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Bayesian Predictive Inference for Multivariate
Sample Surveys

Balgobin Nandram’

Abstract: Multivariate observations are
available from units in a longitudinal two-
stage cluster sample design in which the same
units or different units can be observed within
the same clusters over occasions. The data
from all variables are analyzed simul-
taneously and using the hierarchical Bayesian
multivariate normal linear model, an esti-
mator of a general finite population quantity,
linear in the population values (e.g., change
in finite population mean from one occasion
to another), is constructed. Some properties
of the point estimator are obtained when the
variance components are assumed known.

1. Introduction

Many sample surveys are multivariate and
there is a recognition that the multivariate
nature of these surveys should be taken
into account explicitly. Fuller and Harter
(1987) used a non-Bayesian method to esti-
mate the finite population mean for a small
area assuming a multivariate regression
model with components of variance error
structure. It is becoming popular to use
Bayesian predictive inference for finite
population parameters, especially for prob-
lems such as estimation for small areas
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Numerical methods are used when the
variance components are unknown. We
analyze data on the Patterns of Care
Studies, two-stage cluster samples of cancer
patients each having two scores (bivariate)
on two occasions. In particular, we describe
the numerical computation of the finite
population means (and changes in these
means over the two occasions) of the two
scores simultaneously.

Key words: Deleted residuals; Gibbs
sampler; longitudinal; mean squared error;
re-transformation; two-stage sampling.

(Dempster and Raghunathan 1987). Sed-
ransk and Malec (1985), Calvin and Sed-
ransk (1991) and Nandram and Sedransk
(1993) used hierarchical Bayesian normal
linear models and showed, with examples,
that such assumptions are consistent with
data from some typical multi-stage cluster
sample designs. Nandram and Sedransk
(1993) extended the work of Calvin and
Sedransk (1991) to cover longitudinal
sample surveys. They emphasized a two-

*stage cluster sample design with univariate

data and two occasions.

We emphasize multivariate surveys in
which several characteristics are measured
on the same unit. In addition, we can
accommodate many longitudinal surveys
by treating the responses on the same unit
over several occasions as one multivariate
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observation. While our models are very
flexible, and any number of occasions can
be accommodated, in practice for repeated
surveys conducted on many occasions, one
might still consider a time series approach.
Autoregressive models (e.g., Markovian)
or the Kalman filter are usually the choice.
However, such models are inappropriate
for a small number of occasions (e.g., two
or three). Moreover, for two-stage cluster
samples within occasions our models apply
when all clusters remain the same over all
occasions. In general, from one occasion
to another, the units in a particular cluster
can be different, they can remain the
same, or a rotation scheme can be followed.
Also some clusters can be rotated out of
the sample. Cochran (1977, ch. 12)
described various patterns and methods
for repeated sampling of the same popu-
lation.

The Patterns of Care Studies (PCS) are a
set of investigations studying the quality
of treatment received by cancer patients
whose primary treatment modality is
radiation therapy. The principal statistical
objectives of the PCS are assessment of the
current status of radiation therapy care
in the United States and assessment of
changes over time. Data were collected in
three different years (1973, 1978, 1983)
and for several different sites (e.g., cervix,
larynx, prostate), but only data from 1978
and 1983 are available. The variables
under study relate to the processes involved
in radiation therapy practice, and include
indicators of the quality of both the pre-
treatment evaluation and the planning and
actual delivery of therapy. To measure the
completeness of the pretreatment evalua-
tion and the therapy planning and monitor-
ing, the “workup” and “‘treatment” scores
were set up. The larger the score, the closer
the patient’s care conforms to acceptable
standards of care. Each score lies in the
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interval (0,1) and the bivariate data on
each patient are complete.

Let Y denote the vector of population
values and suppose interest is on w(Y)
(e.g., a finite population mean). To perform
a Bayesian predictive inference, the values Y
(or after a transformation the transformed
values Z) follow a standard hierarchical
normal linear model. However, to make infer-
ence about w(Y), one must re-transform Z to
the original scale, a problem of current inter-
est in Bayesian predictive inference. Calvin
and Sedransk (1991) used a first order Taylor
series approximation and also suggested an
alternative approximation to make inference
on the original scale. Nandram and Sedransk
(1993) used a similar approximation. One
feature of the present research is to show
that inference can be made on the original
scale without using such uncertain approxi-
mations.

While the hierarchical Bayesian normal
linear model (Lindley and Smith 1972) is
appropriate for modeling multivariate
sample surveys, the problem of unknown
variance components is intractable. It is
easy to incorporate the multivariate nature
into the model, but the analysis with
unknown covariance matrices, having con-
ditional distributions such as the Wishart,
is difficult. We provide a simple solution
to this problem by using the Gibbs sampler
algorithm (Gelfand and Smith 1990).

The objectives of this paper are both to
describe and to apply methodology for
Bayesian predictive inference that is appro-
priate for many multivariate and longi-
tudinal sample surveys. In Section 2, after
describing a model that might be appropri-
ate for such surveys, we obtain the pos-
terior distribution of a general linear
function of the finite population values
under the assumption that variance com-
ponents are known. We study the proper-
ties of the posterior mean and show that it
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has an optimality property. These results
provide insight about the behavior of the
models for the more complicated unknown
variance case. In Section 3, using the
Patterns of Care Studies (PCS) data we
describe the computations involved to
obtain the posterior distributions of the
finite population quantities when there are
unknown variance components. Section 4
has concluding remarks.

2. Bayesian Predictive Inference

In this section we consider inference about
w, a set of general linear functions of
the values of units in a finite population.
(Inference for nonlinear functions can be
obtained using the sampling based methods
in Section 3.) We present a probabilistic
specification appropriate for many longi-
tudinal, multi-stage cluster sample designs
where there are multivariate observations.
In the PCS many characteristics are
measured on each patient, and there
are essentially two occasions. With
known variance components we obtain
the Bayes estimator of w under a quadratic
loss function and study its properties in
Theorem 1.

2.1. Modeling finite population values

Assume that the survey is carried out on q
occasions, and that on the jth occasion
there are Nj clusters in the population,
J=1,2,...,q. There are My, units in the
kth cluster on the jth occasion, k =
1,2,...,Nj, and the number of variables
measured for each unit is p. We accommo-
date changes in the population of clusters
by taking Mj, =0 if cluster k is not a
member of the population on occasion j.
(Note that clusters are not nested within
occasions.) Let Y denote the M x 1 vector
of values for all units in the population

where M =p219=12kN=1Mjk and N is the
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total number of distinct clusters in the
population over all occasions.

Let Y;jx, denote the value of Y for vari-
able i for the /th unit in the kth cluster on the
jth occasion, and ij[ = (Yljkl’ e aijkf)/9
the vector of values for unit (jk¢) where
{= la""Mjk’ k= 1,...,Nandj= 1,...,
q. For example, for the PCS we have p = 2,
corresponding to the workup and treatment
scores. Also, let

Yie = (Y- Yiem,,)s
Yi= (Y- You)
and
Y= (Y-, YN

Denoting the mean vector of a unit in
cluster k on the jth occasion by piy,

Hik = (Mjk»m,ﬂpjk)/,

Hx = (L/lk, e ,lj/qk),
and

w= (s )
Note that pjy is the same for all units in
cluster k on the jth occasion. Also let Xjy
(p x p), not necessarily diagonal, be the
covariance matrix of a unit in cluster k on
the jth occasion. Then, conditional on p;,
and ¥, we assume that

Yikt, Yikas-- -5 YikMm,, [ Bk

i=12,...,q; k=1,2,...,N. Letting
cov(Y|p,X) =%, ¥ can be chosen to
represent the desired covariance structure,
for example, between Yji, and Yj, and
between Yji, and Yji,. In matrix nota-
tion, the preceding specification of the dis-
tribution of Y conditional on g and ¥ is
given by

YIH"E NN(AI/:.L) E) (21)
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where A; is the matrix expressing the
relationship between Y and p. (Note that
A, a matrix of zeros and ones, picks out
the appropriate elements of 1.)

For the second stage of the hierarchical
model it is assumed that

HlaH’Z""’HNlQ,A l,l,d N(Q’A)

where A will typically include correlation
over both occasions and variables. If cluster
k is in the population on only qy occasions
then, independently fork =1,...,N

pi |0k, Ax ~ N(0x, Ay)

where 6, and A, are the corresponding
components of § and A. Summarizing, the
second stage of the hierarchical model is

116,K ~ N(A9,K) (2.2)

where A is the matrix expressing the
relationship between p and 6; and K =
diag(Ay, A,,...,Ay). (Note that, like Ay,
A picks out the appropriate elements of §.)

At the last stage a noninformative refer-
ence prior on @ is specified; i.e.,

p(6) = constant. (2.3)

From (1.1) and (1.2), letting Q = (%, K),
E(Y[0,Q) = A0

where A* = AjA, and
var(Y|9,Q) = AJKA] +Z = V.

Since ¥ is positive definite, V is positive
definite.

Let n be the total number of distinct
clusters sampled over the q occasions, and
mj, the number of units sampled from
cluster k on occasion j. If cluster k’is not
sampled on occasion j or cluster k is not in
the population on occasion j, mj, = 0. It is
assumed that the multivariate data for
each sampled unit are complete. More-
over, it is assumed that the sample design
is not informative. Specifically, letting S be
the set of all possible samples, the probabil-
ity of selecting sample s € S,p, does not
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depend on Y, and if p; depends on design
variables they are assumed to be known
for all units in the population. For weaker
conditions and further discussion see Sugden
and Smith (1984). Finally, it is assumed
that any lack of knowledge about the labels
associated with the units can be ignored; see
Scott and Smith (1973).

We wish to make inferences about w, a
(t x 1) vector of finite population par-
ameters, where w = L' Y with L an (M x t)
matrix. (Note that t = XP_, t; where t; is
the number of different finite population
quantities considered for variable i.) For
the PCS example one might take t =6,
t; =3 and t, =3 corresponding to the
population means on occasions 1 and 2
and the difference between the two popula-
tion means for the two scores. Partitioning
Y and L into sampled (s) and nonsampled
(ns) parts we have

and

w= Lls Y+ LlnsYns . (2.4)

That is, w consists of two quantities contain-
ing (a) sampled values and (b) nonsampled
values. Thus, the quantity in (a) is known
and the quantity in (b) is to be obtained
by Bayesian predictive inference. (Note
that Y, is a m x 1 vector of sampled values
where

q
m=p» Y mj)
j=1 kes
Like Y and L for posterior inference
about w in (2.4) we partition all vectors
and matrices into sampled (s) and non-
sampled (ns) parts
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! .
Vs, ns . Vns

Letting qt = pZJkN=1 dx, A1 isan M x qp
matrix and A is a qt X qp matrix. Since
at least one cluster is sampled on each
occasion A} has full column rank. We
present E(w|Y,,Q) and var(w|Y,,Q) in
Appendix A.

2.2.  Properties of the Bayes estimator

In this section we consider the general linear
estimator of w, &, where

Ws = GS/YS +Cs. (25)

In (2.5) G is an m x t matrix of constants

and C; is a t x 1 vector of constants; G

and C change from sample to sample.
Assuming the quadratic loss function

(2.6)

with H a t x t positive definite matrix, the
Bayes estimator of w, denoted by &%, is
E(w|Ys, ). In this section we evaluate the
Bayes estimator, @5, assuming (2.1) and
(2.2) but without the normality assumptions.
We assume § and (2 are fixed throughout.

Using the form of E(w|Ys, Q) in Appen-
dix A, after considerable algebraic manipu-
lation, one may write

A ’
‘,‘.)’; = BsYs

loss(ws,w) = (@ — @)’H(@s )

(2.7)
where
Bi =L+ Ly Vi 1 V!
+ Lins(A%s — VingVi'AY)
x (AYVIIAYD)TTAY VL

Observe that &5 is a member of the general
class of linear estimators given by (2.5)
with G, = B and C, = 0.
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The risk (in @) under the quadratic loss
function (2.6) is given by Ej scs{(&s — w)’
H(@; — w)} where the expectation is taken
over both the randomization distribution
and the distribution specified by (2.1) and
(2.2), but without the normality assump-
tions. Since the sample design is assumed
to be not informative, it is easy to show that

EQ,SES{(‘"‘:}S - ‘.‘:’)/H(@s - ‘.’:’)}
=) "p.{trace(D;H) + giHg,} (2.8)

seS
where

gs =Eg(@s —w) = (GAAT-L'A")§ + C
and

D, = (Gs - Ls)le(Gs - Ls)

+ L/nsVnsLns - (Gs - Ls)/Vs,nsLns
- LlnsVns,s(Gs - Ls)'
(Note that the expectation in (2.8) depends
on @ only through gs-)

Under the model given by (2.1) and (2.2),
with loss function (2.6) but without the nor-
mality assumptions, it can be shown that &
in (2.5) has bounded risk (in §) if, and only if

GAL=L'A" (2.9)
for all s €S with p; > 0. Moreover, the
bounded risk of @, is

EQ,SES{(@S - ‘.‘.)),H(@s - ‘5:’)}
=Y piftrace(HD;) + C{HC,}.

seS

(2.10)

In addition, it is not difficult to show that
the Bayes estimator, ¢; in (2.7), is also
design unbiased; see Cassel, Sdrndal and
Wretman (1977, ch. 4).

Next we state Theorem 1.

Theorem 1

Assume for fixed g the specifications in
(2.1) and (2.2) without normality. Then,
for the quadratic loss function (2.6), in the
class of linear estimators of w, (2.5), with
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bounded risk (in #), the Bayes estimator in
(2.7) has minimal risk ¥, pstrace(HDy),
where D = vary(B;Y; —L'Y) and p, >0
for all s € S. )

Proof: See Appendix B.

The practical import of this theorem is
twofold. First, a practitioner should be
more confident about using &; when, as
will often be the case, there is the belief
that the general structure in (2.1) and (2.2)
is appropriate but the normality assump-
tions are more tenuous. Examples of this
general structure are in Malec and Sed-
ransk (1985) and Nandram and Sedransk
(1993). Second, it has been shown that the
Bayes estimator, @;, has an optimal fre-
quentist property (i.e., minimal bounded
mean squared error). This should make
the use of @i more attractive to statisticians
preferring a frequentist approach to inference.

We note that Theorem 1 generalizes simi-
lar theorems proved by Scott and Smith
(1969), Royall (1976), and Malec and
Sedransk (1985). In addition, using a
mixed linear model with many stages for
univariate data, Datta and Ghosh (1991)
assumed that the error variance is unknown
but all variance ratios are known, and
proved that the Bayes estimator is the best
linear unbiased predictor of a finite popu-
lation quantity linear in the population
values. However, realistic analytical results
for the unknown variance case are very
difficult to obtain for multivariate data
models.

3. Methodology for Bivariate Data with
Two Occasions

In this section we describe the methodology
necessary to analyze the data from the PCS.
We present the main features of the PCS in
Section 3.1. Since there are no analytical
results when the variance components are
unknown, the decision-theoretic results in
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Section 2 give insight into the performance
of the estimators obtained in this section.

3.1. Main features of PCS

An important feature of the PCS is that on
each occasion the set of clusters (radiation
therapy facilities) is the same, but the set
of units (patients) is completely different.
(For details about the PCS see Calvin and
Sedransk 1991). This trait is shared by many
large surveys such as the Hospital Discharge
Survey (conducted annually by the National
Center for Health Statistics). Here we con-
sider the PCS on two occasions, 1978 and
1983, and patients with cervix cancer. The
populations of radiation therapy facilities
are essentially the same in the two years.

A description of the design is in order. A
sample of n; of the N facilities was taken on
the first occasion. Then a sample of my, of
the M;, patients was taken from the kth
sampled facility. On the second occasion a
subsample of n;, facilities was selected
from the facilities sampled on the first
occasion together with a sample of n, of
the facilities not selected on the first
occasion. Then a sample of size m,y of the
M,, patients was taken from the kth
sampled facility. Our population is the set
of N = 895 facilities in existence in both
the 1978 and 1983 surveys. (There are few
births and deaths.) The number of facilities
sampled only in 1978 is 47, the number
sampled in both 1978 and 1983 is 24; and
the number sampled only in 1983 is 21.
Thus, a sample of size n = 92 facilities was
taken. The first, second and third quartile
of the distribution of facility sizes in 1978
are 3, 8, and 11, respectively and in 1983
they are 4, 7, and 14. The corresponding
quartiles for the sample sizes are 2, 6, and
8 in 1978 and in 1983 they are 3, 5, and 5.

To satisfy the principal objectives of
providing estimates of the current status of
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quality of care and changes over time, point
estimates and measures of variability are
required for the associated finite popu-
lation quantities. Nandram and Sedransk
(1993) used models for the workup and
treatment scores separately. We extend
their models to accommodate the workup
and treatment scores simultaneously. (That
is, we treat the PCS data as arising from a
two-stage survey with bivariate responses
on two occasions.)

3.2. Modeling the scores

We note that the bivariate scores are not
normally distributed. Taking each score
separately but the data on both occasions
simultaneously, Nandram and Sedransk
(1993) found in their models that after a
transformation the scores are approxi-
mately normally distributed. They used a
squared transformation for the workup
scores and a cubed transformation for the
treatment scores. They also found that
the transformed scores are approximately
homogeneous across facilities.

To maintain the spirit of the general dis-
cussion in Section 2, we entertain the follow-
ing specifications: Let Yix, = (Yijke, Yajke)'
be the vector of scores of patient ¢ in
facility k on occasion j (1: workup; 2: treat-
ment; j=1,2, k=1,2,...,N and £=1,
2, ey M]k) Let Ijkl = (lekla T2jkl), where
Tijke = 81" (Yijxe) and Taje = g5' (Yajue)-
(We start with g7!(x) =x? and g3'(x) =
x>.) Then

Tits - - » Timy, [ k0 B 11.d N(pjx, j).

(3.1
Note that each component of Tj, is
restricted to be in (0,1). (That is, the
random variables in (3.1) have a common
truncated multivariate normal distribution.)
Now letting py = (pix, prx) and p=
(11, 2.+, pn) then

Hl)/'!j%’/lee’Flld N(Q,A) (32)
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Finally, letting Q= (¥,,%,,A) for the
parameters of ¥ = (4, Q) we assume

p(¥) |25, 2| A2, (3.3)

We make inferences about the change in
the finite population mean from 1978 to
1983 for each of the two variables, workup
and treatment score, but we consider these
two variables simultaneously. The two
populations are those patients having
cancer of the cervix first diagnosed in 1978
and 1983. Thus the quantities of interest
are the components of the vector w where

‘.‘,)={wij’ i= 1,2, .]= 1,2

W33 = Wiy — W1, Wag =Wy — Wy}

and
N Mj N -1
wij':ZZYijkl{ Mjk} ij=1,2.
k=1¢=1 k=1

(3.4)

Using a first order Taylor’s series expansion
Nandram and Sedransk (1993) approxi-
mated the posterior distribution of w given
the variance components by a normal distri-
bution. Instead we use the Gibbs sampler
and a bootstrap method to fill in the non-
sampled value of Y after re-transforming
TtoY.

We assess the entire model by using a
complete Bayesian cross validation method
to study “deleted” residuals and predic-
tors; see Gelfand, Dey and Chang (1992).
Let Tjy, be the vector of all transformed
values for patient £ in facility k on occasion
j and let T(;., be the vector of all trans-
formed values excluding those for patient ¢
in facility k on occasion j. Now letting

E[Tjke| Tikg)] = €jke
var|Tixe| (i) = Vi
and

-1 /
Vike = SjkeSike
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the Cholesky’s decomposition of the 2 x 2
matrix ij&, we define the standardized
deleted residuals for patient £ in facility k
on occasion j as

Rijke = Sjke(Ijiuz — €jke)- (3.5)

We use the Gibbs sampler to compute
Rk in (3.5) in a manner similar to that out-
lined by Gelfand et al. (1992). For example,
we compute

E(Tijkel T (jkey)
= Eq|T; o {E(Tike| Tik (o), ©)}

where Tjy( is the vector of values for all
patients in facility k on occasion j deleting
the values of patient £. Given Tjy(, and ¥
the components of Tj, have a multivariate
normal distribution which is omitted in the
interest of space. The outer expectation in
(3.6) is computed using weights as in Gelfand
et al. (1992).

If ¥,,%X, and A do not vary too much,
then the components of Ry, in (3.5) are

(3.6)

MHWEQHM(D,{:
-
&
¥
e
Pt el
i,
e, LT
-
?"1
o
- 5

+
-+
.

(a) Predictors

Fig. 1.
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approximately independent standard normal
random variables. We plotted each com-
ponent of Rjy, versus the corresponding
component of €ji, to obtain a residual plot
analogous to those used by Waternaux,
Laird and Ware (1989). We also used a
normal probability plot of R j, versus normal
scores. Figure 1(a) shows the residual plot
and Figure 1(b) the normal probability
plot. The plots show eleven patients with
absolute residual values larger than 3.0.
Omitting these patients shows only a minor
improvement in these plots. Nine of the
patients had at least one of the workup and
treatment scores equal to one. As is
expected, the large absolute residuals are
associated with scores much different from
others within a facility. (There are 1274
points in each of these plots.) Other transfor-
mations (including power) did not fit as well
as the square for the workup and cube for the
treatment scores. This is consistent with
Sedransk and Malec (1985) who fitted

T I ==

R addnaaa e S e A sty sy
ST S S AN S R A S
(b)

Nornal Scores

(a) Plot of deleted residuals versus deleted predictors. (b) Normal probability plot of

deleted residuals: + + + observed values; — — — expected 45 degrees line; — —— 95% point-

wise critical bands
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many different transformations to the PCS
data for the simpler models discussed by
Malec and Sedransk (1985).

3.3. Inference for finite population
quantities

We proceed in two stages. First we run the
Gibbs sampler (Gelfand and Smith 1990)
on the n = 92 sampled facilities since there
are 895 facilities in the survey on both
occasions. Then using the iterates from the
Gibbs sampler, we fill in the nonsampled
values of Y.

We used the Gibbs sampler to obtain
iterates from the unconditional posterior
distribution of W. Thus we next describe
the conditional posterior distributions
needed for the Gibbs sampler.

Let s; denote the set of facilities sampled
on occasion j, j=1,2. Also let Ty =
(Tix, Tox) and Tj = (Tyjx, Toj)’ where

mjk

Tijk _ m;ﬁ; Tijkf; ke §;

; else

,j=1,2k=1,2,... N. Let T, denote the
vector of transformed sampled values and

{ [mlszl 0
Ak _ 0 m2k22‘1

kESl

(3.7)

o

0, else.

First, p|T,, ¥ are independent 4-variate
normal vectors with

Bl |Ts, ¥] = Ay Ti + (I- Ay)f
and

covlp| T, W] = (I - A)A (3.8)

where I is the 4 x 4 identity matrix. Second,
|Ts, p, 2 is a 4-variate normal vector with

n
E[0|T, 1, Q=0 py =40
k=1
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and
cov[f| Ty, ) =07 A, (3.9)
Third,
ST, 0,1, A ~ Wad > my,
kESj
-1
mjk
{Z (Yike — i) (Yike — ij)'} }
kes; (=1
(3.10)

and

A_l |Ista21a22

n -1
~W4{n, {Z(gk — i) (px — @)’} }
k=1

(3.11)

where W;(v,A) denotes a p x p matrix
Wishart distribution with degrees of freedom
v and parameter A.

We ran the Gibbs sampler to obtain
“good” iterates of W. Let p = (g, pys)’ With
Hs = (Hia/]jéa ’B‘;l)/ and  fpigs = (/:!’:1-}-1’
Lht2,---,4N) Where pg denotes the vector
of population means of all clusters sampled

-1 _
0 m2k22_1

or ke€s,

on at least one occasion. Starting with method
of moments estimates of 6, ¥;,¥, and A the
Gibbs sampler proceeds by drawing p, from
(3.8), 9 from (3.9), ¥; and ¥, from (3.10),
and A from (3.11). Using the most recent
values for the requisite parameters at each
iteration, the current parameters are drawn
from the respective conditional posterior
distributions, and the whole procedure is
repeated until convergence. (Note that there
are 388 parameters in the Gibbs sampler; one
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iterate consists of yug and the components
of ¥)

We experienced difficulties in the conver-
gence of the Gibbs sampler with long-term
dependence among iterates especially for
components of § and A. We therefore,
followed the advice of Zeger and Karim
(1991, sec. 5.4) on the optimization of the
algorithm. To obtain a sample of 1000
values of ¥ we chose, after initial con-
vergence (= 1000 iterates), every fiftieth
observation from continued runs of the
Gibbs sampler. (The estimated autocorre-
lation function indicated that taking every
fiftieth observation was sufficient to remove
the dependence between successive iterates.)
The total of about 51000 iterate values
yielded 1000 values of U. We assessed
convergence graphically. We plotted the
estimated univariate densities for all com-
ponents of Q using the first 200, 400, 600,
800, 1000 iterates. For the off-diagonal
elements of the covariance matrices,
31,%, and A, we used nonparametric den-
sity estimation (Silverman 1986). The last
three sets of iterates exhibit no significant
change. Thus, we use the 1000 virtually
independent iterates for future compu-
tations (e.g., diagnostics and finite popu-
lation posterior distributions).

At the second stage we observe

[Ins,/;’ja Qa 2122’ AIIS] = [Ins |/;{’1 Ela 22]
x (4] T,, Y[0|T,) (3.12)

where [U| V] denotes the conditional distri-
bution of U given V. (Note that the break-
down in (3.12) is essential because N > n
and the Gibbs sampler is run only with
Ks). We use (3.12) to obtain realizations of
the vector Y = (Y{,Y;) of population
values. First, draw one iterat¢ from the
empirical distribution of [¥|T,] obtained
from the Gibbs sampler. (That is, one
iterate is drawn at random from the 1000
“good” iterates and the components of ¥
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are stripped off.) Second, draw a vector y
from (3.8). Third, draw a vector T, from
(31) Finally, llSiIlg Yijkl = gi(Tiij)i = 1, 2
for workup and treatment scores we obtain
a realization of Y@ = ('Y, YL,)'. The entire
procedure is repeated Q times to obtain a
random sample Y(l), .. ,Y(Q) which in turn
provides a random sample w(¥, W@, ..., @
of Q values of w in (3.4). Then as estimates
of the posterior mean and variance of w we
simply use

W€

Q
Ew|T)~Q ') v =
q=1

and

’

var(w|Ts) -@).

Q
Z (@) _
i (3.13)

We also evaluated (3.13) for the first t
iterates (after initial convergence), t = 200,
400, 600, 800, 1000, for the posterior means
and standard deviations of the elements of
w. As expected, convergence for E(w;|Ts)
and {var(w1]|Ts)}1/21 j=1,2 was much
more rapid than for the components of W.

We present in Table 1(a) for each variable
the values of the estimated posterior means
and standard deviations obtained from
(3.13), for the finite population means for

Table la. Estimates of finite population
means on two occasions for workup and treat-
ment scores

1983

Quantity 1978 Change

i. Workup

Mean 0.7598 0.8201 0.0623
Standard 0.0115 0.0098 0.0151
Error

ii. Treatment

Mean 0.7480 0.7721 0.0241
Standard 0.0175 0.0152 0.0213
Error

Note: The means and standard errors are
obtained from (3.13).
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.10 .05 0.00 0.05 0.0 0.15 0.0
Change

Scores: T Workig; T Treatment

Fig. 2. Posterior densities of the change in
finite population mean

1978 and 1983 and for the difference in finite
population means. In Table 1(a), we see a
substantial improvement in the quality of
care as measured by the quality of the
workup performed, but no improvement
in the quality of treatment. This result is
much tighter than that given by Nandram
and Sedransk (1993). Based on the 1000
“good” iterates of the Gibbs sampler we
also obtain a density estimate for the
change in finite population mean. A
density estimator with a normal kernel
was used with window width suggested by
Silverman (1986, p. 48). Figure 2 confirms
that the increase in quality of care is sub-
stantial with respect to workup but not
treatment.

Finally, we observe that the effort on the
multivariate methodology is worthwhile as
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there are correlations among the com-
ponents of wjj,i,j=1,2; see Table 1(b).
For example, the estimated posterior corre-
lation between wy; and wy, is 0.4091. This is
expected as there was some similarity
between the quality of care for workup
and treatment in 1978.

4. Concluding Remarks

It is possible to develop reasonable models
for complex sample surveys which are both
multivariate and longitudinal. The use of
resampling methods such as the Gibbs
sampler makes it possible to avoid many
approximations and to provide inferences
that include all known sources of variation.

We have extended the work of Calvin and
Sedransk (1991) and Nandram and Sedransk
(1993) in several ways. First, our method is
multivariate not univariate. Second, even
for these complex models we avoid the use
of Taylor’s series approximation. Third, our
diagnostic procedure is completely Bayesian
and checks the entire model simultaneously,
not parts of it. Fourth, our method is
sampling based throughout and thus it
avoids the use of complicated formulas.

In addition to showing that the model
provides a reasonable fit, Theorem 1 also
adds credence to the hierarchical Bayesian
linear model for applications to many survey
problems. Moreover, Theorem 1 extends
results in Malec and Sedransk (1985) in
two directions, multivariate and longitudi-
nal. One may easily extend Theorem 1 to
accommodate models appropriate for
many situations where multi-stage cluster
sampling is used; see, for example, Malec
and Sedransk (1985).

Table 1b.  Estimates of correlation of w;, i,j = 1,2

Pair 11:12 11:21

11:22

12:21 12:22 21:22

Correlation 0.4091 0.0133

0.0092

0.0255 0.1507 —0.1465

Note: w;j, i, j = 1,2, are given by (3.4); correlations are obtained from (3.13).
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One area for further research is with
respect to the transformation chosen. It is
desirable to incorporate the uncertainty in
the choice of the transformation. When
uncertainty in a transformation is built
into a model, the variability of another esti-
mator (e.g., an estimator of a finite popu-
lation mean) tends to be inflated; see, for
example, Carroll and Ruppert (1981).

Appendix
Appendix A: Posterior Moments of w
First,
E(w|Ys, Q) = LY, + LyE(Yas | Yo, )
and
var(w|Ys, Q) = Lilsvar(Yns [Ys, Q)Lns-
(A.1)

Under the model specified by (2.1), (2.2) and
(2.3), and using results in Lindley and Smith
(1972)

E(p|Ys, Q) = (var(u|Y, Q)AL T Y,
(A.2)

and
var(p|Y,, Q) = {A 2 A+ K1}
x {I+K'A[A'K™'A - A'K™!
x [A\SA+ KK TATIAK !
x [ALETA+ KT (A.3)
Thus, using (A.2) and (A.3),

B(Yus|Ys, @) = Eypy, (B(Yas | Y5, 1, 2))
=[Ap — Zpe s Z5 A X E(1]Ys, Q)
+Z0es D5 Ys

and

var(Yos| Yo, @) = (Zns — Zins T5' i n)
+ (Aps — E'S,DSES_IAS)Var(MYS,Q)

X (Ans — DensTi ' Ay)
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Appendix B: Sketch of Proof of Theorem 1

By (2.10), for any linear estimator ¢ =
G.Y, + C, with bounded risk (in 9),

EQ,SES{(@S - ‘,‘!),H(@s -w)}
= 3" pftrace(HD,) + CIHC,} (B.1)

seS
where Dy = vary(G;Y, =L'Y).
Now D, may be rewritten as

D =vary(B{Y, - L'Y)
+ varg((Gs — By) Y,) + U+ U’
(B.2)
where
U =covy[BsYs —L'Y, (G — By)' Y]

It is easy to show that U = [(B; — L)' V,—
L'V ns)(Gs — By). Using the definition of
B, in (2.7), and applying (2.9) to both
and &3, it follows that U = 0. Then, from
(B.1) and (B.2)

Epses{(@s — w)H(ds —w)}
= Egses{(@ — ) H(@ — )}
+ Zps[trace{H vary(G, — B,) Y}

seS

+CHC]. (B.3)

The remainder of the proof consists of
showing that since p; > 0 for all s € S the
second term on the right side of (B.3) is
(a) nonnegative and (b) equal to zero if, and
only if, G = By and C; = 0. Thus, the only
linear estimator with minimal bounded risk
(in @) is the Bayes estimator, ¢ = B}Y,, in
2.7.
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