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We propose a Bayesian approach for matching noisy multivariate continuous vectors
observed on different occasions but originating from the same closed population. The
proposed methodology can be profitably adopted in record linkage and in capture-recapture
problems where the size of a finite population is the main object of interest and the number of
“recaptured” individuals is unknown. A Gibbs sampling scheme is used to simulate from the
posterior distribution of the model parameters. The performance of the proposed approach is
evaluated with simulated data sets.
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1. Introduction

Record linkage is “the name given to any process which identifies the common reporting

units in two different files” (Kelley 1986). It is a powerful tool in the more general problem

of multiple data set integration and it is ubiquitous in many different disciplines; among

the others, medicine, business administration and official statistics (see, for instance,

Newcombe (1988) or the more recent Herzog et al. (2007)). In many research projects or

administrative tasks it is important to gather information about a single unit from more

than one data sources. When a unique identifier – or a key – is available for all fields in

every data source a deterministic linkage can be used. The deterministic record linkage

procedures assume that data have been observed without errors so the linkage can only

happen between records which exactly match on each field.

In practice, this situation is very uncommon and the same unit can be registered with, for

example, different names and/or different values of some relevant variable, in different

data sets. This implies the lack of a unique identifier and a probabilistic approach to record

linkage is then necessary. The relevant literature in the field is vast and the same

procedures are often given different names according to the field of application. In official

statistics the role of record linkage is getting more and more important. Against the
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background of a series of naive and heuristic record linkage methods, very popular in the

’60s and in the ’70s (see, for example, Armstrong and Mayda (1993)), Fellegi and Sunter

(1969) were the first to set a record linkage problem into a formal statistical framework.

Since then, there have been significant advances which are described in several important

papers. Among the most influential, we mention Jaro (1989), Winkler (1993) and Belin

and Rubin (1995), which made explicit the nature of the record linkage problem as a

mixture model. Fortini et al. (2001; 2002) have proposed a Bayesian approach which is

partially adopted in the present article.

All of these papers share the common approach of assuming a probabilistic model for

the set of all possible comparisons among records from different data sets; moreover these

comparisons are considered mutually independent. This assumption, as noted by Kelley

(1986), is fundamentally incorrect. Using his words, “: : : The decision procedure : : : was

developed under the hypothesis that the comparison vectors between separate record pairs

are independent. However, since the record pairs that are considered for possible matches

are elements of the cross product of the two files we are attempting to match, the

comparison vectors are in fact dependent”. As a matter of fact, the random variables

related to different comparisons may be deterministically dependent. Consider for

example, the case of a single key variable X and a 0/1 comparison function Y, that is

Y ¼
1 if values on both units coincide

0 otherwise

(

Let Xt
l be the observed value of the lth units of file t, t ¼ A, B and consider the first two

records in data sets A and B. If

XA
1 ¼ XB

1 ; XA
1 ¼ XB

2 ; XA
2 ¼ XB

1

then, necessarily, XA
2 ¼ XB

2 . Then comparison need not be independent and this problem

cannot be circumvented by eliminating redundant comparisons for the likelihood function,

because the order with which pairs are considered would matter!

Also, the problem of misspecification of the statistical model would bias the calculation

of the error rates, as noted, for example, by Winkler (2000).

From this standpoint, we propose a model which is directly built up on the data X

observed on the two occasions. In particular, we illustrate a Bayesian approach for

matching noisy multivariate normal vectors observed on different occasions but

originating from the same closed population. Extensions to other continuous variables

are possible, losing some of the closed forms used in this article, with additional

computational effort. The proposed methodology can be profitably adopted in record

linkage and in capture-recapture problems where the size of a finite population is the

main object of interest and the number of “recaptured” individuals is unknown.

The article is organized as follows. We continue this section by illustrating the relevant

literature for our approach. In Section 2 we describe the model in terms of likelihood and

prior distributions. In Section 3, a Gibbs sampling scheme is presented. Section 4 describes

the performance of our approach with simulated data sets. Finally, in Section 5 the

possibilities for different modelling and future research are discussed.
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1.1. Relevant Literature

Most, if not all, of the previous approaches to population size estimation with matching

uncertainty consider the matching step and the size estimation step as two logically and

operationally well separated tasks. In this article we propose a unified framework where

matching uncertainty is naturally accounted for in estimating population size. In particular

we consider our proposal as a possible first answer to the issue raised by Fienberg and

Manrique-Vallier (2009) who state: “: : : it seems rather natural to ask whether there is a

way to combine record linkage, covariates, and multiple system estimation methodologies

using missing data framework and assumptions such as missing at random. While we have

not attempted such a grand unification, we think that considering the problems in an

integrated form will lead to new and improved statistical methodology. One of the main

benefits we foresee in this unification is the acknowledgment and incorporation of the

inherent uncertainty that probabilistic record linkage methods for merging multiple lists

in a form directly suitable for multiple system estimates, which is ignored in virtually all

applications”. In this article we will focus on the case where all the observed key variables

are continuous. The case of categorical variables is discussed in Tancredi and Liseo

(2011). In that paper, the authors consider the case where two independent random

samples are drawn from a closed population generated from a superpopulation model

(Ericson 1969) and a measurement error mechanism affects the sample data. While in the

categorical data framework a multinomial distribution has been used as a superpopulation

model and the hit-and-miss model has been used for the measurement error (Copas and

Hilton 1990), in this article the population values are assumed to be random samples from

a multivariate normal distribution and the sample data are affected by a normal

measurement error.

The issue of linkage uncertainty in the presence of continuous variables is a serious one

whose relevance goes beyond the population size estimation problems and falls into the

broad category of inference problems in the presence of linkage uncertainty, deeply

discussed by Judson (2007). Lahiri and Larsen (2005) provide a specific example for the

case of multiple regression analysis with linked data.

Record linkage of survey or administrative data is not the only statistical problem

where matching issues arise. An example which is relevant to our approach emerges

in bioinformatics with the Bayesian model discussed by Green and Mardia (2006).

DeGroot and Goel (1980) consider the situation where a random sample of size n, say

ðXi; ZiÞ; i ¼ 1; : : : ; n is drawn from a bivariate normal distribution; however, before the

sample values are recorded, each observation (xi; zi) gets broken into two separate

components. As a consequence, the available information assumes the form of the vector

x ¼ ðx1; : : : ; xnÞ and y ¼ ð y1; : : : ; ynÞ, where y is an unknown permutation of the

original values ðz1; : : : ; znÞ.

A further example of matching is discussed in Lindley (1977), in a forensic scenario.

Here the problem arises when some material is found at the scene of a crime and similar

material is found on a suspect; in both cases material collection is generally subject to

measurement error. Lindley describes a Bayesian method to establish whether the two

materials are likely to come from the same source or not. Under the assumption of

Gaussianity, Lindley shows that the Bayes factor comparing the alternative hypotheses
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that the suspect was (or was not) present at the scene of the crime, is actually the product of

two components: the first one depends on the difference among the observed values, the

second one depends on the distribution of the “true” values in the population. This is

clearly so in that, for example, observing evidence of “blue hair” on the scene of the crime

and on the suspect is much more informative than observing black or blond hair. The

approach proposed in this article can be considered, in some respects, a multivariate

generalization of Lindley’s model.

2. The Model

Suppose we are given two data sets XA and XB of different sizes n A and n B randomly

drawn from a finite population. Each record in each data set consists of observations

related to h variables, denoted the key variables. Then,

XA ¼ xA1 ; : : : ; x
A
a ; : : : ; x

A
nA

� �
and XB ¼ xB1 ; : : : ; x

B
b ; : : : ; x

B
nB

� �
;

and the single columns of XA and XB are respectively given by xAa ¼ xA1
a ; : : : ; xAh

a

� � 0
and

xBb ¼ xB1

b ; : : : ; xBh

b

� � 0
. For the sake of simplicity, the two data sets will be respectively

called sample A and sample B. Conditionally on the unobservable h-dimensional

vectors mA
a ¼ mA1

a ; : : : ;mAh
a

� � 0
and mB

b ¼ mB1

b ; : : : ;mBh

b

� � 0
, for a ¼ 1; : : : ; nA and b ¼

1; : : : ; nB and the diagonal matrix G ¼ diag ðg1; : : : ; ghÞ, we assume that vectors xAa and

xBb are mutually independent for a ¼ 1; : : : ; nA and b ¼ 1; : : : ; nB with

xAa , Nh mA
a ;G

� �
and xBb , Nh mB

b ;G
� �

: ð1Þ

The unknown quantity mA
a mB

b

� �
is then the realization of a multivariate continuous

variable m ¼ ðm1; : : : ;mhÞ over the population unit which occupies the ath (bth) position

in sample A (B). The components of m represent the unobserved true values of the key

variables. This way, assumption (1) implies that vectors xAa in sample A and xBb in sample B

can be considered measurements subject to recording error of the variables mA
a and mB

b .

Also, conditionally on the unobserved true values of mA
a , mB

b and G, the recording errors are

independent across the samples, across the observations of each sample and also between

the components of each observation, since G is diagonal.

We now describe the distributional assumption about mA ¼ mA
1 ; : : : ;m

A
nA

� � 0
and

mB ¼ mB
1 ; : : : ;m

B
nB

� � 0
. We assume that both in sample A and sample B, the sampled units

represent a simple random sample without replacement drawn from a finite population.

Moreover, the unknown values of the variable m are assumed to be independently and

identically distributed with an h-dimensional Normal Nh(u, S), in the spirit of the Bayesian

superpopulation model proposed by Ericson (1969). This way one has mA
a , Nhðu;SÞ

independently for a ¼ 1; : : : nA and mB
b , Nhðu;SÞ independently for b ¼ 1; : : : nB.

However, one cannot state that mA and mB are independent. In fact, after “observing”

values mA
1 ; : : : ;m

A
nA

� �
in sample A, we know that these values are part of the population

values and they have a positive probability of being observed again in sample B.

Then we need to explicitly model the dependence structure between mA and mB and we

will make use of the latent matching matrix C. This is an n A £ n B matrix whose generic

element Cab indicates whether or not unit a in sample A and unit b in sample B are the same
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population unit, that is, for a ¼ 1; : : : ; nA and b ¼ 1; : : : ; nB,

Cab ¼
1; if a and b refer to the same population unit

0; otherwise

(

The matrix C is the actual quantity of interest in record linkage problems; a similar

structure also appears in different statistical problems, such as Bayesian alignment

(Green and Mardia 2006) or microarrays analysis (Do et al. 2005). We assume

that multiple matches are not possible; then
P

a Cab ¼ C:b # 1; ;b ¼ 1; : : : ; nB,P
b Cab ¼ Ca: # 1; ;a ¼ 1; : : : ; nA; also, note that there are

� nA

t

�� nB

t
�
t! different C

matrices with exactly t ¼
P

ab Cab matches, for all t # min(n A, n B). Given the values of

the matching matrix C, vectors mA
a and mB

b corresponding to the same unit (Cab ¼ 1)

assume identical values. Also, both mA
a and mB

b have marginal h-dimensional Normal

distribution with mean u and covariance matrix S. Setting

mAB
ab ¼

mA
a

mB
b

2
4

3
5; u2 ¼

u

u

" #
and S2 ¼

S S

S S

" #

it follows that, when Cab ¼ 1,

mAB
ab , N2h u2;S2

� �
:

Finally, the dependencies among the components of m A and m B given C are restricted

to the matched pairs. More precisely,

p mA;mBjC; u;S
� �

¼
a:Ca:¼0

Y
fh mA

a ju;S
� �

£
b:C:b¼0

Y
fh mB

b ju;S
� �

£
ab:Cab¼1

Y
f2h mAB

ab ju2;S2

� �

where fkð·jj;VÞ is the density of a k-dimensional multivariate Normal distribution with

mean j and covariance matrix V.

The prior distribution for C should reflect the random selection mechanism of the two

samples. Conditionally on t ¼
P

ab Cab, C has a uniform distribution on the set of all

possible matching matrices with exactly t matches. Loosely speaking, in the absence of

any information, all the possible couples are equally likely to be a match. Then, we have

pðCju;SÞ ¼ pðCjtÞpðtjNÞ with

p Cjt
� �

¼

0 if
X
ab

Cab – t

nA

t

 !
nB

t

 !
t!

" #21

otherwise

8>>>>><
>>>>>:

:

Finally, the total number t of common units across the two samples has a scalar

hypergeometric distribution, that is,

p tjN
� �

¼
nA

t

 !
N 2 nA

nB 2 t

 !,
N

nB

 !
ð2Þ
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It is easy to check that, by averaging out over C in the distribution pðmA;mB;Cju;SÞ, one

reobtains that m A and m B are two random samples from a N(u, S).

An important feature of the model is that one can easily obtain the distribution of XA

and XB given C, u, S, G. In fact, using standard results in multivariate Normal theory (see,

for example Davison (2003), p. 456),

i) if xjm , Nhðm;GÞ and m , Nhðu;SÞ, then x , Nhðu;Gþ SÞ

ii) if xjm2 , N2hðm2;G2Þ and m2 , N2hðu2;S2Þ with

m2 ¼
m

m

" #
G2 ¼

G 0

0 G

" #

then x , N2h u2;C
� �

with

C ¼
Sþ G S

S Sþ G

" #
:

This, in turns, implies that

p XA;XBjC; u;S;G
� �

¼
a:Ca:¼0

Y
fh xAa ju;Sþ G
� �

£
b:C:b¼0

Y
fh xBb ju;Sþ G
� �

£
ab:Cab¼1

Y
f2h xABab ju2;C
� �

where xABab ¼
�
xAa
� � 0

; xBb
� � 0� 0

.

We conclude this section by describing the prior assumptions about the other

parameters of the model, namely N, u, S, G. All these quantities are assumed a priori

independent of each other; we also assume that, in practical situations, the information

available on these parameters will be, at best, rather weak. In particular, we assume that

p(u) / 1; p(N) / 1/N 2 truncated on {1,N*}, N* being a reasonably large value of N, a

diffuse inverse Wishart distribution for S and diffuse independent Gamma distributions

for the elements of G.

3. Bayesian Implementation

In this section we describe in detail the practical implementation of the proposed model.

We will show how to produce a posterior sample from pðC; u;S;G;NjX A;X BÞ using a

Metropolis-within-Gibbs algorithm. The reader may refer to Robert and Casella (2004) for

a general introduction to Markov Chain Monte Carlo methods.

For the updating step of the matrix C we adapt the algorithm proposed by Green and

Mardia (2006) to our setup. In particular C is updated via single Metropolis-Hastings

moves that, when accepted, can only increase (decrease) the total number of matches t by 1.

Let q(C0jC) be the proposal distribution for the C move, that is the probability of

proposing a new matrix C0 given that the chain is in C. The list of all possible moves from

the matrix C to a new proposed matrix C0 is listed below;

(a) adding a match, that is changing one entry Cab from 0 to 1;

(b) deleting a match, that is changing one entry Cab from 1 to 0;
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(c) switching a match, that is changing, at the same time, one entry from 0 to 1 and

another entry – in the same row or column – from 1 to 0.

In detail the algorithm proceeds as follows. First, a row or a column is randomly selected.

Suppose, without loss of generality, we select row a: either the row already has an entry

equal to 1 (i.e. Cab ¼ 1, for some b) or, alternatively, Cab ¼ 0 ;b. In the former case, then,

with probability p* we propose the deletion of the match, i.e. C 0
ab ¼ 0 and, with

probability 1 2 p* we propose a random switch to another entry of the row. In the latter

case, when there are no matches in row a, the proposal distribution randomly chooses a b

value among the nonmatched units of file B. This way, the acceptance probability,

min 1;
p C 0; u;S;G;NjXA;XB
� �

q CjC 0
� �

p C; u;S;G;NjXA;XB
� �

q C 0jC
� �

( )

in the case of a new match C 0
ab ¼ 1, is equal to

min 1;
f2h xABab ju2;C
� �

ðnB 2 tÞp*

fh xAa ju;Sþ G
� �

fh xBb ju;Sþ G
� �

ðN 2 nA 2 nB þ ðt þ 1ÞÞ

( )
: ð3Þ

Analogously, the acceptance probability for a switching proposal from (a, b) to (a, b0) is

min 1;
f2h xABab 0 ju2;C
� �

fh xBb ju;Sþ G
� �

f2h xABab ju2;C
� �

fh xBb 0 ju;Sþ G
� �

( )
;

finally, for the deleting move C 0
ab ¼ 0 the required probability is

min 1;
fh xAa ju;Sþ G
� �

fh xBb ju;Sþ G
� �

N 2 nA 2 nB þ t
� �

f2h xABab ju2;C
� �

nB 2 t þ 1
� �

p*

( )
: ð4Þ

The mixing of the Markov chain is improved by proposing several updatings of the matrix

C, for each updating cycle of the other parameters (u, S, G, N).

The conditional distribution of u is available in closed form. In fact, setting �xABab ¼

xAa þ xBb
� �

=2 and dABab ¼ xAa 2 xBb
� �

, if xABab , N2hðu2;CÞ it follows that �xABab and dABab are

independent and the Jacobian of the transformation is equal to 1. Then,

f2h xABab ju2;C
� �

¼ fh �xABab ju;Sþ G=2
� �

fh dABab j0; 2G
� �

ð5Þ

and the conditional distribution of u is

p ujXA;XBC;S;G;N
� �

/
a:Ca:¼0

Y
fh xAa ju;Sþ G
� �

£
b:C:b¼0

Y
fh xBb ju;Sþ G
� �

£
ab:Cab¼1

Y
fh �xABab ju;Sþ G=2
� �

:

Standard Bayesian calculations show that the conditional distribution of u is
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Nh (b*, B*) with

B* ¼ t Sþ G=2
� �21

þ nA þ nB 2 2t
� �

Sþ G
� �21

h i21

and

b* ¼ B*
h
tðSþ G=2Þ21 ��xAB

C¼1 þ ðnA þ nB 2 2tÞðSþ GÞ21 �xAB
C¼0

i

where ��xAB
C¼1 ¼

�P
ab:Cab¼1 �x

AB
ab

�
=t and �xABC¼0 ¼

�P
a:Ca:¼0 x

A
a þ

P
b:C:b¼0 x

B
b

�
=ðnA þ nB 2 2tÞ

Incidentally, we notice that the acceptance probabilities for the matching matrix

updating (3) and (4) reveal the close connection between our approach and Lindley’s paper

(Lindley 1977). For example, the acceptance probability (3) exactly corresponds to

the Bayes factor for the hypothesis Cab ¼ 1 versus Cab ¼ 0, when all the other model

parameters are known. Also, from (5), one can see that the evidence in favor of Cab ¼ 1

increases either when the distance dABab approaches zero or when the observed data xAa and

xBb are far from their mean values u: this last observation is a sort of generalization

of Lindley’s results (see also Davison (2003), p. 584).

The conditional distributions of S and G are not available in closed form. For both

of them we will use a Metropolis step with a random walk proposal. The full conditional

of S is

pðSjXA;XBC;u;G;NÞ/
a:Ca:¼0

Y
fhðx

A
a ju;SþGÞ£

b:C:b¼0

Y
fh xBb ju;SþG
� �

£
ab:Cab¼1

Y
fhð�x

AB
ab ju;SþG=2ÞpðSÞ

/jSþGj
2ðn Aþn B22tÞ=2

exp 2ðnAþnB22tÞ tr ðSþGÞ21SABC¼0

� �
=2

� �
£ jSþG=2j

2t=2
exp 2t tr ðSþG=2Þ21SABC¼1

� �
=2

� �
pðSÞ

with

SABC¼0 ¼

"
a:Ca:¼0

X
xAa 2u
� �

xAa 2u
� � 0

þ
b:C:b¼0

X
xBb 2u
� �

xBb 2u
� � 0#�

ðnAþnB22tÞ

and

SABC¼1 ¼
ab:Cab¼1

X
�xAB
ab 2u

� �
�xAB
ab 2u

� � 0.
t

To update S we propose a draw S0 from a Wishart distribution with mean equal to the

current value of S.
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Similarly, the conditional distribution of G is given by

pðGjXA;XBC;u;S;NÞ/ jSþGj
2ðn Aþn B22tÞ=2

exp 2ðnAþnB22tÞtr ðSþGÞ21SABC¼0

� �
=2

� �
£ jSþG=2j

2t=2
exp 2t tr ðSþG=2Þ21SABC¼1

� �
=2

� �
£ jGj

2t=2
exp 2t tr ð2GÞ21DAB

C¼1

� �
=2

� �
pðGÞ

where DAB
C¼1 ¼

P
ab:Cab¼1 d

AB
ab d

AB 0

ab =t. We sequentially update each element gj via a random

walk Metropolis-Hastings step: the new values are proposed from a Gamma distribution

with mean equal to the current value of the chain gj. Both for S and G the shape

parameters of the proposal distributions have been tuned up in terms of acceptance

probability.

Finally, the conditional distribution of N is given by

pðNjXA;XB;C; u;S;GÞ /
nA

t

 !
N 2 nA

nB 2 t

 !,
N 2

N

nB

 !" #

restricted at the set {max (n A, n B) þ 1, N*}: in this case, it is easy to implement a

Gibbs step.

4. Evaluating the Method

In this section we illustrate the performance of the proposed method via simulations. First,

we discuss in detail the posterior analysis relative to a single simulation. Then we look at

the frequentist properties of the Bayesian estimator for the population size N, under

different scenarios.

We have drawn, without replacement, two samples of size n A ¼ n B ¼ 30, from a finite

population with N ¼ 100 units. The true population values are independent draws from a

three-dimensional Gaussian random vector N3(u, S) with u and S given by

u ¼

210

0

10

2
664

3
775 S ¼

10 8 1

8 10 4

1 4 10

2
664

3
775: ð6Þ

Measurement errors in the samples are introduced via the covariance matrix – see

Formula ð1Þ2 Diag ðGÞ ¼ ð0:5; 0:5; 0:5Þ.

In Figure 1 we show the observed values in the two samples. Also, solid and dashed

lines indicate the T ¼ 14 common units between the two samples. Those pairs can

have been classified either as true matches or as false not-matches on the basis of the

matching decision rule. To illustrate this, suppose we decide to declare a pair to be a

match only when the posterior probability P(Cab ¼ 1jX A,X B) . 0.15 (see Tancredi

and Liseo (2011) for a discussion about optimal decision rules for estimating the

matching matrix C). Using this decision rule we have found nine true matches which

are represented, in Figure 1, by solid segments. It is important to stress that the

performance of the method strongly depends on the number of key variables. With a
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larger dimension of key variables we have observed higher true match rates and lower

false not-match rates.

Posterior analysis is based on an MCMC sample of size 105 with a burn-in period equal

to 5 £ 103. The prior distribution for N has been truncated on the set [0, 5000]: the results

were not sensitive to the arbitrary upper bound, since it had never been touched during the

20
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D
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t

N
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5

0
0 1000 3000 5000
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0 5 10 15 20 25

t

1005000300010000 200 300 400 500
N

Fig. 2. Traces and posterior distributions for t and N obtained by a single run of the MCMC algorithm with the

simulated pair of data sets described in Section 4
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 0
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0
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x1

x 2

x 3
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False not-match
False match

Fig. 1. Simulated data sets. Data in A are represented by circles, data in B by crosses. Pairs with a posterior

probability PðCab ¼ 1jXA;XBÞ . 0:15 are declared matches
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simulation. Figure 2 shows traces of the simulations for the main quantities of interest,

namely t and N; to increase the mixing of the chain we consider one draw every 20

iterations. Convergence has been reached quite soon, even starting from a matching

matrix C with all entries set to 0; also, repeating the simulation with different starting

values we obtained identical results. Figure 2 also shows the posterior distributions

of t and N; Figure 3 shows the posterior distributions of all the remaining parameters

in the model. One can notice that the true values of the parameters always lie in regions

of high posterior density.

4.1. Simulation Study

In this section we illustrate the performance of our method via a large-scale simulation

study. We have considered three different frequentist scenarios. In the first scenario,

whose results are reported in Table 1, we have replicated 100 times the simulation

described above; more precisely, we have set N ¼ 100, u, S, as in (6) and G ¼ diag (0.5,

0.5, 0.5). We have considered different sample sizes n A and n B. Specifically, we have

considered the values n A ¼ n B ¼ 20, 50, 80. For each simulated couple of data sets

we have used the MCMC algorithm for approximating the posterior distribution of the
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Fig. 3. Posterior densities for u, S and G obtained by a single run of the MCMC algorithm with the simulated

pair of data sets described Section 4. The vertical lines indicate the true values of the parameters
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model parameters. The second simulation scenario, reported in Table 2, differs from the

previous one mainly in terms of a larger amount of measurement error. In fact we have

set G ¼ diag (2.5, 2.5, 2.5). In the last scenario, reported in Table 3, we have simulated

population data values from a 6-dimensional Normal distribution whose first three

components are independent of the last three ones. Also the two groups of key variables

shared the same mean vector u and the same covariance matrix S, again given by (6).

Although our method can actually be used also for record linkage purposes, here we

report the simulation results having the population size N as our primary parameter of

interest and we have mainly focused on the marginal posterior distribution of N. In each

table we reported the empirical mean of E(NjX A, X B), the empirical mean of the posterior

median Med (NjX A, X B), the coverage of the 95% credible intervals and their mean

length as well.

As one might expect, the larger the measurement error is, the more difficult estimating

N will be. On the other hand, increasing the data information – that is, using a large

number of key variables – will produce more accurate estimates of N; one may also notice

that posterior estimates improve as n A and n B get larger.

5. Discussion

Record linkage techniques and population size estimation pose several interesting

problems both from the methodological and the computational viewpoint. In particular,

from a methodological perspective, the definition itself of a correct statistical model for

representing comparisons among records is still debated.

In this article we have focused on the problem of the estimation of the size of a closed

population when two surveys are available and continuous variables have been recorded.

This situation is not uncommon and, to our knowledge, there are no well-established

methods available in the literature to tackle this problem.

Table 2. Frequentist evaluation of the posterior estimates for N. Each entry is the empirical mean obtained with

100 simulations with n A and n B given in the first column, N ¼ 100, u andS as in (6) and G ¼ diag (2.5, 2.5, 2.5)

n A ¼ n B E(NjX A, X B) Med
(NjX A, X B)

95% interval
coverage

95% interval
length

20 150 75 0.99 803
50 213 130 0.99 894
80 159 116 0.98 448

Table 1. Frequentist evaluation of the posterior estimates for N. Each row summarises data obtained with 100

simulations with nA and nB given in the first column, N ¼ 100, u and S as in (6) and G ¼ diag (0.5, 0.5, 0.5)

n A ¼ n B E(NjX A, X B) Med
(NjX A, X B)

95% interval
coverage

95% interval
length

20 183 111 0.99 811
50 148 117 0.98 351
80 106 103 0.97 54
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Trying to figure out some possible alternative ways, we have implemented the Jaro

approach for linking files, after an arbitrary, although unavoidable, discretization of the

key variables. Then after selecting a given number of matches in the two databases, a

conditional likelihood function can be written for the quantity of interest, N; this likelihood

can be either used alone or combined with a prior to get an alternative Bayesian estimate.

This approach, albeit reasonable, indeed fails to account for matching uncertainty

and, consequently, the standard error of the likelihood estimator of N turns out to be

underreported. Results of a small-scale simulation are reported in Table 4.

The model proposed in this article adopts an integrated approach, already discussed by

Tancredi and Liseo (2011) in the case of categorical key variables. What we consider the

major novelties of our proposal are these:

. The statistical model is built up on the data actually observed: no reduction of the

available information to 0/1 comparisons is introduced.

. The model is able to account for matching uncertainty in the estimation of N. This

point is rather important because it allows a more correct report of the “standard

error” of the estimates.

This article represents one of the first attempts to deal with the problem of linking files in

the presence of continuous variables: many improvements and extensions can be

developed. Our method can be used with any kind of continuous distribution; admittedly,

Table 4. Frequentist evaluation of the posterior estimates for N obtained via Jaro’s approach, after

discretization of each key variable into h classes. Each entry is the mean relative to 100 simulations from our

model. Values of h, nA and nB are given in the first two columns, N ¼ 100, u and S are given by (6) and G ¼ diag

(0.5, 0.5, 0.5)

h n A ¼ n B E(Njy) 95% interval
length

95% interval
coverage

10 20 29 11 0.02
50 59 6 0.02
80 87 3 0.03

20 20 48 58 0.10
50 48 58 0.10
80 88 4 0.14

30 20 47 52 0.14
50 74 30 0.14
80 92 6 0.10

Table 3. Frequentist evaluation of the posterior estimates for N. Each entry is the empirical mean obtained with

100 simulations with nA and nB given in the first column, N ¼ 100. True values were drawn from a multivariate

Normal with six components. The first three components are independent of the other omponents. The two blocks

of variables have mean vector and covariance matrices as in (6); measurement error is modeled via the matrix

G ¼ diag (0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

n A ¼ n B E(NjX A, X B) Med
(NjX A, X B)

95% interval
coverage

95% interval
length

20 165 119 0.97 554
50 213 130 0.96 60
80 101 100 0.95 16
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the Gaussian assumption makes computation much easier to perform and the results easier

to understand. We are currently working on an extension to skewed and heavy-tailed

distributions. Other possible generalizations are related to sampling. One could allow for

different sampling schemes and/or different sampling probabilities among units. In some

other situations, the two databases cannot be considered independent and/or the sample

size should be considered random. All these situations can be easily framed into our

model at a low computational cost. We are currently working on the more challenging

problem of the linkage of more than two lists.
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