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This article provides reasonable answers to the problems left unsolved in Aitkin (2008), a
recent paper on the Bayesian bootstrap in finite population inference. These problems are
essentially two: the choice of the population parameter cannot be discussed from within the
Aitkin’s Bayesian bootstrap approach, which is based on a multinomial likelihood with
unconstrained parameters; assumptions such as model constraints on the multinomial
probabilities are difficult to implement in such a Bayesian framework. The answers are
obtained by assigning suitable informative priors to the population proportions involved in
the analysis.
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1. Introduction

New possibilities for applications of the Bayesian method to real problems with a high

degree of complexity are delineated by Aitkin (2008) in a recent article on the

Bayesian bootstrap in finite population inference. Starting from the consideration that

in a population of known dimension N the values of a numerical response Y are

always measured with finite precision, d say, and can be tabulated by the distinct

values Y1 , · · · , YD which Y can take, Aitkin denotes the corresponding counts

by N1, : : : ,ND Yjþ1 2 Yj ¼ d;
PD

1 Nj ¼ N
� �

and assumes as natural model for Y

the multinomial distribution with parameters given by the population

proportions pj ¼ Nj=N; j ¼ 1; : : : ;D. Any population parameter (as, for instance, the

mean m ¼
PD

1 Yjpj or the variance VarðYÞ ¼
PD

1 ðYj 2 mÞ2pj) is a particular function of

the population proportions and, given a prior for p1, : : : ,pD, its posterior can be derived

from the posterior distribution of p1, : : : ,pD. A practical and flexible prior for the

multinomial probabilities is the Dirichlet distribution D (a1, : : : ,aD), whose density is

p ð p1; : : : ; pDÞ ¼
a!QD
j¼1aj!

YD
j¼1

p
aj
j
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where a ¼
PD

j¼1aj is called the total prior weight. Given an n-dimensional simple random

sample y (n small compared to N), the multinomial likelihood turns out to be

Lð p1; : : : ; pDjyÞ /
YD
j¼1

p
nj
j ¼

Yd
j¼1

p
nj
j

where the nj are the sample counts and d denotes the number of distinct values observed in

the sample; consequently the posterior of p1, : : : , pD is the updated Dirichlet distribution

Dða1 þ n1; : : : ; aD þ nDÞ; with nj . 0 only if Yj has been observed in the sample.

The Bayesian bootstrap approach consists in simulating from this posterior to obtain the

posterior distribution of any population parameter.

Special cases of the Dirichlet prior are the Ericson priorD(e1, : : : ,eD), with parameters

all near to zero and such that
PD

1 ej is small, and the Haldane prior DH ¼ Dð0; : : : ; 0Þ,

which produces a posterior Dirichlet distribution with nonintegrable spikes at the zero

values of the pj corresponding to any unobserved value Yj, unless all the possible distinct

values of Y are assumed to be observed ðd ¼ DÞ. Under this last assumption one can

simulate, according to the Aitkin prescriptions, from a Dirichlet posterior with d

parameters given by the sample counts, from now on denoted by DHjy ¼ Dðn1; : : : ; ndÞ.

“Both the Bayesian bootstrap and the bootstrap operate under this assumption” (Rubin

1981, p. 133).

Given this premiss, Aitkin first of all compares the results obtained by the Bayesian

bootstrap approach with an Ericson-type Dirichlet prior and with a Haldane prior and the

results obtained from different methods, in particular by the classical bootstrap approach

or derived under the assumption of suitable parametric distributions for Y. The

comparison follows the precept (Rubin 1987, p. 62) that, to be useful, Bayes procedures

need to be well calibrated in the frequentist sense. Surprisingly, the improper Haldane

prior turns out to produce better results than the Ericson-type Dirichlet prior which is a

proper distribution. Then, throughout the paper the Haldane prior is adopted and similar

comparisons are made in a number of increasingly complex cases. The computational

effort required by the Bayesian bootstrap approach appears to be moderate and

interestingly insertable into standard statistical packages. However, there are two open

problems outlined by the author himself (Section 8):

. the choice of the population parameter cannot be discussed from within this Bayesian

bootstrap approach, since the comparison of different choices would require different

likelihoods for different models whereas there is only one multinomial likelihood

with unconstrained parameters;

. assumptions such as model constraints on the multinomial probabilities are difficult

to implement in such a Bayesian framework.

In this article we provide reasonable solutions to these open problems by assigning a

suitable informative prior to the population proportions. Moreover we clarify the reason

for the better performance of the Haldane prior with respect to the Ericson-type Dirichlet

prior and build a bridge between the choice of the multinomial model for the response Y

and the choice of the population parameter, i.e., of the feature of Y taken to be the object of

interest. Through examples drawn from the Aitkin’s paper itself this last point is illustrated
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in the rest of this section and the remaining two points in the next one; section 3 contains

some concluding remarks.

When it comes to the choice of the population parameter Aitkin (2008) in complex

problems adopts the so-called “working model” strategy (Valliant, Dorfman, and Royall

2000) according to which a “working” probability model leads to an optimal estimator

under the model, which is then used to define the population parameter without the

working model being assumed to hold. For instance, in the last example in section 7 it is

declared: “We adopt the maximum likelihood estimators of fixed effects and variance

components (from the usual two level normal model) as defining the population

parameters : : : , but without the assumption of normality.” Moreover, in all cases

discussed by Aitkin (2008), specific parametric models play a further role: not only they

can be seen as “inspiring” the choice of the population parameter, they are also

systematically assumed as relevant reference models in the comparison between Bayesian

bootstrap analysis results and results obtained by different methods (see, e.g., Table 1,

Table 3 and comments in Sections 6 and 7). These facts allow us to realize that under all

choices of the population parameters there are indeed precise parametric models which are

totally ignored in the specification of the statistical model for the response Y. The proposal

of a suitable informative prior for the multinomial probabilities originates from this

consideration. It will be illustrated in the next section.

2. A Solution to the Open Problems

2.1. The Comparison of Different Choices of the Population Parameter

We reconsider the well-known short-stay hospital example (Herson 1976, discussed by

Aitkin in Section 3) where the response Y denotes the number of patients discharged by

hospitals with fewer than 1,000 beds in one year and the explanatory variable X is the

known number of hospital beds in that year. Let us suppose we have doubts about two

possible choices of the population parameter: the ratio regression coefficient,

B1 ¼

XD

j
YjpjXD

j
Xjpj

and the different regression coefficient

B2 ¼
XD
j

Yj

Xj

pj

From a model-based viewpoint B1, or B2, is the optimal choice (in the least squared sense)

when the set of assumptions (1), or (2), holds

EðYÞ ¼ BX andVarðYÞ ¼ s2X ð1Þ

EðYÞ ¼ BX andVarðYÞ ¼ s2X 2 ð2Þ

Furthermore, under the assumption of normality (made by Aitkin (2008) in order to make

comparisons at the end of the section) B1 and B2 appear as suggested by their maximum
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likelihood estimators respectively under the normal model M1 ¼ NðB1X;s
2XÞ and the

normal model M2 ¼ NðB2X;s
2X 2Þ, whose difference lies in the structure of the response

variance.

A natural way to declare this uncertainty about Var(Y), without assuming the full

parametric modelM1 orM2, is by embedding them in two different Dirichlet priors for the

population proportions p1, : : : , pD,

D1 ¼ Dða11; : : :a1DÞ andD2 ¼ Dða21; : : :a2DÞ

through a suitable specification of the D-dimensional parameters (a11, : : : , a1D) and

(a21, : : : , a2D), respectively. This, of course, implies a contextual “discretization” of the

models M1 and M2.

Some interesting specifications of the parameters ai; j; j ¼ 1; : : : ;D, of the prior

Di; i ¼ 1; 2, are given below:

UÞ ai; jðBi;s
2Þ ¼ aMi

F Yj þ
d

2
jBi;s

2

� �
2F Yj 2

d

2
jBi;s

2

� �� �
¼ aMi

pjðBi;s
2Þ

where (Bi,s
2) is assigned the prior p(Bi,s

2), F() is the distribution function

corresponding to the normal model Mi, d is the distance between two consecutive

possible values of Y and
PD

j¼1pj . 1. So doing, pj(), derived from the normal model Mi

(or more generally from any underlying parametric model), turns out to be the prior mean

of the population proportion pj; j ¼ 1; : : : ;D, and the parameters ai, j () can be interpreted

in terms of counts of “conceptual observations” from the discretized version

pjðÞ; j ¼ 1; : : : ;D, of the model Mi, while the total prior weight aMi
¼
PD

1 ai; j, which

controls the prior variance of pj, turns out to express our prior degree of belief in this

discretized version. Note also that aMi
is consequently interpretable as the “size” of the

above-mentioned conceptual sample (this interpretation will appear particularly

appropriate later in the discussion of the posterior corresponding to this prior

specification) and that it is independent of (Bi, s
2).

VÞ ai; jðB̂i; ŝ
2Þ ¼ aMi

F Yj þ
d

2

�����B̂i; ŝ
2

 !
2F Yj 2

d

2

�����B̂i; ŝ
2

 !" #
¼ aMi

pjðB̂i; ŝ
2Þ

where, all other things being equal, ðB̂i; ŝ
2Þ is the maximum likelihood estimate of

(Bi, s
2).

U *Þ ai; jðBi;s
2Þ ¼ aMi

½dfðYjjBi;s
2Þ�; or V*Þ ai; jðB̂i; ŝ

2Þ ¼ aMi
½dfðYjjB̂i; ŝ

2Þ�

where f() is the probability density function corresponding to the normal model Mi, so

that, all other things being equal, these are histogram-based approximations of the

specifications U and V, respectively.

In all these cases, from the informative Dirichlet priors,D1 andD2, and the multinomial

model for Y we can obtain two different likelihoods for the different choices of the
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population parameter B1 or B2 (inspired by the different underlying models M1 and M2),

L1 ¼
GðaM1

Þ

GðaM1
þ nÞ

ððYd
1

Gða1; j þ njÞ

Gða1; jÞ
pðB1;s

2ÞdB1ds
2

L2 ¼
GðaM2

Þ

GðaM2
þ nÞ

ððYd
1

Gða2; j þ njÞ

Gða2; jÞ
pðB2;s

2ÞdB2ds
2

For instance, with the short-stay hospital data, if we assume that aM1
¼ aM2

¼ a and adopt

the specification V* (according to which pðB̂i; ŝ
2Þ ¼ 1), the Bayes factor in favour of B1

against B2 is given by

BFV *;12 ¼
L1

L2
¼

Qn¼32
j¼1 adfð yjjB̂1; ŝ

2Þ þ
Qd¼31

j¼1 adfð yjjB̂1; ŝ
2ÞQn¼32

j¼1 adfð yjjB̂2; ŝ2Þ þ
Qd¼31

j¼1 adfð yjjB̂2; ŝ2Þ

¼
ðadÞ325:837 10271=p16 þ ðadÞ311:740 10268=p15:5

ðadÞ321:198 10272=p16 þ ðadÞ314:640 10270=p15:5

¼
48:70þ ðadÞ2114516:89

ffiffiffiffi
p

p

1þ ðadÞ21387:18
ffiffiffiffi
p

p

since ðB̂1; ŝ
2Þ ¼ ð3:200; 176:316Þ and ðB̂2; ŝ

2Þ ¼ ð3:349; 1:189Þ. Analogously, if we

specify the parameters ai, j according to U* and assume that (Bi, s 2) is distributed

according to the noninformative prior pðBi;s
2Þ / 1=s2, all other things being equal, we

obtain the following exact expression for the Bayes factor

BFU * ;12 ¼
L1

L2
¼

ÐÐ Qn¼32
j¼1 adfð yjjB1;s

2Þ
1

s 2
dB1ds

2 þ

ððYd¼31

j¼1
adfð yjjB1;s

2Þ
1

s 2
dB1ds

2

ÐÐ Qn¼32
j¼1 adfð yjjB2;s 2Þ

1

s 2
dB2ds

2 þ

ððYd¼31

j¼1
adfð yjjB2;s

2Þ
1

s 2
dB2ds

2

¼

ðadÞ32
Xn¼32

j¼1
xj
Qn¼32

j¼1 xj

	 
2 1

2 G
n2 1

2

� �

�
2p
�n2 1

2
1

2

Xn¼32

j¼1

y2j

xj
2

Xn¼32

j¼1
yj

	 
2
Xn¼32

j¼1
xj

2
64

3
75

8><
>:

9>=
>;
n2 1

2

þ

ðadÞ31
Xd¼31

j¼1
xj
Qd¼31

j¼1 xj

	 
2 1

2 G
d 2 1

2

� �

�
2p
�d2 1

2
1

2

Xd¼31

j¼1

y2j

xj
2

Xd¼31

j¼1
yj

	 
2
Xd¼31

j¼1
xj

2
64

3
75

8><
>:

9>=
>;
d2 1

2

ðadÞ32n
2
1

2
Qn¼32

j¼1 xj

	 
21

G
n2 1

2

� �

�
2p
�n2 1

2
1

2

Xn¼32

j¼1

y2j

x2j
2

1

n

Xn¼32

j¼1

yj

xj

� �2
" #( )n2 1

2

þ

ðadÞ31d
2
1

2
Qd¼31

j¼1 xj

	 
21

G
d 2 1

2

� �

�
2p
�d2 1

2
1

2

Xd¼31

j¼1

y2j

x2j
2

1

d

Xd¼31

j¼1

yj

xj

� �2
" #( )d2 1

2

¼
ðadÞ329:965 10286=p 15:5 þ ðadÞ313:256 10283=p 15

ðadÞ322:670 10287=p 15:5 þ ðadÞ311:180 10284=p 15
¼

37:33þ ðadÞ2112196:64
ffiffiffiffi
p

p

1þ ðadÞ21442:16
ffiffiffiffi
p

p

In both cases the huge values of these Bayes factors for all choices of d and a strongly induce

us to select the ratio regression coefficient as the parameter of interest for inference. Their

expressions are noticeably simple since the counts in the considered data set are “small”,

that is to say since each ratio of Gamma functions in the two likelihoods L1 and L2 reduces
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to a “small” number of terms ðai; j þ nj 2 1Þ· · ·ðai; j þ 1Þai; j; j ¼ 1; : : : ; d; i ¼ 1; 2. These

results are special cases of the Bayes factor for nonparametric model selection (Carota

1999) where the unknown distribution function of the response variable under both the

null and the alternative hypothesis is assumed to be a mixture of Dirichlet processes

(see also Carota and Parmigiani 1996). In a similar way we can obtain the Bayes factor

corresponding to the specifications V) and U) of the parameters ai, j or corresponding to

different underlying models as it is illustrated below.

A visual inspection of the data suggests that probably a valid alternative structure for the

response variance is VarðYÞ ¼ s2X r with r , 1, instead of r ¼ 2 as mentioned by Aitkin.

If we denote by M3 ¼ NðB3X;s
2X rÞ the normal model “working” in this case and

suggesting the choice of the population parameter

B3 ¼

XD

j
YjX

12r
j pjXD

j
X22r
j pj

by assuming the specification V* and aM1
¼ aM3

¼ a, we can obtain the Bayes factor

in favour of B1 against B3 for different values of r. For instance, for r ¼ 0:9 and r ¼ 0:8

we have

BFV *;13ðr ¼ 0:9Þ ¼
L1

L2
¼

1:31þ ðdaÞ21389:77
ffiffiffiffi
p

p

1þ ðdaÞ21296:41
ffiffiffiffi
p

p

BFV *;13ðr ¼ 0:8Þ ¼
L1

L2
¼

1:85þ ðdaÞ21551:47
ffiffiffiffi
p

p

1þ ðdaÞ21295:46
ffiffiffiffi
p

p

whose values, though still in favour of the ratio regression coefficient B1, are far from

being strongly conclusive for all values of d and a as the values of BFV *,12.

It is also worth noting that the parameters of the posterior corresponding to the

informative prior Di, denoted by Dijy ¼ Dðai1 þ n1; : : : ; aiD þ nDÞ; i ¼ 1; 2, are a

compromise between the “conceptual” counts ai, j, based on the normal modelMi, and the

sample counts nj, and that the total posterior weight aMi þ n, in turn, is a compromise

between sizes of the “conceptual” sample and the real sample.

Let us now consider the impact of the informative priorDi on the Bayesian bootstrap. If

one simulates from the posterior Dijy according to the Aitkin prescriptions the additional

computational effort required with respect to simulating from DHjy ranges from none (if

the ai, j are specified according to V
* and the assumptionD ¼ d were true) to the inclusion

of one more step in the simulation (if the ai, j are specified according to U or U*). The right

balance between additional computational effort and degree of approximation in the

estimation of the discretized normal model pjðBi;s
2Þ; j ¼ 1; : : : ;D; ðBi;s

2Þ , pðBi;s
2Þ

nested in the Dirichlet prior distribution should be found through a sensible and practical

choice of the ai, j; often, however, the very simple specification V* turns out to be

appropriate. As regards the advantages of using the informative prior Di instead of the

Haldane prior, for all specifications of the ai, j, Di allows us not only to compare different

choices of the population parameter, but also to handle predictive problems without the

well-known difficulties outlined by Rubin (1981) and to avoid the dichotomy between
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working model strategy (or survey sampling approach in simple cases) for the choice of

the population parameter and Bayesian bootstrap approach for the analysis of its posterior

distribution.

2.2. Informative or Noninformative Prior?

Let us now turn to explain the increasingly poor performance of the informative Ericson-

type Dirichlet prior, from now on denoted by DE, as the prior weight on the unobserved

values increases with respect to the noninformative prior DH. This aspect is discussed by

Aitkin (2008) in the income population example and judged to be “surprising”.

We recall that the structure of DE is assumed to be

DE ¼ Dðe; : : : ; eÞ

where all parameters are given by the same “small” constant e and their number, d * say, is

the number of distinct values which the response Y can take in the observed range

[y(1),y(n)], where y(1) and y(n) respectively denote the smallest and the largest observation in

the sample. Recalling also that in the income population example the underlying ignored

parametric model is a slightly perturbed normal or a gamma distribution, the reason for the

increasingly poor performance of DE, as
Pd *

1 e ¼ e £ d * ¼ e increases, appears to be that

DE becomes a more and more “misinformative” prior. Actually, its parameters

(constrained all to take the same value and corresponding to a uniform distribution on

[y(1),y(n)]) more and more conflict with the genuine prior information suggesting to assume

them as roughly proportional to the probability assigned to the d * intervals ðYj 2

d=2; Yj þ d=2� by a suitable normal or gamma distribution.

By way of contrast, let us suppose we adopt an informative priorDi with parameters ai, j
proportional to the probability assigned to the D intervals ðYj 2 d=2; Yj þ d=2� by the

same normal model, denoted by M1, and, successively, by the same gamma model,

denoted by M2, employed by Aitkin (2008) to obtain the confidence intervals which are

compared in Table 1 to the intervals derived from the Bayesian bootstap approach with an

Ericson-type Dirichlet prior and with a Haldane prior. If we denote the two proportionality

constants, or prior degree of belief in the discretized version of the normal model and of

the gamma model, respectively by aM1
and aM2

, then as aMi
; i ¼ 1; 2, decreases to zero, the

Bayesian bootstrap intervals corresponding to Di approximate the intervals obtained by

the Bayesian bootstrap with the Haldane prior, while as aMi
; i ¼ 1; 2, increases, they

respectively approximate the intervals obtained under the assumption of the normal model

and under the assumption of the gamma model. This conclusion can be easily drawn by

interpreting the Dirichlet distribution Di as a special case of the more general Dirichlet

process prior for a response variable which is discrete and finitely supported. Under more

general assumptions an interesting Bayesian resampling plan (proper Bayesian bootstrap)

is described in Muliere and Secchi (1995, 1996).

In other words, the true misleading feature of the informative priorDE is the structure of

its parameters, constrained all to take the same value e, before the amount of the total prior

weight e or the amount of weight assigned to the (d * 2 d ) unobserved values of Y.When a

suitable informative Dirichlet prior, like Di, is adopted the total prior weight simply states

how large is the dispersion around the discretized version of the parametric model
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employed to specify the parameters ai, j, and the range of the corresponding Bayesian

bootstrap results is roughly bounded by the results obtained by assuming the underlying

parametric model, on the one hand, and the results obtained from the Bayesian bootstrap

approach with the Haldane prior, on the other.

One more point to be clarified concerns the appellative of post-data prior reserved to

DE when, as a matter of fact, the Haldane prior used by Aitkin (2008) to implement the

Bayesian bootstrap is itself a post-data prior. The specification of DH requires the

number of distinct values d in the sample to be known in order to realize the great saving

of not considering all the D possible values of Y and, simultaneously, avoid the

nonintegrable spikes in the corresponding posterior, just as the specification of DE

requires the observed range to be known in order to derive the value of d *. Analogously,

the informative prior Di turns out to be a post-data prior whenever the ai, j are specified

by using the maximum likelihood estimate of the underlying parametric model, while Di

is entirely assigned before looking at the data when we adopt, for instance, the

specifications U or U *.

2.3. Constraints on the Multinomial Probabilities

The difficulty of considering constraints on the multinomial probabilities is illustrated by

Aitkin (2008) by reconsidering the normal variance component model assumed by Box

and Tiao (1973, p. 246) for the dyestuff data. This is a model with only two components of

variance, the “within-batch” variances and the “among-batches” variance where,

moreover, the within-batch variances are taken to be the same across batches. For the

same data Aitkin adopts the working model strategy to define the parameters of interest,

derives their estimates from the Bayesian bootstrap approach (with the Haldane prior)

and observes that there is no way in this framework to take the variance homogeneity

into account. Here the arguments in Subsection 2.2 suggest that a way to introduce the

variance homogeneity assumption (and more generally constraints on the multinomial

probabilities) in our Bayesian bootstrap approach (we assume the informative prior Di) is

by graduating the total prior weight aMi
¼
PD

1 ai; j, provided that the parameters ai, j of Di

are specified according to the probabilities assigned to ðYj 2 d=2; Yj þ d=2�;

j ¼ 1; : : : ;D, by the Box and Tiao normal variance component model. This implies

that the more the total prior weight aMi
increases, the more the homogeneity variance

assumption is close to be true since it is inherent in the Box and Tiao model and,

consequently, in its discretized version. Of course this is an indirect way of introducing

constraints on the multinomial probabilities, but it represents one step ahead with respect

to the situation described by Aitkin (2008).

3. Concluding Remarks

This article shows that by connecting the parametric model underlying the choice of the

population parameter and the multinomial model for the response variable Y (that is to say

by nesting such a parametric model in the Dirichlet prior for the multinomial probabilities)

we can give a completely satisfying answer to the first open problem outlined by Aitkin

(2008) and a partial indirect answer to the second one. We have in fact provided a flexible

method to obtain:
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. different likelihoods for different choices of the population parameter which, thus,

can be compared from within our modified Bayesian bootstrap approach, and

. a way to introduce model constraints on the multinomial probabilities.

Moreover the informative prior obtained through the nesting described above, Di, can be

contrasted with the Haldane prior DH more interestingly than the Ericson-type Dirichlet

prior DE. It allows us to explain the poor performance of DE with respect to DH, to

overcome the severe limitations of the Bayesian bootstrap due to the unrealistic

assumption that all the possible distinct values of the response are observed in the sample

ðd ¼ DÞ and to bridge the gap between the Bayesian bootstrap analysis and the fully

parametric model analysis. From a logical point of view the informative prior Di also

bridges the gap between the choice of multinomial model and choice of the population

parameter which represent two completely separate starting points in Aitkin (2008) where

the Bayesian bootstrap analysis is founded on this dichotomy.

Finally, as regards the saving of computational effort, probably a useful compromise

between Di and DE can be realized by suitably reducing from D to d * the number of

parameters in the informative Dirichlet prior Di.
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