depend on the whole population with its unknown response

probabilities. In experiments, such as those in Section 10, we can study how Q 2 tracks

the nearbias for different vectors xk. A computable, sample-based counterpart of Q 2,

denoted q 2, is given in Section 8. The use of q 2 as a diagnostic tool is discussed in

Section 9.

Remark 7.2. Formula (21) defines Q 2 as the variance of the predicted influences

f̂Uk ¼ Mk. By Result 7.2, the larger the variance Q 2, the better the chances that the bias

will be small. This is in line with the intuition that the more the predictions f̂Uk can reflect

the individual features of the respondents, the better the chances of a small bias.

8. Sample-based Counterparts

The population quantities Mk, Q 2 and H have sample-based counterparts, mk, q 2 and h,

given in this section. They are computed from two kinds of input: (i) the vector values

xk ¼
x*

k

x+k

0
@

1
A

known for k [ s, and (ii) the outcome of the response phase, Ik ¼ 1 for k [ r and Ik ¼ 0

for k [ s 2 r. They do not depend on the y-values.

Formula (14) gave the predicted influences for k [ U as f̂Uk ¼ l̂
0

Uxk ¼ Mk, where l̂
0

U

is the solution of the population-based estimating equation (12). The corresponding

sample-based estimating equation is obtained by substituting the unbiased estimatesP
s dkxk and

P
r dkxkx

0

k for the unknown population sums in (12). It should be noted
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that EpðEqð
P

r dkxkx
0

kjsÞÞ ¼ Epð
P

s dkukxkx
0

kÞÞ ¼
P

U ukxkx
0

k. The estimating equation

is l 0ð
P

r dkxkx
0

kÞ ¼ ð
P

s dkxkÞ
0; its solution is l 0 ¼ l̂

0

s ¼ ð
P

s dkxkÞ
0ð
P

r dkxkx
0

kÞ
21,

supposing the matrix can be inverted. The sample-based prediction of fk, computable

for k [ s, is f̂sk ¼ l̂
0

sxk ¼ mk, where

mk ¼
�X

s
dkxk

�0�X
r

dkxkx
0

k

�21

xk ð30Þ

The scalar values mk are close to (but not in general equal to) the weight factors vk

used to compute the estimator ŶW ¼
P

r dkvkyk given by (3) and (4). We do have mk ¼ vk

when the auxiliary information is exclusively at the sample level, so that xk ¼ x+k.

Otherwise, mk and vk differ by a usually small amount. The equations in (15) have the

counterpartsX
r

dkmkx
0

k ¼
X

s
dkx

0

k;
X

r
dkmk ¼

X
s
dk;

X
r

dkm2
k ¼

X
s
dkmk ð31Þ

Hence
P

r dkmk is unbiased for the population size N, because
P

s dk has this property.

To the means �MU and �MU;u correspond

�ms;d ¼

X
s
dkmkX
s
dk

; �mr;d ¼

X
r

dkmkX
r

dk

¼

X
s
dkX

r
dk

ð32Þ

Hence 1= �mr;d is a measure of the survey response rate, independently of xk. The quantity

Q 2 was defined by (21) as the (theta-weighted) variance of the predicted influences

f̂Uk ¼ Mk for k [ U. By the same logic, q 2 is now defined to be the (design-weighted)

variance of the sample-based predictions f̂sk ¼ mk for k [ r:

q2 ¼
1X
r

dk

X
r

dkðmk 2 �mr;dÞ
2 ð33Þ

A simple development and the use of (31) gives

q2 ¼

X
s
dkmkX
r

dk

2

�X
s
dk

�2

�X
r

dk

�2
¼ �mr;dð �ms;d 2 �mr;dÞ ð34Þ

Since q2 $ 0 and �mr;d $ 1, it follows that �ms;d $ �mr;d . It is useful to remember the

interpretation of q 2 as the variance of the sample-based predicted influences. But a familiar

line of reasoning brings an alternative interpretation of q 2: replace each population sum in the

expression (22) for Q 2 by the corresponding unbiased estimate. That is, the sums
P

U ukxkx
0

k,P
U uk,

P
U xk and N in Q 2, are replaced by the respective unbiased estimates,

P
r dkxkx

0

k,P
r dk,

P
s dkxk and

P
s dk. In particular,

P
U Mk ¼ ð

P
U xkÞ

0ð
P

U ukxkx
0

kÞ
21 ð

P
U xkÞ

in (22) is replaced by ð
P

s dkxkÞ
0ð
P

r dkxkx
0

kÞ
21ð

P
s dkxkÞ ¼

P
s dkmk. We arrive at (34).

Some properties of q 2 are: (a) for any given auxiliary vector xk, q2 $ 0, because q 2 is a

variance; (b) q2 ¼ 0 for the primitive vector, xk ¼ 1 for all k; (c) q2 ¼ 0 for complete

response, r ¼ s; (d) q2 ¼ 0 if �xs;d ¼ �xr;d; (e) in contrast to Q 2, q 2 does not have a finite

upper bound; (f) for a given xk, q 2 converges in probability, under mild conditions, to Q 2,
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because each population sum in Q 2 is replaced in q 2 by a corresponding design-unbiased

estimate.

The convergence of q 2 to Q 2 may be slow, and the sample-to-sample variability of q 2

may be considerable, unless both s and r are rather large sets. For best results, q 2 should

be used with the large sample sizes, often one thousand or more, that are typical of

government surveys.

The indicator q 2 was proposed and used in Särndal and Lundström (2005), under

the notation IND1, for the purpose of comparing different vectors xk for bias reduction.

This role of q 2 is further developed in the following sections. A different tool for the

selection of x-variables is proposed in Bethlehem and Schouten (2004) and Schouten

(2007). It depends both on the response outcome and on the response variable y. It seeks to

combine two aspects of an auxiliary vector xk: on the one hand how well it explains the

response pattern, on the other hand how well it explains the study variable y. It is thus a

y-dependent indicator. By contrast, q 2 in this article has an objective to serve as a guide no

matter how many y-variables the survey may contain. The question of choice among

available auxiliary variables for bias reduction appears earlier in the literature. For

example, Rizzo, Kalton, and Brick (1996) view the choice of auxiliary variables as a

somewhat more important question than the choice among alternative algorithms for

computing the weights given a set of variables.

The population-based coefficient of variation H given by (26) has the sample-based

analogue

h ¼ q= �mr;d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ms;d

�mr;d

2 1

r

A reason to prefer h to q 2 in empirical work is that it mitigates the tendency in q 2 to

increase with increasing rates of nonresponse. The population correlation coefficient RMf

does not have a sample-based counterpart.

9. A Diagnostic Tool for Assessing the Bias Reduction Potential of an Auxiliary

Vector

When a survey encounters a sizeable nonresponse, the onus is on the survey producer

to adjust the estimates. A rich source of auxiliary data is a necessary prerequisite.

Such an environment is found in a number of North European countries, where

reliable registers of the total population provide extensive auxiliary data for surveys

on individuals and households. These databases contain many potential auxiliary

variables. In a preliminary inventory, a pool of potential x-variables is identified.

A range of possible auxiliary vectors xk can be considered. Both types of information,

x*
k and x+k, may be present in xk. We want to compare those xk-vectors in regard to

their capacity to reduce the bias remaining in the calibration estimator ŶW ¼
P

r wkyk.

In practice, one vector will ultimately be chosen for computing the weights

wk ¼ dkvk.

In practice, how do we compare the various candidate vectors xk? By (29), an increase

in Q2 ¼ Q2ðxkÞ is accompanied by a roughly linear decrease in the relative nearbias P.

The empirical evidence in Section 10 supports this contention. In practice, Q2ðxkÞ is
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replaced by the computable indicator q2 ¼ q2ðxkÞ given by (33) or (34). What assurance

do we have that q2ðxkÞ will guide us correctly to the preferred xk-vector? Suppose

we compare two candidate x-vectors, x1k and x2k, related hierarchically so that x2k is made

up of x1k and an additional vector xþk: x2k ¼ ðx
0

1k; x
0

þkÞ
0. Then Q 2ðx2kÞ $ Q2ðx1kÞ by

property (d) in Section 6, which says that adding further variables to x1k increases Q 2 (or

possibly leaves it unchanged). The same ordering holds for the sample-based counterparts:

q2ðx2kÞ $ q2ðx1kÞ, for any realized sample s and response set r. That is, if Q 2 indicates

that x2k is preferred to x1k, then q 2 will agree with this order of preference, whatever the

realization (s, r). Still there is no guarantee that the bias is smaller for x2k than for x1k, but

(29) suggests that this is so.

The situation is different if the compared vectors x2k and x1k are not related

hierarchically, that is, when x2k is not the result of adding more variables to x1k. Then

q2ðx2kÞ $ q2ðx1kÞ may hold for some realizations (s, r), but not necessarily all, as illus-

trated at the end of the next section.

The indicator q2 ¼ q2ðxkÞ provides a tool for a stepwise selection of x-variables from a

pool of J potentially interesting x-variables, continuous or categorical. In Step 1 of a

stepwise forward selection, compute q2ðxkÞ for each single x-variable; retain the one that

yields the largest value of q2ðxkÞ. In Step 2, compute q2ðxkÞ for each of the J 2 1 vectors

xk composed of the variable from Step 1 and one additional x-variable; of those vectors,

retain the one that yields the highest increase in q2ðxkÞ, and so on, if further steps are

needed. Typically, the successive increases in q2ðxkÞ taper off, as exemplified by the study

in Section 11. It is assumed that all xk-vectors considered in the stepwise procedure

satisfy the condition (2). If x is a one-dimensional continuous variable, the vector under

consideration in Step 1 is xk ¼ ð1; xkÞ
0.

An alternative is to use q2ðxkÞ for a stepwise backward deletion of x-variables, one at a

time, beginning with the full vector xk, composed of all J x-variables deemed to be of

interest. For either of two reasons one may not wish to retain all the variables in that

vector: (i) some of the x-variables may contribute little to the objective of reducing bias, or

(ii) inspection of the set of weights wk produced by xk may reveal some undesirably large

or small values. The following procedure may be followed. In Step 1, compute q2ðxkÞ

for the full vector. In Step 2, compute q2ðxkÞ for each of the J different vectors xk with one

x-variable deleted; consider retaining the vector causing the least reduction in q2ðxkÞ.

Additional steps follow the same routine. A significant drop in q2ðxkÞ is a sign that the

deleted x-variable is important for bias reduction. The procedure stops if at a certain step

both of properties A and B hold, where A ¼ “the drop in q2ðxkÞ by deleting the next

x-variable is numerically important,” and B ¼ “inspection of the set of weights is

satisfactory.”

10. Empirical Study of the Relation Between the Nearbias and the Bias Indicator

The first objective in this section is to study empirically how well Q2 ¼ Q2ðxkÞ succeeds

in tracking the value of nearbiasðŶW ðxkÞÞ. For a given constructed y-variable, we compose

a number of auxiliary vectors xk, we compute both nearbiasðŶW ðxkÞÞ and Q2ðxkÞ for each

vector, and we observe how these two quantities move together when xk changes.

By Result 7.2, we expect Q2ðxkÞ to be able to rank the vectors xk in regard to their ability
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to reduce the bias, if not perfectly, so at least with a high rate of success. A comparison of

two vectors x1k and x2k is expected to show, for any response distribution, that when

Q2ðx2kÞ . Q2ðx1kÞ, then nearbiasðŶW ðx2kÞÞ , nearbiasðŶW ðx1kÞÞ. Our empirical results

confirm this pattern.

An empirical study of this kind requires values ð yk; xk; ukÞ specified for

k ¼ 1; 2; : : : ;N. We experimented with several such constructed populations. The

conclusions were similar. We report here results for one study variable with value yk

specified for k ¼ 1; 2; : : : ;N ¼ 6; 000, together with 16 different specifications of xk,

under each of four different response distributions with uk specified for all k. For each

response distribution, we computed nearbiasðŶW ðxkÞÞ and QðxkÞ for the 16 different

xk-vectors, as well as the nearbias ratio and the coefficient of nondetermination, computed

in the image of (29) as

PðxkÞ ¼
nearbiasðŶW ðxkÞÞ

Nð �yU;u 2 �yUÞ
¼

X
U
ðukMkðxkÞ2 1Þyk

Nð �yU;u 2 �yUÞ
; TðxkÞ ¼ 1 2

Q2ðxkÞ

Q2
sup

We plotted the 16 points ðjPðxkÞj; TðxkÞÞ. The primitive vector xk ¼ 1 gives the point

(1,1). The other 15 points lie inside the unit square. If the remainder term D is small,

Result 7.3 suggests that the points will, apart from some scatter, align themselves

around the diagonal of the unit square, and that a decrease in TðxkÞ is accompanied by

a linear decrease in PðxkÞ. We have PðxkÞ ¼ TðxkÞ ¼ 0 for an xk-vector that satisfies

condition (11). Our study has no such ideal vector, but both PðxkÞ and TðxkÞ come

near zero for some of the more powerful vectors xk. (Although this did not occur in

the experiment reported here, a powerful xk-vector may yield a small negative value

of PðxkÞ.)

The 16 vectors xk were created by different uses of the values x1k and x2k of two

continuous auxiliary variables, x1 and x2. We created ð yk; x1k; x2kÞ for k ¼ 1; 2; : : : ; 6; 000

as follows.

Step 1: The continuous auxiliary variable x1. The 6,000 values x1k were created as

independent outcomes of the gamma distributed random variable Gða; bÞ with parameter

values a ¼ 2, b ¼ 5. This theoretical mean is mx1
¼ ab ¼ 10; the theoretical variance

is s2
x1
¼ ab2 ¼ 50. The mean of the 6,000 realized values x1k was 10.0 and the variance

was 49.9.

Step 2: The continuous auxiliary variable x2. For unit k, with the value x1k fixed in Step 1,

a value x2k is realized as an outcome of the gamma random variable GðAk;BkÞ, with

parameters Ak ¼ ðmx2kjx1k
Þ2=s 2

x2kjx1k
and Bk ¼ s 2

x2kjx1k
=mx2kjx1k

, where

mx2kjx1k
¼ aþ bx1k þ K hðx1kÞ ands 2

x2kjx1k
¼ s 2x1k ð35Þ

with hðx1kÞ ¼ x1kðx1k 2 mx1
Þðx1k 2 3mx1

Þ. Suitable values were assigned to the constants

a, b, K and s 2. The conditional expectation of x2k given x1k is the sum of the linear term

aþ bx1k and the polynomial term K hðx1kÞ, which gives a somewhat nonlinear appearance

to the plotted points ðx2k; x1kÞ. This was done on purpose, to avoid the argument that some

simulation results may happen just because of a linear relationship. We used the values

a ¼ 1, b ¼ 1, K ¼ 0:001, mx1
¼ 10 and s 2 ¼ 25. The mean and variance of the 6,000
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realized values x2k were 11.0 and 210.0, respectively. The correlation coefficient between

x1 and x2, computed on the 6,000 couples ðx1k; x2kÞ, was 0.48.

Step 3: The continuous study variable y. For unit k, with values x1k and x2k fixed by

Steps 1 and 2, a value yk is realized as an outcome of the gamma random variable Gðak; bkÞ

with ak ¼ ðmykjx1k ;x2k
Þ2=s 2

ykjx1k ;x2k
and bk ¼ s 2

ykjx1k ;x2k
=mykjx1k ;x2k

, where

mykjx1k ; x2k
¼ c0 þ c1x1 k þ c2x2k ands 2

ykjx1k ;x2k
¼ s 2

0 ðc1x1k þ c2x2kÞ ð36Þ

The conditional expectation of yk given x1k is c0 þ c1x1k þ c2ðaþ bx1k þ K hðx1kÞÞ. We

used the values c0 ¼ 1, c1 ¼ 0:7, c2 ¼ 0:3 and s 2
0 ¼ 2. (The values of a, b, K and s 2 are

fixed by Step 2.) The mean and the variance of the 6,000 realized values yk were 11.4 and

86.5, respectively. The correlation coefficient between y and x1, computed on the 6,000

couples ð yk; x1kÞ, was 0.76. The correlation coefficient between y and x2, computed on the

6,000 couples ð yk; x2kÞ, was 0.73.

Each of the two continuous variables x1 and x2 was employed in the experiment in four

different group modes, denoted 8G, 4G, 2G, and NG, to obtain 4 £ 4 ¼ 16 different

auxiliary vectors xk. The procedure for the variable x1 was the following. The 6,000 values

x1k were size ordered, and eight equal-sized groups were formed. Group 1 consists of the

units with the 750 largest values x1k, Group 2 consists of the next 750 units in the size

ordering, and so on, ending with Group 8. This defines mode 8G of variable x1; unit k is

assigned the group indicator vector gðx1;8Þk, of dimension eight with seven entries “0” and a

single entry “1” to identify the group membership of k. For example, gðx1;8Þk ¼

ð0; 0; 0; 0; 1; 0; 0; 0Þ0 implies that k is one of the 750 units in Group 5 of the x1-variable.

Next, successive group mergers are carried out; two adjoining groups always defining a

new group, doubling the group size and causing a progressive loss of information. For

mode 4G, the merger of Groups 1 and 2 puts the units with the 1,500 largest x1k-values into

a first new group, the merger of Groups 3 and 4 forms the second new group of 1,500, and

so on, and the vector gðx1;4Þk is associated with unit k. In mode 2G, unit k has the indicator

vector gðx1;2Þk such that gðx1;2Þk ¼ ð1; 0Þ0 for the 3,000 largest x1-value units and gðx1;2Þk ¼

ð0; 1Þ0 for the rest. In the ultimate mode, NG (for no grouping), all 6,000 units form a single

group, all x1-information is relinquished, and gðx1;1Þk ¼ 1 for all k.

The same procedure was used to transform the 6,000 values x2k into the group modes

8G, 4G, 2G, and NG. Correspondingly, the group information for unit k is coded by the

vectors gðx2;8Þk, gðx2;4Þk, gðx2;2Þk and gðx2;1Þk ¼ 1. Finally, 4 £ 4 ¼ 16 different auxiliary

vectors xk are formed by combining the group information as shown in the following

display.

Use made of x2k

Use made of x1k Eight size groups Four size groups Two size groups Not used

Eight size groups 8G þ 8G 8G þ 4G 8G þ 2G 8G þ NG
Four size groups 4G þ 8G 4G þ 4G 4G þ 2G 4G þ NG
Two size groups 2G þ 8G 2G þ 4G 2G þ 2G 2G þ NG
Not used NG þ 8G NG þ 4G NG þ 2G NG þ NG
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The “þ” indicates that the xk-vector is formed by placing the two g-vectors “side by

side,” the effect being a calibration on the margins. For case 8G þ 8G, unit k has the

auxiliary vector xk ¼ ðg
0

ðx1;8Þk;g
0

ðx2;8ÞkÞ
0
(21), where “21” indicates that one category is

excluded in either gðx1;8Þk or gðx2;8Þk to avoid a singular matrix, giving xk the dimension

8 þ 8 2 1 ¼ 15. The case 8G þ 8G makes the most complete use of the group

information. At the other extreme, the case NG þ NG disregards all the information and

gives rise to the primitive auxiliary vector xk ¼ 1 for all k. There are 14 intermediate

cases. For example, the case 4G þ 2G has xk ¼ ðg 0
ðx1;4Þk;g

0
ðx2;2ÞkÞ

0
ð21Þ of dimension

4 þ 2 2 1 ¼ 5; the case 4G þ NG has xk ¼ ðg 0
ðx1;4Þk; 1Þ0ð21Þ ¼ gðx1;4Þk.

We report results for four different response distributions:

(i) IncExpð10 þ x1 þ x2Þ, defined by uk ¼ 1 2 e2cð10þx1kþx2kÞ with c ¼ 0:04599

(ii) IncExpð10 þ yÞ, defined by uk ¼ 1 2 e2cð10þykÞ with c ¼ 0:06217

(iii) DecExpðx1 þ x2Þ, defined by uk ¼ e2cðx1kþx2kÞ with c ¼ 0:01937

(iv) DecExpð yÞ, defined by uk ¼ e2cyk with c ¼ 0:03534

The constant c was chosen in each option to deliver a mean response probability of
�uU ¼

P
U uk=N ¼ 0:70. The value 10 (rather than 0) is used in options (i) and (ii) to avoid a

high incidence of very small response probabilities uk. The four options represent

contrasting features of the response probabilities: decreasing as opposed to increasing,

dependent on x-values only as opposed to dependent on y-values only. Options (ii) and (iv),

where the response is entirely y-variable dependent, might be called “purely nonignorable.”

Many other response distributions could be considered in this experimental setting.

The preceding theory suggests that the approximate linear relationship between Q2ðxkÞ

and the nearbias will prevail for any response distribution. It is nevertheless clear that

one can provoke situations with relationships among yk, xk and uk such that the

approximate linear relationship is significantly perturbed. This has not been an

objective in this study.

Tables 1 to 4 show the value (in percent) of relbiasðŶW ðxkÞÞ ¼ nearbiasðŶW ðxkÞÞ=ðN �yUÞ,

and (in parenthesis) the value of Q2ðxkÞ for the 16 xk-vectors. In each table, the case

NG þ NG gives Q2ðxkÞ ¼ 0, and relbiasðŶW ðxkÞÞ is at its highest level. At the other

extreme, the case 8G þ 8G gives the highest value of Q2ðxkÞ and the lowest value of

relbiasðŶW ðxkÞÞ. Other cases are intermediate. The tables confirm property (d) of Section 6,

namely that the value Q2ðxkÞ increases by moving upwards within every column and by

moving from right to left within every row. All four tables show that the absolute values of

relbias also follow a monotonic (but decreasing) pattern, something which however is not

guaranteed by the preceding theory. To each table corresponds one of the Figures 1 to 4,

showing the plotted points ðPðxkÞ; TðxkÞÞ for the 16 auxiliary vectors xk. The tables and the

figures prompt several comments:

1. Comparing x-dependent response distributions with y-dependent response

distributions. The best of the auxiliary vectors (those for Case 8G þ 8G),

yield near-zero nearbias for the x-dependent response distributions. For example,

Table 1 for IncExpð10 þ x1 þ x2Þ shows relbias (in %) decreasing from 13.2

(Case NG þ NG) to 0.2 (Case 8G þ 8G). The decreasing pattern holds also for

the y-dependent response distributions, IncExpð10 þ yÞ and DecExpð yÞ, with the
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difference that the relbias does not come close to zero for the best vectors. In Table 2

for IncExp( y) the relbias (in %) decreases from 13.1 (Case NG þ NG) to 3.6

(Case 8G þ 8G). This emphasizes the importance of a powerful xk-vector also for

nonignorable nonresponse.

2. Linear relationship between TðxkÞ and PðxkÞ. The visual impression in all of Figures 1

to 4 is one of strong linearity. Results 7.1 and 7.2 lead us to expect that as the auxiliary

vector xk improves, TðxkÞ and PðxkÞ will decrease together in a nearly linear fashion.

To measure this tendency, we computed the product–moment correlation coefficient,

denoted rTP, based on the 16 points ðPðxkÞ; TðxkÞÞ. Table 5 shows values of rTP near

one for all four response distributions, indicating near perfect linear relationship. We

also computed the Spearman rank correlation coefficient, denoted RTP, based on the

16 points ðPðxkÞ; TðxkÞÞ. Table 5 shows that RTP is also near one in all four cases,

so for this population, TðxkÞ gives an almost perfect ranking of the 16 xk-vectors.

The same attractive property applies to Q2ðxkÞ since it is linearly related to TðxkÞ.

3. The effect of the remainder term D. Result 7.3 leads us to expect the points

ðPðxkÞ; TðxkÞÞ to be aligned, except for some scatter, around the diagonal of the unit

Fig. 1. Plot of ðPðxkÞ; TðxkÞÞ for 16 auxiliary vectors xk. Response distribution IncExpð10 þ x1 þ x2Þ

Table 1. Relbias ŶW ðxkÞ in % and value of Q 2ðxkÞ in % (within parenthesis) for 16 auxiliary vectors xk.

Response distribution IncExpð10 þ x1 þ x2Þ

Use made of x1k Use made of x2k

Eight size groups Four size groups Two size groups Not used

Eight size groups 0.2 (9.5) 0.4 (9.3) 1.3 (8.7) 3.4 (6.5)
Four size groups 0.5 (9.2) 0.8 (9.0) 1.8 (8.4) 4.1 (6.0)
Two size groups 1.5 (8.5) 1.9 (8.2) 3.2 (7.3) 6.5 (4.3)
Not used 4.1 (6.7) 5.0 (6.3) 7.3 (5.0) 13.2 (0.0)
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square. This assumes that the term D in (27) is small by comparison. The diagonal

pattern is most clearly pronounced in Figures 1, 2, and 4, but somewhat less

prominent in Figure 3 for DecExpðx1 þ x2Þ, although the linear relationship remains

strong there also. Figure 3 suggests that in that case, D may not be negligible,

compared to the principal term. However, the ranking of the x-vectors remains

excellent, with RTP ¼ 0:92.

4. Interactions. There is nonnegligible interaction between x1 and x2 in the population

constructed for this experiment. We found that a cross-classification, such as

2G £ 2G, gave smaller values of nearbias (and correspondingly lower values of

Q2ðxkÞ) than a corresponding “side by side” arrangement, such as 2G þ 2G, which

disregards interactions.

For the population in this experiment, Tables 1 to 4 and Figures 1 to 4 support the idea that,

if computable, Q2ðxkÞ would be a good instrument for ranking the possible xk-vectors.

In practice, the computable sample-based analogue q2ðxkÞ must be used. How well does

q2ðxkÞ succeed in ranking the xk-vectors? For row-wise and for column-wise comparisons

in Tables 1 to 4, the xk-vectors are in a hierarchical relationship, in the sense of Section 9.

When the vectors x1k and x2k belong in the same table row or in the same table column, and

Fig. 2. Plot of ðPðxkÞ; TðxkÞÞ for 16 auxiliary vectors xk. Response distribution IncExpð10 þ yÞ

Table 2. Relbias ŶW ðxkÞ in % and value of Q 2ðxkÞ in % (within parenthesis) for 16 auxiliary vectors xk.

Response distribution IncExpð10 þ yÞ

Use made of x1k Use made of x2k

Eight size groups Four size groups Two size groups Not used

Eight size groups 3.6 (4.3) 3.8 (4.2) 4.3 (4.0) 5.3 (3.6)
Four size groups 4.0 (4.1) 4.3 (4.0) 4.9 (3.8) 6.0 (3.3)
Two size groups 4.9 (3.6) 5.3 (3.5) 6.2 (3.3) 7.9 (2.5)
Not used 7.1 (2.4) 7.9 (2.2) 9.6 (1.6) 13.1 (0.0)
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Q2ðx2kÞ $ Q2ðx1kÞ, then q2ðx2kÞ $ q2ðx1kÞ follows for any outcome (s, r). For example, if

x1k is the vector for 4G þ 2G, and x2k is the one for 8G þ 2G, then computation will

necessarily show that q2ðx2kÞ $ q2ðx1kÞ for any (s, r), confirming that the nearbias is

smaller (in absolute value) for 8G þ 2G than for 4G þ 2G.

The situation is different if x1k and x2k do not belong to the same row or the same

column. Over repeated outcomes (s, r), we may then find q2ðx2kÞ $ q2ðx1kÞ for some but

not all outcomes. Especially if the difference nearbiasðŶW ðx1kÞÞ2 nearbiasðŶW ðx2kÞÞ is

considerable (in absolute value), we would like to see that q2ðx2kÞ $ q2ðx1kÞ holds in a

vast majority of all outcomes (s, r), because then the indicator q 2 leads with large

probability to the correct decision to base the estimator ŶW on x2k rather than on x1k.

We shed further light on this question by Monte Carlo experiments, in which 5,000

outcomes (s, r) were realized. Repeated simple random samples s of size 1,000 were

drawn, and, for every given s, r was realized according to each of the four response

distributions. That is, unit k is declared “responding” if a Bernoulli experiment with the

specified uk gives “success.” We then computed the proportion of outcomes (s, r) in which

the correct ordering is achieved. It is of particular interest to compare cases where the

Fig. 3. Plot of ðPðxkÞ; TðxkÞÞ for 16 auxiliary vectors xk. Response distribution DecExpðx1 þ x2Þ

Table 3. Relbias ŶW ðxkÞ in % and value of Q 2ðxkÞ in % (within parenthesis) for 16 auxiliary vectors xk.

Response distribution DecExpðx1 þ x2Þ

Use made of x1k Use made of x2k

Eight size
groups

Four size
groups

Two size
groups Not used

Eight size groups 22.8 (20.1) 23.9 (17.0) 25.6 (13.6) 27.6 (10.3)
Four size groups 23.5 (19.3) 24.8 (16.0) 26.6 (12.3) 28.8 (8.8)
Two size groups 24.9 (18.0) 26.4 (14.4) 28.7 (10.1) 211.5 (5.8)
Not used 27.2 (16.4) 29.1 (12.3) 212.6 (6.7) 217.7 (0.0)
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nearbias values are close, so that a correct decision is hard to obtain. Some examples of

these comparisons:

(i) Comparison of 4G þ 2G (with vector denoted x1k) with 2G þ 8G (with vector

denoted x2k) for IncExpð10 þ x1 þ x2Þ. By Table 1, relbiasðŶW ðx2kÞÞ ¼ 1:5 , 1:8 ¼

relbiasðŶW ðx1kÞÞ and, correspondingly, Q2ðx2kÞ ¼ 8:5 . 8:4 ¼ Q2ðx1kÞ. Thus the

vector x2k is slightly better for reducing nearbias, an order of preference confirmed

by Q 2. The correct ordering, q2ðx2kÞ . q2ðx1kÞ, occurred here for a high proportion,

70.7%, of the 5,000 outcomes (s, r).

(ii) Comparison of 2G þ 2G (vector x1k) with 4G þ NG (vector x2k) for DecExpð yÞ.

By Table 4, relbiasðŶW ðx2kÞÞ ¼ 212:2 and relbiasðŶW ðx1kÞÞ ¼ 212:9. Thus x2k is the

slightly better vector, by the absolute value of nearbias. This order of preference is

confirmed by the Q2-values: Q2ðx2kÞ ¼ 8:0 . 7:0 ¼ Q2ðx1kÞ. The correct ordering

Q̂2ðx2kÞ . Q̂2ðx1kÞ was realized in 78.1% of the 5,000 outcomes (s, r).

(iii) Comparison of NG þ 2G (vector x1k) with 2G þ NG (vector x2k) for

DecExpðx1 þ x2Þ. By Table 3, relbiasðŶW ðx2kÞÞ ¼ 211:5 and relbiasðŶW ðx1kÞÞ ¼

212:6. Here x2k is the somewhat better vector by the absolute value of relbias, but

Fig. 4. Plot of ðPðxkÞ;TðxkÞÞ for 16 auxiliary vectors xk. Response distribution DecExpð yÞ

Table 4. Relbias ŶW ðxkÞ in % and value of Q 2ðxkÞ in % (within parenthesis) for 16 auxiliary vectors xk.

Response distribution DecExpð yÞ

Use made of x1k Use made of x2k

Eight size
groups

Four size
groups

Two size
groups Not used

Eight size groups 28.2 (12.6) 28.9 (11.7) 29.8 (10.6) 211.0 (9.5)
Four size groups 29.0 (11.6) 29.8 (10.5) 210.9 (9.3) 212.2 (8.0)
Two size groups 210.5 (10.0) 211.5 (8.7) 212.9 (7.0) 214.8 (5.3)
Not used 212.9 (7.8) 214.4 (6.1) 216.8 (3.5) 220.5 (0.0)
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this is one of the rare instances where the order of preference is not confirmed by

the Q2-values: we have Q 2ðx2kÞ ¼ 5:8 , 6:7 ¼ Q2ðx1kÞ. Not surprisingly, the

correct ordering Q̂2ðx2kÞ . Q̂2ðx1kÞ occurred in less than a majority of the 5,000

outcomes (s, r), namely, 31.2%.

11. Use of the Bias Indicator in the Swedish National Crime Victim and Security

Study

In 2006, the Swedish National Council for Crime Prevention (Brottsförebyggande Rådet,

acronym BRÅ) conducted a National Crime Victim and Security Study. As part of the

study, Statistics Sweden carried out a survey in which 10,000 persons were sampled from

the Swedish Register of the Total Population (RTP). The survey objective was to measure

trends in certain types of crimes, in particular crimes against the person. It would provide

an opportunity to assess levels of insecurity, and how these levels vary with respect to

various groups in Swedish society.

A stratified simple random sample s of 10,000 persons was drawn from the RTP.

The strata were defined by the cross classification of region of residence by age group.

The regions are the 21 Swedish administrative areas known as “län.” The three age groups

were defined by the brackets 16–29, 30–74, and 75–79. This design reflects an objective

to get accurate results for each of the 21 län as well as for each of the three age groups.

The allocation of the sample to strata was roughly proportional to the population size in the

stratum, with minor modifications to reflect the goal of sufficient accuracy for the domains

of particular interest, the län and the age groups. The overall response rate was 77.8%.

The nonresponse, more or less pronounced in the different domains of interest, interferes

to some degree with the accuracy objective.

The pool of potential auxiliary variables consisted of those in the RTP and a subset of

those in another Statistics Sweden’s database, LISA. All auxiliary variables are

categorical. Groups were formed for the variables that are continuous by nature. Variables

obtained from LISA were transcribed only to the sample database, so they are of the x+k
type defined in Section 2.

For this survey, we illustrate the use of q 2 as a tool for stepwise forward selection of

variables, as explained in Section 9. In each step, the auxiliary vector xk expands

by addition of the categorical variable that yields the largest increase in q 2 at that point.

A new variable joins already entered variables in the “side-by-side” (or “þ”) manner.

Table 6 shows the variable entered into xk in the first ten forward selection steps. Country

of birth, entered in Step 1, is the dichotomous variable indicating Scandinavian-born or

not. Age group and sex, adjustment variables “by routine” in many surveys, do qualify for

Table 5. Product–moment correlation coefficient rTP, and Spearman rank correlation

coefficient RTP, computed on 16 points ðPðxkÞ;TðxkÞÞ, for four response distributions

Response distribution rTP RTP

IncExpð10 þ x1 þ x2Þ 0.99 0.99
IncExpð10 þ yÞ 1.00 0.99
DecExpðx1 þ x2Þ 0.95 0.92
DecExpð yÞ 1.00 0.99
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inclusion here, in Steps 3 and 4. The pool of potential auxiliary variables included a

number of others, not shown in the table.

Table 6 also shows the number of groups for each categorical variable, and the

successive values of 1; 000 £ q2. Not unexpectedly, the increases in q 2 taper off after a

few steps. This suggests that there would be little point, for bias reduction, in using more

than the first six x-variables, and perhaps the first four would suffice.

Estimates were produced in the survey for many categorical study variables, as

totals or as proportions. The typical targeted population total Y is a population count,

the number of persons with a specific property, relating, say, to insecurity and/or fear

of becoming a victim of some form of crime. Thus Y ¼
P

U yk, where yk ¼ 1 if person

k has the property and yk ¼ 0 if not. The bias remaining in the final count estimates

remains unknown. But we can follow the stepwise evolution of the estimates. For

some study variables we computed the estimated count at each step in Table 6, ŶW ¼P
r wkyk with weights wk based on the xk-vector with the variables selected up until

and including the step in question. The estimate used in Step 0 was computed by

straight expansion within strata as ŶW ¼
PH

h¼1Nh �yrh
, where �yrh

is the mean response in

stratum h.

Some estimated counts changed by two or more percentage points in the progression

from Step 0 to Step 6. This is a large change; nonresponse has considerable effect.

Still, there is no guarantee that the estimate in Step 6 is any more accurate (less biased)

than the one in Step 0, but theory leads one to expect so. A typical pattern was that the

greatest change in the estimate occurred in the transition from Step 0 to Step 1, that the

change was quite noticeable also in Steps 2, 3, and 4, and that the change then

subsided. This pattern agrees with the progression of q 2 shown in Table 6. Some

variables appear to be little affected by the nonresponse, the change in the estimates

being small in all steps.

12. Concluding Comment

This article suggests using the indicator q 2 as a tool for building the auxiliary vector for

the final calibrated weights. The bias in the final estimates still remains unknown. We do

Table 6. National Crime Victim and Security Study; stepwise forward selection of variables for the auxiliary

vector

Step Auxiliary variable entering Number of groups Value of 1,000 £ q 2

0 – – 0
1 Country of birth 2 20.0
2 Income group 3 27.6
3 Age group 6 31.3
4 Gender 2 35.1
5 Marital status 2 38.6
6 Region 21 40.7
7 Family size group 5 41.4
8 Days unemployed 6 41.9
9 Urban centre dweller 2 42.3
10 Occupation 10 42.7
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not resolve questions such as: How large is the squared bias component of the mean

squared error? To what extent does the bias invalidate the inferences? Precise answers are

not available, because the response distribution is unknown. Nevertheless, an important

step is to rank different auxiliary vectors for their potential to reduce the bias. The indicator

q 2 serves this purpose.
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