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Outputs: The Shortcomings of Current Approaches

Paul Williamson1

Current assessments of the effect of disclosure control lack rigour and are too far removed
from the real implications for user analyses. This article uses a case study to illustrate these
shortcomings and suggest a remedy. The proposed solution has three main components. First,
the use of a set of benchmark counts providing representative population and geographical
coverage. Second, consideration of the effect of cell adjustment not only upon counts, but also
upon rates derived from them. And third, the use of more transparent statistical summary
measures, such as indicative confidence intervals. The benchmark counts and benchmarking
software used in the writing of this article have been placed in the public domain, in order to
encourage the wider adoption of the proposed evaluation strategy. The general approach
outlined, however, could be pursued independently of the use of either.
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1. Measuring the Effect of Cell Adjustment

Within statistical agencies the need to protect respondent confidentiality is a given, almost

invariably backed by national statute, and necessitates implementation of a range of

statistical disclosure controls. A clear distinction may be made between those controls

focusing upon issues of table layout (dimensionality; variable banding; geographical unit;

population threshold), and those which involve perturbation of the underlying data (e.g.,

pretabulation record swapping and noise addition; post-tabulation noise addition, count

rounding and cell suppression). In this article the focus is upon the implications of data

perturbation, of whatever kind, for user analyses. A general review of disclosure control

methods and their implementation is provided by FCSM (1994), whilst readers interested

in the most recent developments in tabular protection are referred to, inter alia, Cox and

Kelly (2003), Giessing (2003), Dandekar (2004), Fienberg and McIntyre (2005) and

Salazar-Gonzalez (2005). Methods of assessing the associated risks of disclosure are

similarly discussed elsewhere, by authors including Cox (2001), Duncan et al. (2001),

Elliot (2001) and Shlomo (2005).
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The initial stimulus for this article was a user consultation exercise conducted by the

England and Wales Office for National Statistics (ONS) in the run-up to the 2001 UK

Census. Users were offered a choice of two alternative cell rounding approaches (ONS

2002). The first, random rounding of all cell counts, interior and marginal, to a neighbouring

multiple of 3, was modelled on the system implemented by Statistics New Zealand

(Statistics New Zealand 2005). The second, based on an alternative approach adopted by the

Australian Bureau of Statistics (ABS 1997), and described by ONS as Small Cell

Adjustment, involved the random rounding of interior table counts of 1 and 2 to either 0 or 3,

with table marginals then being recalculated to fit the sum, post-rounding, of the interior

counts. Surprisingly, no formal evaluation of the relative merits of either system exists, at

least in print. Instead, to guide their choice users were provided with a small example set of

perturbed tables. Different tables, covering different geographical areas, were released for

each method, somewhat hindering direct comparison; a step taken in order to safeguard the

precise details of disclosure control implementation. For the same reason, broad guidance

on the 95% confidence intervals associated with the summation of 5, 10, and 20 modified

cells was released, but for random rounding only. As ONS acknowledged at the time, this

information was inadequate to support users in making a truly informed choice.

Set against this backdrop, the aim of this article is to outline a new strategy for

evaluating the effect of alternative disclosure control methods that is simultaneously far

more wide-ranging in scope and far more directly user-relevant. Importantly, the strategy

proposed would allow statistical agencies and their user communities to make better

informed trade-offs between data utility and data protection, whilst still allowing statistical

agencies to avoid releasing disclosive information about the underlying cell adjustment

methodologies involved.

The article is structured as follows. The next section briefly surveys the main measures of

cell adjustment effect found in the literature. A discussion highlights the ways in which all of

them fail to adequately assess the effect of cell adjustment in the context of the real-world

situations faced by users. As a result an alternative approach is proposed, that involves

applying a series of user-relevant summary measures to a benchmark dataset, containing a

range of geographically representative counts and, crucially, rates. Section 3 describes the

creation of such a benchmark dataset. This dataset is used in Section 4 as the basis for

revisiting the UK cell adjustment debate. The resulting evaluation graphically illustrates the

shortcomings of existing approaches, and serves to underline the importance of placing

statistical assessments of cell adjustment in a real-world context. Section 5 develops the

argument further, explicitly illustrating the place, table and subgroup specific effect of cell

adjustment. On the strength of these results a final section summarises the case for a more

rigorous evaluation approach based upon use of benchmark data. The article concludes with

a brief discussion of two obstacles to the benchmarking strategy proposed: the provision of a

benchmark dataset, and the computational challenge posed. Potential solutions are

proposed in the form of a public domain benchmark dataset and evaluation software suite.

2. Existing Evaluation Approaches and Their Shortcomings

Existing debates over the choice of methods for evaluating the effects of disclosure control

focus principally on the measure of data utility to be used. Proposed measures of note are
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listed in Table 1. All summarise in some way, at a tabular level, the difference between

pre- and post-adjustment cell counts. Their great variety reflects the difficulty of

simultaneously capturing in one measure both the absolute and relative effects of cell

adjustment. This problem is well-known. A change of 2 in the value of a cell count is small

in absolute terms, but might be either trivial or highly significant in relative terms,

depending on whether the preadjustment count was 1 or 1,000. Less widely

acknowledged, the problems of providing a satisfactory summary measure are exacerbated

when the sums of the pre- and post-adjustment counts differ significantly (as can arise, for

example, through Small Cell Adjustment). In a review of a number of leading candidates

Voas and Williamson (2001) concluded by expressing a preference for the sum of squared

Z-scores, a modified version of which, Zm, can be used when appropriate to make due

allowance for the possibility of differing pre-and post-adjustment totals. Other potentially

interesting approaches include those outlined by Chambers (2001) and Duncan et al.

(2001), although both have significantly higher computational overheads. Of particular

significance for this article, however, is that current applications of all of these measures

suffer from four major shortcomings.

First and foremost, as inspection of any of the studies listed in Table 1 will reveal,

attention is paid only to the direct effect of disclosure control upon cell counts. The

“indirect” effect of these modified cell counts upon typical user analyses, including

aggregating counts across subgroups and geographical areas, calculating rates, ranking

areas and undertaking ecological correlations and regressions, remain unconsidered.

Second, none of the measures listed in Table 1 is translatable into a direct and user-

friendly indication of the likely effect of cell adjustment upon a typical user analysis.

For these purposes measures such as the confidence intervals associated with post-

adjustment counts and rates would arguably be more helpful. Third, insufficient

attention has been paid to the effects of cell adjustment upon marginal table cell

counts. Yet cell adjustment regimes can treat marginal cells in markedly different

ways, ranging from independent rounding to accumulation of independently perturbed

interior counts. Fourth, existing assessments of cell adjustment methods appear to

focus almost invariably upon narrow and potentially biased selections of tables, places

and population subgroups. Yet the effect of cell adjustment, particularly for rate-based

analyses, is clearly table-, place- and population subgroup-specific.

Gauging the extent to which the identifiable shortcomings in published studies apply

equally to evaluations undertaken within statistical agencies is difficult. ONS is hardly

alone in providing minimal information to users concerning the effects of disclosure

control. Statistics Canada, for example, randomly rounds all census cell counts to a

neighbouring multiple of five. Their public acknowledgement of the effect of this measure

is limited to the claim that “This technique provides strong protection against direct,

residual or negative disclosure, without adding significant error to the census data”

(Statistics Canada 2003, p. 24). Similar comments may be made with regard to the

information provided by Statistics New Zealand and the Australian Bureau of Statistics.

Yet such evidence as does exist in the public domain suggests that within agency

evaluations are in fact subject to precisely the same criticisms (cf. Boyd and Vickers 1999;

Eurostat 1996; FCSM 1994; ONS undated).
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Table 1. Measures of cell-adjustment effect proposed in literature

Measure Derivation Cited in

Distribution-free measures
No. of modified cells* SNCi where NCi ¼ 1 if Oi ,. Ei; 0 otherwise Kirkendall and Sande (1989)
Total value of

modified cells*
SEi Kirkendall and Sande (1989)

Proportion of modified
cells*

ðSNCiÞ=n Domingo-Ferrer and Torra (2001)

Total absolute error* SjðOi 2 EiÞj Eurostat (1996)
Root mean square

error*
½ðSðOi 2 EiÞ

2Þ=n�0:5 Voas and Williamson (2001)

Standardised absolute
error*

ðSjðOi 2 EiÞjÞ=SEi Voas and Williamson (2001)

Relative absolute
distance

SðjðOi –EiÞj=EiÞ Shlomo (2005)

Average absolute
distance

SðjOi 2 Eij=kÞ where k ¼ no. of nonzero Ei Shlomo (2005)

Sum of Zm
2* Sf½ðOi=SEiÞ2 ei�=½eið1 2 eiÞ=SEi�

0:5g
2

Voas and Williamson (2001)
Chi-square distributed measures

Chi-Square* SfðOi 2 EiÞ
2=Eig Fienberg, Makov and Steele (1998)

Freeman-Tukey 4SðO0:5
i 2 E0:5

i Þ2 Voas and Williamson (2001)
Cressie-Read 9=5SOi½ðOi=EiÞ

2=3 2 1� Voas and Williamson (2001)
Sum of Z 2* Sfðoi 2 eiÞ=½eið1 2 eiÞ=SOi�

0:5g
2

Voas and Williamson (2001)
Wald W ¼ ðR2 SÞt½diagðRþ SÞ � T � Tt��1ðR2 S);

where R and S are vectors representing O and E,
respectively, for i , n, and T is the cross-
classification of R and S

Chambers (2001)
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Table 1. Continued

Measure Derivation Cited in

Entropy based
Difference in Shannon

entropy
ð2SoilogoiÞ2 ð2SeilogeiÞ Gouweleeuw et al. (1998)

Phi SfðoiÞjlogðOi=EiÞjg Fotheringham and Knudsen
(1987)

Psi Soilogðoi=siÞ þ Seilogðei þ siÞ for i ¼ 1 to n
where si ¼ 0:5ðoi þ eiÞ

Fotheringham and Knudsen (1987)

Other
Cramer’s V* ½x2=n minðr 2 1; c2 1Þ�0:5 where r ¼ no: of rows

and c ¼ no: of columns; in table.
Boyd and Vickers (1999)

Gibson’s D* 0:5SjðeiÞ2 ðoiÞj, for i ¼ 1 to n Griffin et al. (1989)
Hellinger distance f0:5S½ðEinÞ

0:5 2 ðOinÞ
0:5�2g

0:5
Gomatam et al. (2003)

Mean squared precision Not directly derivable from tabulated counts alone Duncan et al. (2001)

Table key: Ei ¼ expected (preadjustment) cell value; Oi ¼ observed (post-adjustment) cell value; n ¼ no. of cells in table; S ¼ sum over all i, from 1 to n; oi ¼ Oi=SOi;

ei ¼ Ei=SEi

*Measure calculated by SDC-i software suite; see Section 6.3 of article for details.
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In the light of the shortcomings identified, a twofold strategy is proposed for placing the

evaluation of cell adjustment effects on a more rigorous footing. First, effects should be

evaluated over a wide range of cell counts (interior and marginal) and rates, representative

in terms of both geographical and population subgroup coverage. Second, not one, but a

series of key statistical measures should be considered. In combination these measures

should help to identify the main strengths and weaknesses of each cell adjustment

approach whilst at the same time offering some practical insight into their potential effects

upon end user analyses, both count and rate based. The remainder of this article explores

the implementation of such a strategy, using as a case study the choice placed before users

by ONS in the run-up to the production of 2001 Census outputs.

3. Creation of a Benchmark Dataset

In order to evaluate the effect of a cell adjustment methodology, access to the original

preadjustment data is required. Lacking such access, for the purposes of this article tabular

outputs from the 1991 UK Census Small Area Statistics (SAS) have been used as a set of

“preadjustment” cell counts. In reality, prior to their release these outputs were themselves

subjected to a method of cell adjustment referred to by ONS as Barnardisation.

Barnardisation involves the unbiased addition of some random noise (^0 or 1) to each

nonzero interior cell count, followed by recalculation of table marginals on the basis of the

modified interior counts. Crucially, unlike for cell adjustment approaches based upon

count rounding or suppression, the resulting post-Barnardisation distribution of cell counts

may reasonably be assumed to remain representative of the original, although it should be

acknowledged that this assumption may not hold in all cases.

From the full range of 1991 UK Census outputs a set of 1,141 cell counts have been

identified covering a (subjectively) representative range of tables, population subgroups and

geographical areas. The selected benchmark tables and cell counts are outlined in Table 2.

To ensure representative geographical coverage, these benchmark counts were extracted for

each of the 5,350 1991 Census Enumeration Districts (EDs) in a population-weighted 5%

random sample of electoral wards that contained a minimum of 100 residents and 40

households. The minimum size requirement was imposed to ensure greater comparability

to Output Areas (OAs), the lowest tier of UK 2001 Census outputs, whilst the geographically

stratified sampling strategy was necessary to permit subsequent exploration of the effects of

geographical aggregation upon user analyses.

Statistical agencies often point out that spatial units the size of Enumeration Districts are too

small to be used reliably for analytical purposes. Rather, they argue, outputs for areas of this

size are provided simply to furnish the building blocks for larger user-specified geographical

units. Consequently, from the initial 5,350 EDs 1,000 sets of 16 spatially contiguous EDs were

randomly selected (with replacement) and aggregated, creating benchmark counts for 1,000

“geographical clusters.” A set size of 16 was chosen as this represents the median number of

Output Areas in a 2001 Census ward; for at least half of all wards, users seeking to construct

larger clusters would minimise the effects of cell adjustment by subtracting the counts of a

cluster of less than 16 OAs from the relevant ward total.

Having created a representative set of benchmark cell counts, a variety of cell

adjustment methods were used to create a number of directly equivalent post-adjustment
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Table 2. Benchmark counts

SAS Table Variables in table [number of categories in variable] Table cells

Interior Marginal All

2 Age [21] £ Sex [2] £ Marital Status [2] 84 70 154
6a Ethnic group [11] £ Sex [2] 22 14 36
6b Ethnic group [11] £ Age [5] 55 17 72
8 Economic position [11] £ Age [10] £ Sex [2] 220 99 319
12 Limiting illness [1] £ Age [7] £ Sex [2] 14 10 24
20 Tenure [7] £ Amenities [4] 28 28 56
21 Cars in household [4] £ Household structure [5] 20 10 30
22 Tenure [4] £ Rooms [7] £ Residents [7] 196 124 320
34 Economic position [11] £ Marital status [2] £ Sex [2] 44 26 70
63 Tenure [7] £ Dwelling type [4] 28 20 48
71 Resident/Household/Enumeration status [5] £ Sampling Fraction [2] 10 2 12
Total 11 Tables / 13 key variables 721 420 1,141
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datasets. Two variants were created with specific regard to the UK debate introduced in

Section 1, one based on randomly rounding all counts to a neighbouring multiple of 3,

RR(3), and one based upon small cell adjustment, SCA(3). For the sake of broader

comparisons, additional variants were created using three additional cell adjustment

methods. RR(5), the random rounding of all counts to a neighbouring multiple of 5, is based

on the approach used by Statistics Canada. An alternative method of small cell adjustment,

SCA(3þ), has also been implemented. In this method interior and marginal cell counts of 1

or 2 are independently randomly rounded to either 0 or 3. (This contrasts with SCA(3) in

which marginals are based on the sum of adjusted interior cell counts.) SCA(3þ), although

not officially implemented by any statistical agency, is close to the de facto situation in the

UK after the 2001 Census, as an independently adjusted set of univariate counts have been

published which may be substituted, albeit after some aggregation of categories, for

existing table marginals. Finally, a set of adjusted cell counts, B(0.2), were created using

Barnardisation. Each original nonzero cell count was modified with a probability of 0.2,

with an equal chance of the resulting change in value being either þ1 or 21. This

approach provided the basis for cell adjustment in both the 1981 and 1991 UK Censuses

(although the precise probability used to modify nonzero cell counts is a matter of some

conjecture – there is some analytical evidence to suggest a lower probability was used, at

least for those tables containing many counts). In all five variants each occurrence of a

count that appeared in more than one table was independently perturbed.

The probabilities used by Statistics New Zealand when implementing RR(3) are in the

public domain (Statistics New Zealand 2005) and follow the algorithm for implementing

unbiased random rounding to base 5 set out in FCSM (1994) and more generally for any

base by Hatzopoulos et al. (1997). In contrast, the probabilities used by ABS during cell

adjustment are unknown. Indeed, were it not for an unguarded comment in a parliamentary

submission (ABS 1997), even the fact that only counts of less than four are affected could

only be surmised from inspection of published outputs. In line with ABS official practice,

ONS have divulged neither the size of small cell counts subject to small cell adjustment,

nor the rounding probabilities involved. However, inspection of 2001 Census outputs

leaves no reason to doubt that, in line with ABS practice, only interior counts of 1 or 2 are

rounded, and that the rounding probabilities adopted follow the pattern set out in

Hatzopoulos et al. (1997). Similar deductions underpin the implementation of B(0.2) and

RR(5). (See Williamson 2005a for details.)

4. Illustrative Benchmark Results

4.1. Counts

Before presenting a user-relevant empirical analysis of the observed difference between

the selected benchmark cell counts and their post-adjustment equivalents, it is worth

pausing momentarily to consider the theoretical confidence intervals associated with each

of the outlined cell adjustment methods. Although no statistical agency appears to have

placed these confidence intervals in the public domain, it is nevertheless possible to

deduce formulae for their estimation assuming that (i) the details of the implementation of

each approach are as outlined in Section 3 and (ii) as the number of potentially perturbed
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cells, n, increases, using the central limits theorem the distribution of errors approaches a

normal distribution with mean 0 and standard error sn ¼ ðs2nÞ0:5. On this basis estimates of

the relevant 68% (1 standard error) confidence intervals are as follows:

RRð5Þ ^ 2:0
ffiffiffiffiffiffiffiffiffiffiffi

n2 1
p

ð1Þ

RRð3Þ ^ 1:2
ffiffiffiffiffiffiffiffiffiffiffi

n2 1
p

ð2Þ

SCAð3Þ ^ 1:0
ffiffiffiffiffiffiffiffiffiffiffi

n2 1
p

ð3Þ

Bð0:2Þ ^ 0:5
ffiffiffiffiffiffiffiffiffiffiffi

n2 1
p

ð4Þ

Bð0:04Þ ^ 0:2
ffiffiffiffiffiffiffiffiffiffiffi

n2 1
p

ð5Þ

Comparison to confidence intervals derived by exact calculation shows that these

formulae provide reasonable approximations, accurate to at least one decimal place for a

wide range of confidence intervals and values of n (Williamson 2005a).

In the context of the UK choice between RR(3) and SCA(3) the story told by these

formulae might appear unequivocal. For any given number of potentially perturbed cells

the theoretical confidence interval associated with RR(3) is 20% wider than that for SCA(3).

And this is without taking into account the fact that significantly fewer interior counts will

be perturbed by SCA(3), which leaves all interior counts larger than 3 unmodified. But do

these theoretical estimates match the empirical reality? The true relative standings of RR(3)

and SCA(3), both with respect to each other, and with respect to the other methods

considered, depend crucially upon the frequency of preadjustment counts of 1 or 2, which

vary from table to table, population to population and place to place. In addition,

theoretical confidence intervals for interior cell counts have nothing to say about the

relative effect of each cell adjustment method upon table marginals; nor upon user

analyses involving rates constructed using post-adjustment cell counts.

Section 3 has already outlined the construction of a set of benchmark cell counts

representative in terms of tabular, population and geographical coverage. Through

comparison of the pre- and post-adjustment values of these benchmark counts derivation

of empirically observed confidence intervals is possible. Figure 1 plots the distribution of

these post-adjustment differences across all 1,000 benchmark geographical clusters (each

cluster comprising the aggregated counts of 16 spatially contiguous EDs), with both the

range and 95% “confidence interval” identified. Dividing the latter by the relevant number

of cells in the benchmark dataset (interior; marginal or all) would yield the average

(empirical) 95% confidence interval associated with adding together cell counts of that

type from 16 geographically neighbouring EDs.

From Figure 1 a reassuring first observation is that, for all cell adjustment methods, the

distribution of observed differences is essentially symmetrical around a mean of 0. This

would, of course, be expected, and lends broad support to the assertion of statistical

neutrality made by statistical agencies concerning their cell adjustment methodologies. In

the context of the debate over RR(3) versus SCA(3), empirical confirmation is provided

that, for interior cell counts, the New Zealand system of random rounding, RR(3), creates

greater post-adjustment disparities than SCA(3), with the relative ordering of all cell
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adjustment methods following those indicated by their theoretical confidence intervals.

Indeed, as a result of SCA(3) leaving interior counts of more than 3 unperturbed, the

relative performance gap actually widens from 20% to 50%. It is also worth noting that the

SDC method used for the 1991 UK Census, B(0.2), out-performs both RR(3) and SCA(3) for

interior counts (because the maximum change in an interior cell value is ^1), whilst

having a significantly larger negative effect upon marginal counts (because B(0.2) perturbs

a larger proportion of interior cell counts). But the key message of Figure 1 is that the

relative effect of each cell adjustment method varies significantly according to table

cell type. For example, the advantage of SCA(3) over RR(3) for interior cell counts appears

to be more than outweighed when the far larger negative effect of SCA(3) on table

marginals is taken into account. Indeed, errors in marginal cell counts generated by SCA(3)

are so large that they continue to drive the ranking of methods even when the effect across

all cell types is considered, despite marginal cells comprising only 37% of all table counts.

4.2. Rates

The implication of count-based findings for rate-based analyses is unclear, given that the

effect of a particular cell adjustment strategy will depend upon the size and source (interior

or marginal) of the numerator and denominator from which the rate is constructed. It may be

for precisely these reasons that no statistical agency has issued guidance to users concerning

the potential effect of cell adjustment on rate-based analysis. However, following the logic

of empirically benchmarking the effect of cell adjustment on counts, it is equally possible to

benchmark the effect of cell adjustment on rates. Table 3 lists a set of 17 percentages

calculated using numerators and denominators extracted from the benchmark counts

listed in Table 2. Between them these percentages attempt to provide a representative

cross-section of percentages covering both common and rare population subgroups, and

deriving their numerators and denominators from a mixture of single and multiple

Fig. 1. Range and 95% confidence interval of the total difference between pre- and post-adjustment benchmark

counts, as observed across 1,000 geographical clusters, each cluster comprising the aggregated counts of 16

spatially contiguous EDs
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Table 3. Benchmark percentages

No. of potentially modified cell counts
involved in calculation of

Mean % across sample of 1,000
geographical clusters, each
comprising 16 benchmark EDs
(95% confidence interval)

Numerator Denominator

Cell adjustment method

RR(5) SCA(3) RR(5) SCA(3)

RR(3) B(0.2) RR(3) B(0.2)

Benchmark percentage SCA(3þ) B(0.04) SCA(3þ) B(0.04)

% Residents
long-term ill 1 14 1 84 12.5 (7.5–18.3)
unemployed 1 4 1 40 5.9 (2.5–13.8)
employed full-time 1 4 1 40 37.7 (26.6–48.7)
aged 75–84 2 8 1 84 5.7 (2.4–11.4)
aged 85 þ 2 8 1 84 1.3 (0.5–3.0)
female 1 42 1 84 51.5 (49.7–54.0)
non-white 2 18 1 20 7.0 (0.3–43.1)
black 3 6 1 20 2.1 (0.0–18.3)
Indian, Pakistani or

Bangladeshi
3 6 1 20 3.6 (0.0–29.0)

Bangladeshi 1 2 1 20 0.8 (0.0–8.1)

W
illia

m
so
n
:
B
en
ch
m
a
rkin

g
th
e
E
ffect

o
f
C
ell

A
d
ju
stm

en
t
o
n
T
a
b
u
la
r
O
u
tp
u
ts

3
2

9



Table 3. Continued

No. of potentially modified cell counts
involved in calculation of

Mean % across sample of 1,000
geographical clusters, each
comprising 16 benchmark EDs
(95% confidence interval)

Numerator Denominator

Cell adjustment method

RR(5) SCA(3) RR(5) SCA(3)

RR(3) B(0.2) RR(3) B(0.2)

Benchmark percentage SCA(3þ) B(0.04) SCA(3þ) B(0.04)

% Households
owning/buying a private dwelling 2 8 1 28 68.7 (22.9–91.4)
renting public housing 2 8 1 28 22.3 (2.0–67.3)
with no central heating 2 14 1 28 19.9 (3.8–49.9)
with sole use of dwelling 1 21 1 28 79.7 (19.1–97.5)
sharing use of dwelling 1 7 1 28 0.3 (0.0–2.0)
with no access to a car or van 1 5 1 20 33.3 (12.9–65.5)
with access to 2 or more

cars or vans
2 10 1 20 23.1 (5.1–44.0)
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benchmark counts. For benchmark purposes these percentages were calculated, pre- and

post-adjustment, for each of the 1,000 geographical clusters in the benchmark dataset.

Figures 2 and 3 present two statistical summary measures of the outcome: the average

absolute difference in pre- and post-adjustment percentages (averaged across all 17

percentages and all 1,000 geographical clusters); and the average relative difference

(i.e., the difference in pre- and post-adjustment percentages expressed as a proportion of

the preadjustment percentage). The first columns in each of Figures 2 and 3 (labelled “G”

to denote a geographically clustered sampling strategy) show the average effects of cell

adjustment upon benchmark percentages. The resulting ordering of cell adjustment

methods fails to conform to that observed for either interior or marginal cell counts, and

remains almost unchanged whether considering average absolute or average relative

differences in pre- and post-adjustment percentages. The one exception is SCA(3þ), which

produces the smallest average absolute error but is significantly eclipsed by B(0.2) when

average relative errors are considered. The explanation for this is that SCA(3þ) modifies

only counts of 1 or 2, whether found in an interior or marginal cell. Consequently any

observed changes to percentages will be very small in absolute terms. On the other hand,

any changes in post-adjustment percentages imposed by SCA(3þ), involving as they will

the change of numerators and denominators of 1 or 2 to values of 0 or 3, are likely to be

large in relative terms. In contrast B(0.2) has a slightly larger absolute effect on post-

adjustment percentages, because the ^1 changes applied to 20% of all interior cell counts

lead on average to greater cumulative changes in numerators and denominators than

SCA(3þ), but a much smaller relative effect. This is accounted for by (i) average changes in

numerators and denominators tending to cancel out and (ii) a much smaller proportion of

small numerators (1 s and 2 s) being adjusted to 0.

Figures 2 and 3, therefore, tell a mixed story. This additional information may make the

choice of a preferred method of cell adjustment less straightforward, but at least it shows

Fig. 2. The average absolute difference between a set of representative pre- and post-adjustment percentages

(see text for details)
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that paying attention to one aspect of effect alone – such as the effect upon cell counts –

can be misleading.

4.3. Ranking

In Section 2 existing measures of cell adjustment effect were criticised for failing to

recognise the differential effect of cell adjustment across cell type (marginal or interior)

and analysis type (count or rate based). They were also criticised for failing to provide

direct measures of the actual effect of cell adjustment upon typical area-based user

analyses such as ranking, correlation and regression. To address this final shortcoming, the

1,000 geographical clusters in the benchmark dataset were ranked in turn by each of the 17

benchmark percentages listed in Table 3. Figure 4 depicts the overall percentage of post-

adjustment rankings that fell in the same fifth (quintile) and twentieth (vintile) as their pre-

adjustment equivalents. Compared to the results concerning counts and percentages

previously discussed, which are still arguably rather abstract from a user point of view,

these results are of far more direct relevance, at least to some types of analysis, and in

many ways rather more salutary.

As Figure 4 shows, even for the relatively unambitious target of ranking each 16 ED

cluster within the correct quintile, the cell adjustment methods currently in use by national

statistical agencies lead to misclassification rates ranging from 5% for RR(3) (the method

adopted by Statistics New Zealand) through to 12% for RR(5) (the method adopted by

Statistics Canada). In the UK many government policies are aimed at targeting resources

to neighbourhood areas ranked in the top 5%. When ranking areas by correct vintile, no

currently implemented cell adjustment method (RR(5), RR(3), SCA(3)) achieves an

accuracy rate of more than 77%. But to be set against this, areas in the top and bottom

vintile are significantly more accurately classified than those in the mid-range (see

Table 4). When ranking areas by lowest vintile RR(5), RR(3) and SCA(3) between them

Fig. 3. The average difference between pre- and post-adjustment percentages as a proportion of the

preadjustment percentage, for a representative set of benchmark percentages (see text for details)
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yield a minimum benchmark misclassification rate of 6%. Even greater accuracy is

achieved for the top vintile, a reflection of the positively skewed distribution of many

percentages, which leads to greater differentiation between preadjustment cluster

percentages at the top end. In all cases data ranking accuracy was better preserved using

B(0.2) than any currently implemented method.

As for ranking, it is of course possible to provide benchmark measures of the effect of

cell adjustment on correlation and regression analyses, or indeed upon any other type of

user analysis that could be envisaged. However, as Williamson (2007) demonstrates, the

rank ordering of adjustment methods essentially follows that reported here for rates

whether considering correlation or regression analyses (both bivariate and multivariate).

Consequently it can perhaps be reasonably claimed that results of the kind presented in

Figures 1, 2, and 3 between them serve to capture the main strengths and weaknesses of

each approach – namely their likely cumulative effects upon interior and marginal counts

and their average absolute and relative effects upon rates. At the same time Figure 4

(in which the relative ordering of cell adjustment methods follows that in Figure 3) is

perhaps best illustrates the general trend observed for most rate-based analyses, providing

a measure of effect (ranking accuracy) arguably most directly instructive for user and

producer of statistics alike.

4.4. The Importance of Benchmarking

Returning to the debate that provided the original stimulus for this article, from the results

presented in Figures 1 to 4 it is apparent that the arguments for and against SCA(3) and

RR(3) are far more finely balanced than was generally appreciated at the time. By far

the most commonly expressed user preference was for adoption of SCA(3), in part on the

grounds that fewer interior counts would be perturbed, and in part on the grounds that

the resulting marginals would at least be consistent with their associated table interiors.

Fig. 4. The average accuracy of the post-adjustment ranking of 1,000 geographical clusters, each comprising

the aggregated counts of 16 spatially contiguous EDs post cell adjustment, over each of 17 different

representative percentages
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The greater adverse effects of SCA(3) on table marginals were generally under-estimated,

whilst the possible effects upon rate-based analyses were simply ignored. In fact, as shown

in Figures 1 to 4, the implementation of SCA(3) leads to significantly greater uncertainty

over the true value of marginal counts and to marginally but measurably less accurate rate-

based analyses than RR(3). Which of the above most affects overall data utility ultimately

remains a matter of opinion. But the lack of understanding at the time concerning the effect

of either strategy upon rate-based analyses clearly represented a serious lacuna in the

evaluation process, both inside and outside of ONS, as did lack of access to information

concerning the average effect of either approach upon a comparable and representative set

of benchmark counts. This points to the importance of adopting a far more rigorous

evaluation process when considering any future proposed disclosure control methodology.

Another question that needs to be addressed by any evaluation process is the fitness-for-

purpose of the resulting post-adjustment outputs. From this perspective the results

presented in Figures 1–4 might be regarded as either reassuring or alarming. Are the

effects of cell adjustment demonstrably “negligible” as claimed by, for example, Statistics

Canada? The generally low relative effects upon counts and percentages would appear to

broadly support this contention. Or are the effects sufficiently damaging to the integrity of

the underlying data that they potentially call into question the value of any analyses based

upon them? Empirical evidence of the effect of cell adjustment on area rankings perhaps

Table 4. Accuracy of ranking 1,000 geographically clustered aggregates of 16

EDs by vintile, based upon 17 representative percentages.

% correctly ranked

Cell adjustment method

Vintile RR(5) RR(3) SCA(3) SCA(3þ) B(0.2)

(Lowest) 1 93 94 94 97 98
2 73 80 76 88 92
3 70 77 72 86 91
4 64 72 68 83 86
5 58 69 63 80 84
6 56 68 62 81 86
7 57 68 61 81 85
8 54 64 60 76 84
9 53 67 61 78 84

10 58 66 62 81 86
11 60 68 64 84 86
12 61 70 65 85 87
13 64 72 68 86 87
14 65 76 73 88 88
15 69 79 76 89 90
16 72 83 77 91 92
17 77 85 81 94 93
18 85 89 86 96 96
19 91 94 91 98 97

(Highest) 20 97 98 96 99 99
Overall 70 77 73 87 90

Journal of Official Statistics334



lends some credence to this second viewpoint. But the aim of this article is not to provide

the definitive answer to these questions – an answer which in any case will vary from user

to user depending upon individual analytical goals. Rather the purpose is to show that any

such answer will necessarily lack cogency when, as at present, uninformed by

consideration of the overall effect of cell adjustment on a truly representative set of cell

counts, or of the consequent “indirect” effects of cell adjustment upon rate-based analyses.

If the case for a more rigorous approach to the evaluation of cell adjustment methods is

accepted, two main obstacles remain. One is the objection that overall summary results of

the kind presented in Figures 1 to 4 ignore the fact that the effects of cell adjustment are

indeed table-, population- and place-specific. This objection is addressed in the following

section. The other is that conducting such a thorough and wide-ranging analysis requires

too many resources. The final parts of Section 6 outline ways in which such resource

demands can be kept to a minimum through the use of “off-the-peg” benchmark datasets

and benchmarking software.

5. Table-, Population- and Place-specific Differences

5.1. The Effect of Cluster Size

Before addressing the table-, population- and place-specific nature of cell adjustment

effects, the influence of cluster size needs to be briefly considered. It is perhaps self-

evident that, all other things being equal, larger absolute effects of cell adjustment can be

expected as cluster size increases. However, as the theoretical confidence intervals

presented in Section 2 indicate, this rate of increase is nonlinear, the expectation being that

the relative effect of cell adjustment will actually decrease with increasing cluster size.

Williamson (2007) provides empirical confirmation of these expectations for the

behaviour of interior cell counts, and goes on to show that this behaviour applies more

generally. Of particular relevance to the discussion that follows, regardless of the measure

of effect considered (count-, rate- or rank-based), the relative ordering of cell adjustment

methods remains unaffected by cluster size.

5.2. Table-specific Effects

Table 5 helps to illustrate the table-specific nature of cell adjustment. The right hand side

of the table presents one simple measure of cell adjustment effect – the proportion of all

post-adjustment table cell counts (interior and marginal) that differ in value from their

preadjustment counterparts. Once again the measure presented is the average observed

across 1,000 benchmark clusters, each cluster comprising 16 geographically neighbouring

EDs. The final row of Table 5 presents the average % of cell counts modified across all

eleven benchmark tables. Perhaps surprisingly, given the results in Section 4, the overall

ranking of the cell adjustment methods by this new measure follows that indicated by their

theoretical confidence intervals. However, examination of the table-specific results

presented in Table 5 reveals that this is not always the case. In particular the relative

rankings of RR(3) and SCA(3) are prone to reversal, as are the relative rankings of SCA(3þ)

and B(0.2). A second feature of note is that in some tables a far higher proportion of cell
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Table 5. Table-specific variations in the proportion of cells modified through cell adjustment, as observed for a set of representative geographical areas

Cluster size ¼ 1 Cluster size ¼ 16

Interior cell counts All cell counts (interior and marginal)

% of cells in table % containing count of Cell adjustment method

RR(5) RR(3) SCA(3) SCA(3þ) B(0.2)

SAS Table 0 1 or 2 3 þ % of counts changed by cell adjustment

2 55 26 17 58 88 85 94 46 63
6a 61 61 15 25 84 78 38 57 42
6b 76 74 10 16 70 65 57 48 32
8 69 65 18 18 76 73 70 53 45
12 58 17 28 55 95 91 84 65 68
20 50 63 13 24 78 74 69 56 43
21 67 29 17 54 91 87 69 44 62
22 61 80 10 10 63 59 59 51 11
34 63 28 21 51 93 89 73 45 65
63 58 67 12 21 80 76 70 55 46
71 83 39 7 54 77 73 33 21 48
All tables 63 60 15 25 76 72 66 51 46
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counts are modified, on average, than in others. In all cases the proportion of cells modified

is very high – in part the result of summing the modified counts from geographically

neighbouring EDs to create larger aggregates.

These findings are explained at least in part by reference to the left-hand side of Table 5.

This reveals the distribution of cell count values amongst the EDs from which the

benchmark clusters are constructed. Two examples suffice to illustrate the general

principles. Of the benchmark tables, SAS Table 12 contains by far the highest proportion

of preadjustment cell counts larger than 0. In consequence it experiences one of the highest

rates of change in post-adjustment cell counts, regardless of which cell adjustment method

is considered. (All methods leave preadjustment counts of 0 unmodified.) In contrast SAS

Table 71 contains the lowest ratio of interior cell counts of 1 or 2 to counts of 3 þ . As

SCA only modifies initial counts of 1 or 2 the result is that a low percentage of the cell

counts in SAS Table 71 are modified by SCA(3) and SCA(3þ), even though the proportion

of cells in this table modified by other cell adjustment approaches lies close to the overall

benchmark average.

5.3. Population-specific Effects

Figure 5 illustrates the effect of cell adjustment on four percentages, representing a cross-

section of common and rare population subgroups. For each percentage the ranges within

which 95% and 100% of the post-adjustment percentages fall are shown. The result is

visual confirmation that the effect of cell adjustment varies according to the population of

interest. This variation expresses itself in three distinct ways. First, the relative ordering of

each cell adjustment method varies slightly across subgroups in terms of effect, with the

ordering of those methods shown to be close to each other in Figure 2 swapping places on

occasion. For example, the relative rankings of RR(3) and SCA(3) are reversed for % social

renting, and are almost indistinguishable for % owner-occupying. The relative rankings of

SCA(3þ) and B(0.2) with respect to each other vary even more markedly across population

subgroups. Second, for some percentages, such as % nonwhite, SCA(3þ) has no effect at all

upon post-adjustment percentages. The reason for this is that all of the counts involved in

the relevant numerators and denominators have values of three or more. Third, although

the absolute effect of cell adjustment increases with subgroup rarity, the relative effect

decreases. (See the range of differences relative to subgroup means given in Figures 5a–d.)

But even for the highest effect approach, RR(5), for the smallest subgroup percentage

(% 85 þ ), the post-adjustment percentage differs by no more than þ /2 15% of the

original preadjustment value in 95% of the 1,000 benchmark geographical clusters

considered.

The reasons for these variations in the effect of cell adjustment between population

subgroups are many and varied. In part they relate to those already outlined when

considering variations in the % of cells modified across benchmark tables. But they also

relate to, amongst other things, the number of post-adjustment counts involved in

constructing the numerators and denominators (see Table 3) as well as to their average

count size. All things being equal, the more post-adjustment counts a percentage is

constructed from, and the rarer the population subgroup involved, the larger the relative

effect of cell adjustment is likely to be.
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5.4. Place-specific Effects

For consideration of the place-specific effect of cell adjustment, it is necessary to return to

consideration of Figures 2 and 3. So far only the results for geographically clustered

aggregates (columns labelled G) have been discussed. To illustrate the importance of

place, aggregate spatial units were also created using a variety of alternative sampling

strategies. First, sets of 16 EDs were assembled through simple random sampling (with

replacement) of all 5,350 benchmark EDs (R). Second, stratified samples were taken. After

ranking all preadjustment EDs by population density, 1,000 sets of 16 random EDs were

drawn from (i) the top fifth of the distribution (P_80) and (ii) the bottom fifth (P_20). By a

similar process a set of aggregate benchmark counts were drawn stratified by social class

(% persons in UK Registrar General’s Social Classes I & II) (S_80 and S_20). The use of

alternative sampling strategies is necessary because the stochastic nature of most cell

adjustment processes precludes comparison of the outcomes for a selected handful of

“representative” geographical aggregates.

As Figures 2 and 3 show, the type of sampling strategy adopted had only a minor effect

on the average absolute difference between pre- and post-adjustment percentages, but a

significant effect upon average relative difference. For the latter random sampling (R) led

to significant under-estimation of the relative effect of all cell adjustment methods. The

reason for this is that in a geographically clustered sample (G) a significant number of

clusters will be composed entirely of rural EDs. As rural EDs contain lower populations,

their average table cell count is lower, leading to larger potential relative effect of cell

adjustment upon the numerators and denominators underlying the benchmark rates.

Conversely, in a random sample most aggregates of EDs will comprise a representative

mix of EDs, urban and rural, resulting in a higher average population density (and hence

cell count). For the same reasons the observed effect of cell adjustment upon relative

Fig. 5. Range and 95% confidence intervals of post-adjustment difference for four selected percentages, as

observed across 1,000 zones, each based on the aggregated counts from 16 spatially contiguous Enumeration

Districts
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differences in pre- and post-adjustment percentages is highest in low population density

areas (P_20) and lowest in high density areas (P_80).

5.5. Implications for Overall Summary Results

Throughout this section the variability of cell adjustment effects has been underlined,

emphasising their table-, population- and place-specific nature. Given this variability, are

“overall” measures of the kind presented in Section 4 meaningless? On the one hand the

answer would appear to be “yes.” The precise effects of cell adjustment are highly

sensitive to the specific table, population or place being considered. Overall summary

measures necessarily cannot highlight the specific counts and rates that, post-adjustment,

are most and least reliable. On the other hand, given the wide range of cellular outputs

from most censuses, and the far larger possible range of potential rates that could be

derived from these counts, attempts to provide such information without reduction into

some kind of summary form would almost inevitably prove overwhelming to both data

user and provider alike. At the same time the detailed results presented in this section

actually provide further confirmation of those summary results already presented in

Section 4. The ranking of cell adjustment methods for the majority of tables and rates

follows the ranking indicated by the summary measures. And where there is deviation

from this ordering, the difference is invariably a simple switch in the ordering of two

methods already indicated by the summary measure as being very close in terms of effect.

In short, summary measures do appear to provide a robust overall indicator of the

strengths, weaknesses and relative standings of the cell adjustment methods considered,

provided that they are based upon a wide enough range of representative cell counts to

begin with.

6. Conclusion

6.1. The Need for a Benchmark-based Approach

As the political pressures for increased levels of disclosure control continue to mount, the

increasing work being undertaken on assessing disclosure risks needs to be matched by

more careful scrutiny of the potential effects on the fitness-for-purpose of outputs. The

main argument of this article is that current assessments of the effects of disclosure control

lack rigour and are too far removed from the reality of effects upon everyday user

analyses. None take proper account of the effect of disclosure control upon a genuinely

representative set of tables, populations and places; all fail to consider the subsequent

effects upon rate-based analyses. At the same time the summary measures used are almost

invariably too abstract to offer any real guidance on the resulting fitness-of-purpose of

post-adjustment outputs. Using a case study of the choice set before UK users between

adoption of an Australian or a New Zealand cell adjustment strategy, this article has

attempted to show how these various problems can be addressed. The proposed solution

has three main components. First, the creation of a set of benchmark counts to which

alternative methods of data perturbation can be applied, allowing direct comparison of

effects upon a common set of data with representative population and geographical

coverage. Second, consideration of the effect of cell adjustment upon not only counts
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(interior and marginal) but also rates, allowing variations in effect by data type to be

recognised. And third, the use of statistical measures which provide end users with a clear

indication of the likely effect of cell adjustment upon their own analyses, including not

only the average effects across a set of representative counts/rates, but comparison of

absolute and relative effects, indicative confidence intervals/ranges and the post-

adjustment accuracy of area rankings.

If the need for a benchmark-based approach of the type outlined above is granted, the

resource inadequacies remain to be tackled: lack of appropriate benchmark data and lack

of the associated computational overheads. Before drawing to a close this article briefly

addresses each in turn.

6.2. The Provision of a Benchmark Dataset

Statistical agencies are, of course, best placed to undertake evaluation of their own

proposed alternative cell adjustment strategies, as they have full access to the original data

to which the strategies will be applied, including, if required, the underlying microdata.

For these agencies the extraction of a representative in-house set of pre- and post-

adjustment benchmark counts should be a relatively straightforward task. This applies

even if the final post-adjustment cell counts are the result of a combination of microdata

editing, imputation and record swapping followed by post-tabulation random rounding or

suppression. As well as providing a platform for more considered evaluation of alternative

disclosure control strategies, the construction of such an in-house benchmark dataset could

permit wider public dissemination of any evaluation findings, the empirical derivation of

the findings providing protection for the precise details of the method(s) being evaluated.

In other cases use of a public domain benchmark might still be more appropriate: for

example where the goal is direct comparison with the effect of the overall disclosure

control regime implemented by another statistical agency; or where the goal is, as was the

case in the UK in 2002, consultation with users over the choice between alternative

versions of one element of a broader package of disclosure control measures.

Outside of the statistical agencies the need for a public domain benchmark dataset is

even more pressing. The current literature is replete with studies which propose alternative

methods of cell suppression, controlled rounding and so on, each evaluated against a

different, limited and (as far as can be judged) unrepresentative set of tables. To foster

greater comparability it would be helpful if all of these competing methods were tested

instead against a standardised benchmark dataset. Ideally this public domain benchmark

would include the underlying microdata upon which the final tabulations were based, in

order to allow for evaluation of additional micro-level strategies such as record swapping.

Unfortunately, all presently available public domain microdata lack sufficient

geographical detail to make provision of such a benchmark feasible. Nor is it likely that

any statistical agency will feel able to release such a dataset within the foreseeable future.

One possible alternative is the creation of a plausible but synthetic set of spatially detailed

population microdata (cf. Voas and Williamson 2000). Another is an approach based upon

multiple imputation (cf. Abowd and Woodcock 2001; Reiter 2005).

In the meantime ambition must be limited to the provision of a set of public

domain benchmark counts. Even here the potential sources are severely restricted. One
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possibility put forward for consideration is the benchmark dataset of “preadjustment”

tabular counts outlined in Section 3, which is freely available to all, subject to use

of an acknowledgement similar to that to be found at the beginning of this article.

(A copy of the benchmark dataset and a full dataset description is available via

http://pcwww.liv.ac.uk/,william/SDC.) These electronically downloadable benchmark

counts are available for sets of single EDs, as well as for preaggregated clusters of 16 and

46 spatially contiguous EDs. Each set contains benchmark counts for 1,000 such spatial

units. Available separately are benchmark counts for the 5,350 EDs from which these

various geographical clusters have been drawn, allowing the creation of additional sets of

benchmark counts using alternative cluster sizes and sampling strategies (random or

stratified). Users accessing these online benchmark data should bear in mind that they are

based upon Barnardised census counts, although the effect of Barnardisation upon the

overall distribution of cell counts is believed to have been minimal.

6.3 The Provision of Benchmarking Software

A second potential barrier to the benchmarking and evaluation strategy proposed in this

article is the computational overhead involved. Summarising measures of fit across a

series of tables, calculating a set of representative pre- and post-adjustment percentages,

assessing the effects of adjustment upon area rankings and so on, whilst arguably

desirable, all have nontrivial computational overheads if not provided as automated

functions within a statistical analysis package. Indeed, the analyses presented in this article

would not have been possible without a specially written program suite. To foster wider

adoption of a user-centred perspective on the evaluation of statistical disclosure control

effects, this software suite, SDC-i, together with its accompanying user documentation,

has been placed in the public domain (http://pcwww.liv.ac.uk/,william/SDC). As written

the suite can be used to compare any two sets of counts (pre- and post-adjustment) and

produce a wide range of summary measures, including all of those presented in this article

and the majority of those listed in Table 1 (see Table 1 for details). These include the range

and 95% confidence intervals of both absolute and relative differences in counts and rates,

the assessment of the overall accuracy of rate-based area rankings and summary measures

averaged across both single and multiple benchmarks. Simple control parameters allow

users to specify the number and layout of their chosen input tables, which can range from

simple vectors of interior cell counts through to complex multi-dimensional tables with

multiple table marginals and submarginals. Other user-adjustable parameters control the

detail of summary output produced, ranging in scope from the total difference observed

across all input tables through to measures of difference associated with individual table

cell counts. Given a set of user-supplied benchmark counts, other elements of the program

suite allow for the creation of geographical, random or stratified clusters of any size, and

for the calculation of user-specified percentages. Full details may be found in Williamson

(2005b). If the more rigorous approach to disclosure control evaluation proposed in this

article finds favour, it is hoped that this software suite might provide at least the

springboard for the development of a more professional software tool of the kind well

exemplified by ARGUS with regard to the assessment of disclosure control risk

(Hundepool et al. 2004; Hundepool et al. 2005).
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Griffin, R.A., Navarro, A., and Flores-Baez, L.(1989). Disclosure Avoidance for the 1990

Census. Proceedings of the American Statistical Association, Section on Survey

Research Methods, Alexandria, VA, 516–521.

Hatzopoulos, M., Karali, I., Viglas, E., and Murtagh, F. (1997). Specification of Secure

Interface Module. Deliverable 3.1, Access to Distributed Databases for Statistical

Information and Analysis, Edinburgh: Centre for Educational Sociology, University of

Edinburgh. ,http://homepages.ed.ac.uk/addsia/deliverables/Del31.doc . [date

accessed: 29/6/2005].

Hundepool, A., van de Wetering, A., Ramaswamy, R., Franconi, F., Capobianchi, A.,

de Wolf, P-P., Domingo-Ferrer, J., Torra, V., Brand, R., and Giessing, S. (2004).

m-ARGUS Version 4.0 Software and User’s Manual. Voorburg: Statistics Netherlands.

Hundepool, A., van de Wetering, A., Ramaswamy, R., de Wolf, P-P., Giessing, S.,

Fischetti, M., Salazar, J-J., Castro, J., and Lowthian, P. (2005). t-ARGUS Version 3.1

Software and User’s Manual. Voorburg: Statistics Netherlands.

Kirkendall, N. and Sande, G. (1998). Comparison of Systems Implementing Automated

Cell Suppression for Economic Statistics. Journal of Official Statistics, 14, 513–535.

Office for National Statistics (2002). 2001 Census Disclosure Control in England and

Wales. Advisory Group Paper AG(02)03. London: Office for National Statistics.

Office for National Statistics (undated). Census 2001 Data Quality: Variability in Tabular

Counts. London: Office for National Statistics. ,http://www.statistics.gov.uk/

census2001/pdfs/tabular_counts.pdf . [date accessed: 16 June 2005].

Reiter, J.P. (2005). Releasing Multiply Imputed, Synthetic Public Use Microdata: An

Illustration and Empirical Study. Journal of the Royal Statistical Society, Series A, 168,

185–205.
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