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Estimation for subpopulations, or domains, is an important objective in most surveys,
especially in large surveys conducted by national statistical agencies. These agencies practice
design-based domain estimation whenever possible, that is, whenever the sample size is
sufficient and auxiliary information is available. The precision, as measured by the design-
based variance, is a function of these factors. Insufficient precision - leading to a suppression
of estimates - is more likely to happen for minor domains than for major domains. Our starting
point is a statement of the auxiliary information available for a survey. Strong information
provides the material for precise domain estimates. We form a class of domain estimators
based on the given auxiliary information. It includes regression fit estimators as well as
calibration estimators, direct as well as indirect estimators. Direct estimators use only y-values
from inside the domain itself. Indirect estimators borrow strength by incorporating external
y-values thought to be “related.” Borrowing strength is the cornerstone of small area
estimation, a research tradition that is model-dependent, nondesign-based, and not examined
in this article. The concept of borrowing strength is highly useful in that theory. However,
since design-based domain estimation is extensively practiced, we are led to the question:
What can borrowing strength do for design-based domain estimation? The answer is that
borrowing strength is unfruitful in the design-based tradition. We find that for a fixed set of
auxiliary information, the minimum asymptotic design-based variance is obtained with a
direct estimator, derived by calibration rather than by regression fitting.

Key words: Design-based inference; very nearly design unbiased estimation; calibration;
calibrated weights; regression fit; regression residuals.

1. Introduction

It is standard practice in a national statistical agency to provide estimates for the finite

population of interest as well as for a number or subpopulations, called domains or

domains of study. This activity relies on a research tradition known as design-based

domain estimation. The inference is design-based, or randomization theory based. This

inference perspective dominates in most national statistical agencies because of its

objectivity and freedom from model assumptions. Hence national statistical agencies

generally use design-based domain estimation. This is possible when the realized domain

sample size and the available auxiliary information are sufficient to deliver an acceptable
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design-based precision. Failing that, the agency may refrain from publishing an estimate

or resort to model-dependent estimation.

Statistical agencies in several countries have developed, and continue to develop,

software programs for design-based domain estimation. These programs compute design-

consistent estimates for domains, and the corresponding design-based measures of

precision. Examples with this general objective - although details may differ - include

POULPE and CALMAR produced at INSEE in France, Bascula 4.0 created by Statistics

Netherlands, CLAN97 built by Statistics Sweden, and the Generalized Estimation System

(GES) developed by Statistics Canada. Their methodologies are described respectively in

Caron, Deville, and Sautory (1998), Nieuwenbroek and Boonstra (2002), Andersson and

Nordberg (1998), and Estevao, Hidiroglou, and Särndal (1995). The design-based domain

estimation results in this article have a bearing on the further development of software in

national statistical agencies.

Design-based inferences hold independently of the form of the sampled population,

assuming there is no nonresponse. The estimates are viable as long as the domain sample

size and the auxiliary information are sufficient. Failing this, the design-based estimates

start to deteriorate. The conditions for design-based domain estimation are favourable in a

number of European countries, because existing registers provide an excellent source of

auxiliary information.

The article is arranged as follows. Section 2 discusses various aspects of domain

estimation. Section 3 presents the background and the objectives for the article, which is

concerned entirely with design-based domain estimation. The statement of auxiliary

information is particularly important. Sections 4 and 5 present two approaches for

constructing a design-based domain estimator from a fixed set of auxiliary information.

These approaches are calibration and regression fitting. In Section 6, we define a wide

class of estimators that encompasses both approaches. We conclude in Sections 7 to 9 that

a direct estimator created by calibration has minimum asymptotic design-based variance,

for the given auxiliary information. Any estimator in the class that attempts to borrow

strength is less precise. Section 11 reports a Monte Carlo simulation. Its results are in

agreement with the theoretical findings in Sections 7 to 9.

2. Terminology and Discussion

An estimator for a domain is commonly called direct if it only uses values yk of the

variable of interest for those units k that belong to the domain itself. An estimator is

indirect if it also uses values yk for units k outside the domain. The objective of national

statistical agencies is to produce the best possible estimates for required domains given a

specified accuracy and cost. This is generally done by producing design-based estimates as

far as possible. Marker (2001) formulated this objective as follows: “While it is always

possible to produce indirect, model-dependent, estimates for small areas, it is desirable to

produce direct estimators where possible,” and he notes that there are devices to meet this

objective. Stratification, over-sampling and dual-frame estimation may be used to stretch

the applicability of direct estimates. Another avenue is a systematic search for and use of

multivariate auxiliary information at the estimation stage, as in the calibration method

recommended in this article.
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The classification of domains by size plays an important role. Purcell and Kish (1979)

suggest a classification based on the relative size of domains. They distinguish major,

minor, mini, and rare domains. Here we shall use the terms major domain and minor

domain. There is no need to draw a firm line between the two categories. We can take a

size of 10% of the population as a rough dividing line. The same minor domain may be

successfully estimated with design-based domain estimation methods in one survey, while

in another it may not.

A domain accounting for say 5% of the population is minor but in a survey designed to

have a global sample size of n ¼ 30; 000 the expected domain sample size is as large as

1,500 under Simple Random Sampling Without Replacement (SRS). Depending on the

auxiliary information available to strengthen the estimates, this may be sufficient for

design-based estimation.

The asymptotic design-based domain estimation theory in this article is predicated by a

total sample size n tending to infinity and a bias ratio (bias divided by standard deviation)

of the domain estimator that approaches zero with order O(n21=2). In the words of one of

the referees of the article, these estimators can be described as very nearly design

unbiased. Under finite conditions, this theory still works as long as the domain sample size

is not extremely small. For example, the results of our simulations show that the theory

works well when applied to a domain as small as 10% of the population and with an

expected domain sample size around 150.

In the Nordic countries, the existence of excellent registers makes it possible to make

design-based estimates even for minor domains in the population of individuals. One

makes sure that the sample selection and/or the use of auxiliary information will produce

an acceptable precision with design-based domain estimation methods. However, in some

other survey in the same country, that same small domain may end up having so few

sampled units that the publication of design-based estimates is suppressed. If estimates are

to be produced at all, they require small area estimation techniques. Ghosh and Rao (1994)

note: “The terms small area and local area are commonly used to denote a small

geographical area : : : They may also describe a “small domain,” i.e., a small

subpopulation : : : The usual direct survey estimates for a small area, based on data only

from the sample units in the area, are likely to yield unacceptably large standard errors due

to the unduly small size of the sample in the area.”

The design-based direct estimates developed in this article are more sophisticated than

the “usual direct estimates.” Still, if the sample size in the domain is very small, the

extremely large variance of the design-based domain estimator is likely to cause an erratic

estimate not fit for use. To resolve this dilemma, model-dependent small area estimation

has been developed over the last 30 years. Small area estimates usually have much smaller

variance, thus are not prone to be erratic, but they have an unknown bias. Driving forces

behind small area estimation are the desire (i) to provide alternatives when the design-

based domain estimates do not meet standards in regard to precision and fitness for

publication, and (ii) to meet the growing demand for estimates for small parts of a

population, for example, smaller regions of a country. Small area estimation goes as far as

producing estimates for a domain containing no observed values at all.

Small area estimation stands in contrast to the design-based domain estimation, not in

its general objective, which, in both traditions, is to produce useful domain estimates, but
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in the inference perspective. It relies on model-dependent inference. The extent to which

small area estimates can be trusted hinges on the validity of the model assumptions. This is

carefully noted in influential work on small area estimation.

The concept of borrowing strength is the cornerstone of small area estimation. In their

review of small area estimation, Ghosh and Rao (1994) state: “Several powerful statistical

methods with sound theoretical foundation have emerged for the analysis of local area

data. Such methods “borrow strength” from related or similar small areas through explicit

or implicit models that connect the small areas via supplementary data (e.g., census and

administrative records).” For areas with insufficient sample size, Rao (1999) notes that “in

making estimates for such small areas it is necessary to “borrow strength” from related

areas to form “indirect” estimators that increase the effective sample size and thus increase

the precision.”

An attempt at borrowing strength occurs whenever an indirect estimator is used. One

tries to overcome the insufficient design-based accuracy by incorporating y-values coming

not from the domain itself but from outside, and assumed to be related. An attempt at

borrowing strength can be deemed successful if the mean squared error (MSE) is smaller

than that of a direct estimator. Borrowing strength amounts to a pooling of data.

Borrowing strength and data pooling appeal to intuitive statistical instincts: A greater base

of similar or related data should enhance the prospects of a reliable estimation for a

domain.

Nevertheless, design-based domain estimation is widely practiced, in particular by

national statistical agencies. This raises the question: What is the role of borrowing

strength in design-based domain estimation? We prove that within the wide class of

design-consistent estimators presented in Section 6, borrowing strength is not a fruitful

concept. Some estimators in this class are constructed by regression fitting at different

levels, others by calibration. Some are direct estimators. Others are indirect, that is, they

attempt to borrow strength. Their common denominator is the fixed auxiliary information

available for the survey. We conclude that, for the given auxiliary information, any

estimator in the class cannot have smaller asymptotic design-based variance than the best

direct estimator.

It is somewhat of a paradox to find that borrowing strength does not pay off for design-

based domain estimation. That a traditional concept should be productive in one theory

(model-dependent sampling theory) but not so in another (design-based sampling theory)

is not an isolated occurrence. The concept of maximum likelihood is another example, as

we note in the discussion in Section 12. One theory is not “better” than the other. Both are

viable, but under different conditions.

3. Notation, Definitions, and Statement of Objective

We denote the finite population as U ¼ {1; : : : ; k; : : : ;N}: The variable of interest is y

and its value for unit k is yk: One parameter of interest is the population total of y, denoted

by yþ ¼ SUyk: The subscript “þ” of a variable denotes the summation over k [ U: The

notation Y is often used for this purpose, but this article requires sums for a variety of

variables, so the subscript notation “þ” is more efficient.
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Let Ud # U denote a domain of U. We need the domain specific y-variable, yd; whose

value for unit k is given by ydk ¼ ddkyk; where ddk is the domain identifier defined as

ddk ¼ 1 for k [ Ud and ddk ¼ 0 for k � Ud: Consequently, ydk ¼ yk for k [ Ud and

ydk ¼ 0 for k � Ud: The main parameter of interest in this article is the domain total of the

variable y, SUd
yk; which is the population total of the variable yd: That is, ydþ ¼ SUd

yk ¼

SUydk:

A probability sample s is drawn from U with a given sampling design. The known non-

zero inclusion probability for unit k is pk ¼ Pðk [ sÞ and the sampling weight of unit k is

ak ¼ 1=pk: The variable of interest is observed for all sample units, so the available y-data

are {yk : k [ s}: We assume no nonresponse. For every k [ s; we also observe

membership in the domain. The unbiased, but often not very efficient Horvitz-Thompson

(HT) estimator of ydþ is Ssakydk; which we denote by yd%p ¼ Ssakydk: Our notation for

sample weighted sums uses the following principle: the index % indicates a weighted sum

over the units of the sample and the index p indicates sample weighting with ak ¼ 1=pk:

The first index, in this case d, identifies the variable, yd; whose observed values ydk are

weighted and summed. The HT estimator is design unbiased for its population analogue,

so Eðyd%pÞ ¼ ydþ: The expected value operation removes the index p and the circle

around þ ; the result is the unweighted population sum ydþ ¼ SUydk:

Domain estimation encounters two practical problems: (i) the sampling frame lists the

population units but fails to identify the units belonging to the domain of interest; (ii) when

the domain is small, the realized domain sample may be inadequate to meet the precision

requirements. Here (i) implies that the size and other features of the domain are unknown.

If the domain can be identified from the frame, action can be taken to obtain adequate

sample size and/or auxiliary information for the domain and thereby an adequate precision

for design-based domain estimates. Included in (i) is the difficulty that the domain code in

the frame may be erroneous for some units, so the actual domain membership for these

units is known only after they have been observed. Such classification errors are frequent

in business surveys. In this article we deal with (i) and do not address (ii). We assume the

domain sample size is not excessively small, and use design-based inference.

The extensive literature on small area estimation addresses (ii) by model-dependent

inference.

The use of auxiliary information is essential for efficient estimation. It consists of

information on the variables that make up the vector x of dimension J $ 1: Its value for

unit k is denoted by xk: In this article, auxiliary information is viewed as consisting of two

components: Knowledge of aggregated values xk for one or more population groups called

control groups, calibration groups or C-groups and knowledge of individual values xk for

the sampled units k [ s: The C-groups define the C-level. Our general notation for a

calibration group is UC: We need the C-group indicator, defined by dCk ¼ 1 for k [ UC

and dCk ¼ 0 for k � UC: For all k [ U; we define xCk ¼ dCkxk:

The auxiliary information about UC has the following two components:

i) The auxiliary vector total xCþ ¼ SUxCk ¼ SUC
xk is known.

ii) For every k [ s; the vector value xk and membership or not of k in UC are known.

Auxiliary information can come from different sources: the survey itself, a census,

administrative registers, or a matching of such registers. The conditions (i) and (ii) are
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present in two important practical circumstances: (a) The auxiliary vector total is

“imported” from a reliable source unrelated to the survey itself; (b) There exists a

population list, k ¼ 1; 2; : : : ;N; with an xk-vector attached to every unit k, and this list

serves as a list frame for drawing the sample s:

Consider first the case of an imported total, xCþ: It must relate to the same concept as xk

in (ii). For example, xCþ must not be an out-of-date, erroneous total for the vector xk: In a

survey on individuals, the C-groups may be defined by a crossing of regions with other

categories. This happens in important surveys in North America. For example, the

Canadian Labour Force Survey imports population figures (which are accurate census

projections) for C-groups based on age category by sex by region (within a Canadian

province). For each of these groups, we know the number of individuals from the census

projection. The implied definition of xk is xk ¼ 1 for all individuals k. For group UC; the

auxiliary total is the group size NC: But xk need not be that elementary. If the totals in

question can be imported, xk may contain continuous as well as categorical variables.

Consider the case of a population list providing the information (i) and (ii), as is typical

in surveys of individuals and households in several European countries, notably in the

Nordic countries. The Register of the Total Population contains information on all persons

k in the population (the frame) U: Consider the vector xk containing the variables “years of

education” and “salary”, and consider a broad occupation category UC: For every

individual k [ U; and hence for every k [ s; we know both the vector value xk and

membership or not in UC: Requirement (ii) is met. Suppose the objective is to estimate ydþ

for a more narrow occupation category, Ud; contained in UC but such that membership in

Ud is not recorded on the frame. At the design stage we know which units k [ U are in

UC; but not which ones are in Ud: Had this latter information been available, we could

have designed the survey with Ud as a stratum with an adequate sample size, or as a

C-group with a known total of a strong auxiliary vector. But we do not have access to

xdþ ¼ SUd
xk: However, by summing the xk on the frame we compute the higher level

total xCþ ¼ SUC
xk; so requirement (i) is met. This information is still valuable in

estimating for Ud: Ideally, we would like UC ¼ Ud; as Estevao and Särndal (1999) note,

but we do not usually have auxiliary information at this level. In practice, we must often be

content with information at a level above the domain.

In many surveys, the objective is to estimate the totals ydþ of a set of domains Ud;

d ¼ 1; : : : ;D: These may form a partition of the population U, as is often the case when

the domains are for example the regions of a country. This partitioning into domains Ud is

called the d-level. We focus, however, on one particular domain, Ud:

In Sections 4 to 9 and 11, we examine the case where UC is a C-group containing the

domain of interest Ud; so that Ud # UC # U: In Section 10, we cover the case where Ud

intersects several calibration groups.

Consider the case Ud # UC # U: We know the C-group x-total xCþ ¼ SUxCk: By

contrast, the domain x-total xdþ ¼ SUddkxk is unknown unless UC ¼ Ud: Special cases to

be examined include: (i) The domain Ud is itself a C-group, below the level of the entire

population: Ud ¼ UC , U; (ii) The whole population is a C-group, above the level of the

domain: Ud , UC ¼ U: The individual value xk is known for all sampled units, k [ s; as

is membership or not of k in UC: That is, we know xk for every k [ sC ¼ s > UC (and for
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every k [ sd ¼ s > Ud). We can form the HT estimator of the known total xCþ as

xC%p ¼ SsakxCk ¼ SsC
akxk: It is unbiased since EðxC%pÞ ¼ xCþ:

We formulate the estimation problem as follows: For the domain of interest Ud such that

Ud # UC # U; we seek to estimate the unknown domain y-total, ydþ ¼ SUd
yk ¼ SUydk:

Available for this purpose are the data {ðxk; ykÞ : k [ s}; the C-total xCþ; and its unbiased

estimate xC%p: What is the best use of this information for estimating ydþ? The answer is

given in Section 8. First, we outline two reasonable approaches, the calibration approach

(Section 4) and the regression fit approach (Section 5). Both approaches can be carried out

in a variety of ways. For the same auxiliary information, we can thus create a variety of

estimators. Regression fitting leads to generalized regression (GREG) estimators.

Calibration, as presented for example in Deville and Särndal (1992), is also a well-known

technique. In Section 6 we show that the calibration and the regression fitting approaches

can be viewed as part of a more general class of estimators. The optimal estimator in that

class is a calibration estimator.

4. The Calibrated Weights Approach

The calibrated weights (CALWEIGHT) approach relies on a system of calibrated weights,

wk ¼ akgk for k [ s; computed with the given auxiliary information (i) and (ii) in Section

3. We apply these weights to the domain variable ydk ¼ ddkyk: This technique is used in

CLAN97 and in GES. The resulting estimator is

ŷdþ ¼
X

s
wkydk ð4:1Þ

where wk ¼ akgk and

gk ¼ 1 þ ðxCþ 2 xC%pÞ
T

X
s
akzkxT

Ck

� �21

zk

where xCk ¼ dCkxk; xCþ ¼ SUxCk is the known C-total, xC%p is the corresponding HT

estimator, and zk is a J-vector satisfying the following conditions: zk can have any value,

including 0, as long as it is not 0 for all k [ s and ðSsakzkxT
CkÞ is nonsingular. The use of an

instrument vector zk for the purposes of calibration is discussed for example in Estevao

and Särndal (2000) and Deville (2002). For any such zk; the weights wk are calibrated to

the C-level. That is, Ssc
wkxk ¼ SswkxCk ¼ xCþ where sC ¼ s > UC:

We can write the CALWEIGHT estimator (4.1) as

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T R̂ ð4:2Þ

where R̂ ¼ ðSsakzkxT
CkÞ

21ðSsakzkydkÞ: We note some of its properties:

i) In (4.2), we have Eðyd%pÞ ¼ ydþ and the expectation of the other term tends to zero,

making ŷdþ design-consistent and very nearly design unbiased for ydþ:

ii) In practice, the same weight system, wk ¼ akgk for k [ s; is often used to produce

estimates for any domain Ud # UC; it is called a uni-weight system in Estevao and

Särndal (1999).

iii) Estimator (4.1) is direct because the only yk values used are for units inside the

domain.
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iv) Different choices of zk give different weights gk: The natural choice for zk; although

not necessarily the best one, is to take zk ¼ xCk:

5. The Regression Fit Approach

The regression fit (REGFIT) approach starts by computing a sample-based regression

vector, denoted B̂; for the regression of y on the auxiliary vector x. The regression fit can

be carried out at different levels, leading to different B̂: The estimator of ydþ is built by the

principle

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T B̂ ð5:1Þ

This leads to a reduction in variance, compared to the simple HT estimator yd%p ¼

Ssakydk; if there exists a negative correlation between the HT term yd%p and the regression

adjustment term ðxCþ 2 xC%pÞ
T B̂; which is a very nearly unbiased estimate of zero. The

size of this reduction depends on (a) the given C-level, (b) the level of the regression fit

that produces B̂; and (c) the correlation between y and x. The C-level is fixed by the survey

conditions and cannot be altered. It is better if the C-level is close to the d-level. Ideally,

UC ¼ Ud so that xCþ 2 xC%p ¼ xdþ 2 xd%p; assuming that xdþ is known. If the C-level

is considerably above the d-level, the effect of the adjustment term may be small.

Occasionally, it can lead to a variance even larger than that of yd%p; which uses no

regression adjustment at all. The level at which the fit is carried out also has an

impact on the variance of the estimator. We now consider different options for this

regression level.

5.1. Regression fit at the domain level (REGFIT/DOM)

The motivation for this fit is that it recognizes differences between domains. One can argue

that the domains have their own special characteristics and this local variation should be

reflected in the underlying model. Therefore, we define a general regression fit at the

domain level through the coefficient

B̂sd
¼

X
s
akzkxT

dk

� �21 X
s
akzkydk

� �
ð5:2Þ

where ydk ¼ ddkyk; xdk ¼ ddkxk and zk is an instrument vector of the same dimension as xk:

The natural choice is zk ¼ xk; leading to an ordinary least squares fit. The choice zk ¼

xk=ck; for specified positive constants ck; corresponds to a generalized least squares fit.

Other possibilities exist for zk: Setting B̂ ¼ B̂sd
in (5.1), we get the estimator

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T B̂sd

ð5:3Þ

We can express (5.3) as the weighted sum

ŷdþ ¼
X

s
ak{1 þ ðxCþ 2 xC%pÞ

T
X

s
akzkxT

dk

� �21

zk}ydk

Units outside the domain do not contribute to the sum, so (5.3) is a direct estimator.
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This estimator is identical to the CALWEIGHT estimator (4.1) when the domain itself is

the calibration group (Ud ¼ UC).

5.2. Regression fit at the full sample level (REGFIT/SAMPLE)

The motivation for this fit is to borrow strength by relying also on y-data from outside the

domain itself to strengthen a potentially weak regression fit. To exploit this argument to its

maximum extent, we should fit the regression of y on x at the full sample level, using the

data ðxk; ykÞ for k [ s: This gives

B̂s ¼
X

s
akzkxT

k

� �21 X
s
akzkyk

� �

The natural choice for zk is zk ¼ xk; but other possibilities exist. Estimator (5.1) now

becomes

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T B̂s ð5:4Þ

When expressed as a linearly weighted sum of yk; (5.4) becomes

ŷdþ ¼
X

s
ak{ddk þ ðxCþ 2 xC%pÞ

T
X

s
akzkxT

k

� �21

zk}yk

In general, this produces weights for all units k [ s; those inside as well as those outside

the domain, making estimator (5.4) an indirect estimator that attempts to borrow strength

by using y-data for the entire sample.

Other options exist. We can fit the regression at some intermediate level, following a

pooling of data considered to come from similar domains. Such borrowing strength is

considered in papers on small area estimation. An example occurs if the fit is carried out at

the C-level. The estimator (5.1) then becomes

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T B̂sC

where B̂sC
is given by (5.2) if we replace ydk ¼ ddkyk and xdk ¼ ddkxk by yCk ¼ dCkyk and

xCk ¼ dCkxk; respectively.

6. A General Class of Design-Based Domain Estimators

The CALWEIGHT and REGFIT approaches are built on different arguments. Both are

sound in that they yield design-consistent and very nearly design unbiased estimators of

ydþ: What is less evident is that they can differ considerably with respect to variance. We

show this both by theoretical results (derivation of variances in Sections 6 to 9) and by

empirical results (Monte Carlo simulation in Section 11).

Consider an auxiliary vector xk for which we have the information (i) and (ii) in

Section 3. We form a class of very nearly design unbiased estimators of ydþ that includes

the CALWEIGHT and the REGFIT approaches:

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T Q̂MLz ð6:1Þ
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with

Q̂MLz ¼
X

s
akzkxT

Mk

� �21 X
s
akzkyLk

� �
ð6:2Þ

where xMk ¼ dMkxk; yLk ¼ dLkyk; and dMk and dLk are the respective identifiers associated

with two new subpopulations, UM # U and UL # U: By the principle used earlier, the

identifier dMk is 1 for all k inside UM and 0 for all k outside, with a similar definition for

dLk: The fixed entities in the class (6.1) are the population U, the C-group UC; and the

domain Ud: Three factors that enter into Q̂MLz remain to be specified. They are the

population levels UM and UL and the instrument zk:

It is easy to see that the class of estimators defined by (6.1) covers the CALWEIGHT

estimator in Section 4 and the REGFIT estimators in Section 5. The CALWEIGHT

estimator (4.1) is characterized by UM ¼ UC and UL ¼ Ud: The REGFIT estimator (5.1)

is characterized by UL ¼ UM: The REGFIT/DOM estimator (5.3) is obtained by UL ¼

UM ¼ Ud: The REGFIT/SAMPLE estimator (5.4) corresponds to UL ¼ UM ¼ U:

REGFIT at the level of the fixed C-group is obtained by UL ¼ UM ¼ UC:

The estimator (6.1) for ydþ contains the unbiased HT estimator yd%p as one term. Why

not use more of the available y-data in that term? Suppose that instead of yd%p in (6.1) we

use ðNd=NCÞyC%p; where yC%p ¼ SsakyCk is the HT estimator of yCþ ¼ SUyCk; and Nd

and NC are the sizes of Ud and UC; which we assume known. The resulting estimator is not

design-consistent and thus beyond the scope of this article. It is biased for ydþ except in the

unlikely circumstance that yCþ=NC ¼ ydþ=Nd:

The adjustment term ðxCþ 2 xC%pÞ
TQ̂MLz in (6.1) is a very nearly unbiased estimator of

zero formed with the available auxiliary total xCþ: Consequently, estimator (6.1) is

design-consistent and very nearly design unbiased. We can measure the design-based

variance of ŷdþ; as discussed in the next section.

7. Design Measurability

The analysis steps for any design-based estimator include: (a) obtaining an (approximate)

expression for its design-based variance, and, (b) deriving a design-consistent estimator of

that variance from the sample data. Having carried out steps (a) and (b), we can make

inferences about the finite population entirely on the basis of the randomization induced by

the sampling design. The sampling literature then calls the procedure design measurable.

Design measurability, a cornerstone of design-based reasoning, is possible when the bias

ratio of the estimator tends to zero with increasing sample size. In the cases considered

here, the bias ratio is Oðn21=2Þ: This has important implications for confidence intervals. In

repeated samples, the interval centered on the point estimate and extending ^1.96 times

the estimated standard deviation has a coverage rate close to the nominal 95%, even for

modest sample sizes. This has been borne out by many empirical studies.

Design measurability enables us to obtain, from the sample itself, an objective

measure of the precision of the estimates. In the words of Hansen, Hurwitz, and Madow

(1953, p 8–9), “the only insurance we have of the adequacy of the sample is the careful

use of probability sampling methods and it requires probabilities of selection that are

known.” Cochran (1977, p 12–15, 160–162, 165–167), discusses design measurability
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and the importance of a small bias ratio. He notes that a bias ratio that is Oðn21=2Þ will

not significantly perturb the coverage properties of design-based confidence intervals.

These ideas are also important in Kish (1965), Hansen, Madow, and Tepping (1983) and

Särndal, Swensson, and Wretman (1992).

We now establish design measurability for ŷdþ defined by (6.1). The error (the deviation

from the target parameter) of ŷdþ is

ŷdþ 2 ydþ ¼ yd%p 2 ydþ þ ðxCþ 2 xC%pÞ
T Q̂MLz ð7:1Þ

where Q̂MLz is given by (6.2). An obstacle in the analysis of (7.1) is that ðxCþ 2

xC%pÞ
T Q̂MLz is a complex nonlinear term. We therefore find a close linear approximation

to ŷdþ 2 ydþ and use it to derive the approximate variance of ŷdþ: The nonlinearity of

ðxCþ 2 xC%pÞ
T Q̂MLz ceases to be an obstacle if we can replace, with little error, the

random Q̂MLz by a constant vector. This is done by centering Q̂MLz on the constant,

nonrandom vector QMLz ¼ ðSUzkxT
MkÞ

21ðSUzkyLkÞ to which Q̂MLz converges in

probability when the sample and the population increase in size. Now in (7.1) replace

Q̂MLz by QMLz þ ðQ̂MLz 2 QMLzÞ and rearrange terms. We get

ŷdþ 2 ydþ ¼ eC%p 2 eCþ 2 ðxC%p 2 xCþÞ
T ðQ̂MLz 2 QMLzÞ ð7:2Þ

where eC%p ¼ SsakeCk and eCþ ¼ SUeCk with

eCk ¼ ydk 2 xT
CkQMLz ð7:3Þ

It follows that eCk ¼ yk 2 xT
k QMLz for k [ Ud; eCk ¼ 2xT

k QMLz for k [ UC 2 Ud; and

eCk ¼ 0 for all k � UC: It is clearly understood that eCk is also a function of the domain,

but for simplicity of notation we only include the subscript for the C-group since the

domain Ud is given and we examine the properties of ŷdþ for different C-groups. We

progress from (7.1) to (7.2) by centering Q̂MLz on its constant counterpart QMLz: This

creates a term of lower order of importance: In (7.2), the two differences eC%p 2 eCþ and

xC%p 2 xCþ have (i) a zero expectation, and (ii) the same order in probability, because

when multiplied by N 21; each is Opðn
21=2Þ under general conditions. The term ðQ̂MLz 2

QMLzÞ is close to 0 to the same order. Then the product N 21ðxC%p 2 xCþÞ
T ðQ̂MLz 2 QMLzÞ

is Opðn
21Þ; thus of lower order than (and usually negligible compared to) N 21ðeC%p 2

eCþÞ; and the latter term alone provides the desired close linear approximation:

N 21ð ŷdþ 2 ydþÞ ¼ N 21ðeC%p 2 eCþÞ þ Opðn
21Þ < N 21ðeC%p 2 eCþÞ

As a result, the bias and the variance of ŷdþ can now be closely approximated by the easily

derived counterparts for the linear statistic eC%p: Because EðeC%pÞ ¼ eCþ; the bias of ŷdþ

is approximately zero. An exact expression for the bias of ŷdþ is, from (7.2),

Biasð ŷdþÞ ¼ Eð ŷdþÞ2 ydþ ¼ 2E{ðxC%p 2 xCþÞ
T ðQ̂MLz 2 QMLzÞ}

For the bias we have N 21BiasðŷdþÞ ¼ Oðn21Þ; and for the variance N 22VarðŷdþÞ ¼

Oðn21Þ: Thus the bias ratio of ŷdþ is Oðn21=2Þ; and an essential requirement of design-

based inference is thereby met. Even for modest sample sizes n, this small bias does not

seriously perturb the validity of a design-based confidence interval. The interpretation of

these asymptotics is as follows. There is a series of growing populations U and growing
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samples s: The subpopulations Ud; UC; UM and UL; also grow, at constant rates. The main

conclusions of this section are summarized in the following result.

Result 7.1 The estimator ŷdþ given by (6.1) is design measurable. Its bias ratio is

Oðn21=2Þ under general conditions. Its design-based variance, VarðŷdþÞ; is closely

approximated by the asymptotic variance

VarðeC%pÞ ¼
XX

U

akal

akl

2 1

� �
eCkeCl

where eCk is given by (7.3), akl ¼ 1=pkl; pkl is the joint inclusion probability of units k and

l under the given design, akk ¼ 1=pk and SSU denotes the double sum Sk[USl[U :

Our simulations reported in Section 11 indicate that for domains and samples of rather

modest sizes, the bias is small and that the approximation in Result 7.1 succeeds well in

measuring the variance. The estimator ŷdþ is design-consistent and very nearly design

unbiased, in that its bias ratio tends to zero as strongly as Oðn21=2Þ:

8. Achieving Minimum Asymptotic Variance

In constructing ŷdþ defined by (6.1) we used information about a fixed C-group, UC; with

its known auxiliary vector total xCþ: Now (6.1) depends, through Q̂MLz given by (6.2), on

the two levels UM and UL and on the instrument vector zk: Section 7 showed that

VarðŷdþÞ < VarðeC%pÞ; where eC%p ¼ SsakeCk with eCk ¼ ydk 2 xT
CkQMLz: We now find

the vector QMLz that minimizes VarðeC%pÞ: That is, we look for the optimal choices of UM;

UL and zk: This search is facilitated by noting the presence here of two transformed

variables, the vector variable xC with value xCk ¼ dCkxk and the domain variable yd with

value ydk ¼ ddkyk; both defined for every unit k [ U: In (6.1), xC%p and yd%p are the

unbiased HT estimators of the totals of xCk and ydk respectively. After dropping the lower

order term in (7.2), we have a linear statistic that approximates ŷdþ; namely,

ŷ0
dþ ¼ ed%p þ xT

CþQMLz ¼ yd%p 2 ðxC%p 2 xCþÞ
T QMLz

The minimization of the variance of ŷ0
dþ proceeds as in Montanari (1987), although our

variables are different. Because QMLz is a constant vector, and yd%p and xC%p are HT

estimators, we get

Varð ŷ0
dþÞ ¼ Varð yd%pÞ þ QT

MLzVarðxC%pÞQMLz 2 2CovðxC%p; yd%pÞ
T QMLz ð8:1Þ

where VarðxC%pÞ ¼ SSUð
akal

akl
2 1ÞxCkxT

Cl and CovðxC%p; yd%pÞ ¼ SSUð
akal

akl
2 1ÞxCkydl:

The minimum of the quadratic form (8.1) with respect to QMLz is realized for QMLz ¼ QCdz

where

QCdz ¼ {VarðxC%pÞ}
21CovðxC%p; yd%pÞ ð8:2Þ

assuming VarðxC%pÞ is nonsingular. Thus, optimal choices are UM ¼ UC; UL ¼ Ud and

zk ¼ zUk where

zUk ¼
X

l[U

akal

akl

2 1

� �
xCl ð8:3Þ
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Because QCdz is unknown, ŷ0
dþ with QMLz ¼ QCdz is not a proper estimator. In practice, we

must replace it by a sample-based vector. Let Q̂Cdz be the sample-based analogue of QCdz;

found by replacing the variance and the covariance on the right-hand side of (8.2) by their

usual sample-based (and unbiased) counterparts. Consequently, Q̂Cdz ¼ ðSsakzkxT
CkÞ

21 �

ðSsakzkydkÞ with zk ¼ zsk given by

zsk ¼ a21
k

X
l[s

ðakal 2 aklÞxCl ð8:4Þ

This leads us to the following result.

Result 8.1 For the given auxiliary information (i) and (ii) in Section 3, the asymptotically

optimal estimator of ydþ in the class (6.1) is

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T Q̂Cdz

where Q̂Cdz ¼ ðSsakzkxT
CkÞ

21ðSsakzkydkÞ with zk ¼ zsk ¼ a21
k Sl[sðakal 2 aklÞ xCl:

This is a CALWEIGHT estimator of the form given by (4.2). None of the REGFIT

options in the class (6.1) has a smaller asymptotic variance unless UC ¼ Ud; in which case

CALWEIGHT and REGFIT/DOM produce the same asymptotically optimal estimator for

zsk given by (8.4).

This raises the question whether software such as GES (Statistics Canada) and CLAN97

(Statistics Sweden), rely on the optimal procedure in Result 8.1. The answer is “they come

fairly close.” They compute estimator (6.1) with UM ¼ UC; UL ¼ Ud and zk ¼ xCk: Of

these, UM ¼ UC and UL ¼ Ud are optimal choices, but zk ¼ xCk is not. The loss of

efficiency may be small in most cases, but exceptions could exist.

In estimation for the whole population U; the asymptotically optimal estimator has

been carefully examined in, for example, Casady and Valliant (1993), Montanari (1998,

2000), and Montanari and Ranalli (2002). It is known to be unstable, especially for

designs more complex than SRS. Here we encounter the asymptotically optimal

estimator in the context of domain estimation. The discussion in the cited references is

relevant here too. The choice zk ¼ zsk ¼ a21
k

P
l[sðakal 2 aklÞ xCl can lead to an unstable

estimator. A prudent approach is to use zk ¼ xCk in all cases.

9. An Analysis of Stratified Simple Random Sampling

Expressions (8.2) and (8.3) for the optimal QCdz and zk depend on the sampling

design. The cumbersome double sums in (8.2) simplify for some designs of practical

interest. These include Poisson sampling and Stratified Simple Random Sampling

(STSRS). For Poisson sampling, QCdz simplifies because akl ¼ akal for all k – l; so

only off-diagonal terms remain in the double sums in (8.2). Almost as simple is

STSRS. Because of its importance in practice, we illustrate the optimal form of QCdz

and zk for STSRS.

Suppose that the population U of size N is divided into H strata, Uh; h ¼ 1; : : : ;H:For Uh;

let the sampling rate be f h ¼ nh=Nh; N ¼ S
H
h¼1Nh; and set Kh ¼ Nh

Nh21
ð 1
f h
2 1Þ < 1

f h
2 1:
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Using (8.2) and (8.3), we obtain after some algebra

QCdz ¼
XH

h¼1
Kh

X
Uh

ðxCk 2 �xCUh
ÞxT

Ck

n o� �21 XH

h¼1
Kh

X
Uh

ðxCk 2 �xCUh
Þydk

n o� �
ð9:1Þ

The Q-vector that minimizes the asymptotic variance under STSRS is therefore

characterized by UM ¼ UC; UL ¼ Ud and zk ¼ zUk ¼ KhðxCk 2 �xCUh
Þ for k [ Uh;

where �xCUh
¼ SUh

xCk=Nh is the mean of xCk ¼ dCkxk in stratum Uh:Unless UC is identical

to Uh; �xCUh
differs from �xUCh

¼ SUCh
xk=NCh; the mean of xk for the NCh units in UCh ¼

UC > Uh: These two means are related by �xCUh
¼ PCh �xUCh

; where PCh ¼ NCh=Nh: The

asymptotically optimal estimator of the domain total is

ŷdþ ¼ yd%p þ ðxCþ 2 xC%pÞ
T Q̂Cdz ð9:2Þ

It is obtained by replacing QCdz given by (9.1) by its sample-based analogue,

Q̂Cdz ¼
XH

h¼1
�Kh

X
sh

ðxCk 2 �xCsh
ÞxT

Ck

n o� �21 XH

h¼1
�Kh

X
sh

ðxCk 2 �xCsh
Þydk

n o� �
ð9:3Þ

where �Kh ¼ nh

nh21
1
f h
ð 1
f h
2 1Þ < 1

f h
ð 1
f h
2 1Þ and �xCsh

is the mean of xCk ¼ dCkxk in the simple

random sample sh from Uh: Properties of (9.2) are: (i) it is a direct estimator, and (ii) it has

the form of the CALWEIGHT estimator (4.2) with the instrument vector zk ¼ zsk obtained

from (8.4) as

zsk ¼
nh

nh 2 1

1

f h

2 1

� �
ðxCk 2 �xCsh

Þ ð9:4Þ

for k [ sh; h ¼ 1; : : : ;H: The results of this section are used for the simulation in Section

11 in the special case H ¼ 1: Formulas (9.1) and (9.3) have familiar appearances. Rao

(1994) and Montanari (1998, 2000) show them in the more usual form when xk and yk take

the place of our variables xCk and ydk:

10. Domains That Intersect Several Calibration Groups

The results in Sections 4 to 9 concern a domain of interest wholly contained in one

C-group. Often in practice, a domain of interest cuts across several C-groups, each having

a known auxiliary vector total. The results continue to apply if the following modifications

are made.

Let the population U be composed of I C-groups, denoted UCi
; i ¼ 1; : : : ; I:

The domain of interest Ud may intersect several of them. Let dCik ¼ 1 if k [ UCi
and 0

otherwise, for i ¼ 1; : : : ; I: For simplicity suppose the auxiliary value xk is scalar, but

more generally, xk can be a vector. Define xCik ¼ dCikxk:

The auxiliary information is stated as follows, for i ¼ 1; : : : ; I :

i) For UCi
the auxiliary total xCiþ ¼ SUCi

xk ¼ SUxCik is known

ii) For every k [ s; the value xk and membership or not of k in UCi
are known.
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The theory in Sections 4 to 9 applies if we take UC ¼ U and xCk ¼ xk; where xk ¼

ðxC1k; : : : ; xCik; : : :; xCIkÞ
T ; of dimension I: Note that xþ ¼ SUxk ¼ ðxC1þ; : : : ;

xCiþ; : : : ; xCIþÞ
T ; the vector of known x-totals.

To illustrate, suppose that STSRS is used (with notation as in Section 9) in such a way

that each stratum is identical to a C-group, a case often found in practice. That is, each

stratum Uh coincides exactly with one of the calibration groups UCi
: We have I ¼ H; and

xk ¼ ðd1kxk; : : : ; dhkxk; : : : ; dHkxkÞ
T ; where dhk is now the identifier of stratum Uh:

The required information (i) consists of the stratum totals SUh
xk; for h ¼ 1; : : : ;H:

A derivation using (9.3) shows that the weights in the minimum variance estimator (9.2)

are wk ¼ akgk with ak ¼ Nh=nh ¼ 1=f h and gk ¼ 1 þ Dhðxk 2 �xsh
Þ for k [ sh; with

Dh ¼ ð�xUh
2 �xsh

Þ=S2
xsh
; S2

xsh
¼ Ssh

ðxk 2 �xsh
Þ2=nh; �xsh

¼ Ssh
xk=nh and �xUh

¼ SUh
xk=Nh:

The asymptotically optimal estimator of ydþ becomes

ŷdþ ¼
XH

h¼1

Nh

nh

X
sh

ydk þ
XH

h¼1

Nhð�xUh
2 �xsh

ÞR̂h ð10:1Þ

with R̂h ¼ ð1=nhÞSsh
ðxk 2 �xsh

Þydk=S2
xsh
: For the same information, no other estimator in our

class can have a smaller asymptotic variance. Fitting the regression with the aid of the

whole y-data set is tempting, at first sight. But for estimating ydþ this gives the less

efficient (although still design-consistent) alternative

ŷdþ ¼
XH

h¼1

Nh

nh

X
sh

ydk þ
XH

h¼1

Nhð�xUh
2 �xsh

ÞB̂h ð10:2Þ

with B̂h ¼ ð1=nhÞSsh
ðxk 2 �xsh

Þðyk 2 �ysh
Þ=S2

xsh
: One notes that synthetic estimators such as

ŷdþ ¼
XH

h¼1

xdhþB̂h or ŷdþ ¼
XH

h¼1

Ndh{�ysh
þ ð�xUh

2 �xsh
ÞB̂h}

do not qualify under the auxiliary information requirements (i) and (ii). They require the

more extensive auxiliary information xdhþ ¼ SUdh
xk; h ¼ 1; : : : ;H (for the former), and

Ndh and xhþ ¼ SUh
xk; h ¼ 1; : : : ;H (for the latter), where Udh ¼ Ud > Uh and Ndh its

size. Their variance may be lower than that of (10.1) or (10.2) but their mean squared error

may be larger because of the squared bias component.

11. Simulation

This section describes our simulation for a given domain Ud , U: We study estimators

ŷdþ in the class defined by (6.1). This class is characterized by the fixed set of auxiliary

information given by (i) and (ii) in Section 3. For this fixed information, the members of

the class correspond to the different choices of UM; UL and zk: The CALWEIGHT

estimators, obtained when UM ¼ UC and UL ¼ Ud; have the form (4.2). The optimal

CALWEIGHT estimator is the one with zk ¼ zsk specified by (8.4). The various REGFIT

alternatives in Section 5 are obtained when UM ¼ UL: When UC ¼ Ud; the CALWEIGHT

and REGFIT/DOM estimators are the same.

One objective of the simulation is to ascertain whether the CALWEIGHT estimator has

smaller variance than all REGFIT alternatives when zk ¼ zsk and UC . Ud: The backing

for this supposition is the asymptotic theory in Section 8, but we expect to find it to hold
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also for the finite conditions in this simulation. Other questions that can be at least partially

answered by simulation (in contrast to analytic derivations) are:

Q1. Is the variance of the optimal CALWEIGHT estimator much smaller than that of the

REGFIT alternatives, or are differences only negligible?

Q2. To what extent is the variance of the optimal CALWEIGHT estimator sensitive to

the level of the C-group UC that contains the given domain Ud? As Estevao and Särndal

(1999) note, the asymptotic variance is minimal when UC ¼ Ud and it increases steadily

as UC expands from Ud to U.

Our conclusions in regard to Q1 and Q2 are only indicative. More complete answers about

these issues would require simulations on many different populations, which is beyond the

scope of this article.

Our simulation consisted in drawing repeated SRS samples of size n ¼ 1; 500 from an

artificially generated population of size N ¼ 5; 000: We used the following two-step

procedure to create a finite population consisting of N ¼ 5; 000 pairs ðxk; ykÞ; k ¼

1; 2; : : : ; 5; 000; where Gamma(a,b) refers to the gamma distributed random variable

with density function f ðxÞ ¼ {GðaÞba}21xa21e2x=b for x . 0 :

(1) First, create the 5,000 xk values as independent realizations of Gamma(2,5).

Consequently, the mean of the resulting xk values will be roughly equal to the

theoretical mean, mx ¼ ab ¼ 10; and their variance roughly equal to ab2 ¼ 50:

(2) Then, given xk; create a corresponding value yk as one realization of

GammaðAk;BkÞ; where the parameters Ak and Bk are chosen so that yk

conditionally on xk has expected value mykjxk
¼ aþ bxk þ Kxkðxk 2 mxÞðxk 2 3mxÞ

and variance s2
ykjxk

¼ s2xk; k ¼ 1; 2; : : : ; 5; 000: That is, Ak ¼ ðmykjxk
Þ2=s2

ykjxk
and

Bk ¼ s2
ykjxk

=mykjxk
:

We used a ¼ 20; b ¼ 1; K ¼ 0:001; s2 ¼ 5; and we have mx ¼ 10 by the first step.

The mean and the standard deviation of the 5,000 x-values were 10.01 and 6.97,

respectively. The corresponding moments for the 5,000 y-values were 30.01 and 9.80,

respectively. The relationship between y and x is slightly curved as a result of using a K

different from but near zero. This is to avoid an argument that some of the simulation

results may happen just because of a population model with a perfect linear regression.

Figure 1 shows the scatter plot of the 5,000 points and the least squares linear regression

line with slope 0.95 and intercept 20.54. It clearly indicates the nonlinear pattern of the

bivariate plot. The properties that we wish to illustrate are independent of the form of the

relation between y and x. The correlation coefficient between y and x, computed on the

5,000 generated pairs ðxk; ykÞ; is 0.67. We carried out the same simulation on populations

generated with other values of K close to 0. The principal conclusions are the same, so

those simulation results are not reported here.

Given the population U ¼ U5000; we then proceeded to create four other C-groups, the

smallest of which is the domain of study, Ud: We first created UC ¼ U2500 as an SRS

selection of size 2,500 from U5000: Then, we obtained UC ¼U1000 as an SRS selection of

size 1,000 from U2500; UC ¼ U600 as an SRS selection of size 600 from U1000; and finally,

UC ¼ U500 ¼ Ud as an SRS selection of size 500 from U600: By this construction, the

domain Ud ¼ U500 is entirely contained in each of the C-groups. Furthermore, U5000;
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U2500; U1000; U600; and U500 have similar means and variances for both x and y. This setup

provides ideal conditions for borrowing strength from the larger groups to the domain

Ud ¼ U500; which is 10% of the population U5000: The expected domain sample size in

this simulation is 150. The reason that the chosen five UC are “unevenly spaced” is that a

considerable increase in the variance of ŷdþ is anticipated as soon as UC starts to distance

itself from the fixed Ud: To observe this, we included UC ¼ U600 even though it is close to

the domain Ud ¼ U500: The shape of the distribution of the yk values is without

consequence. The results were confirmed for other distributions.

The population U ¼ U5000 and the domain of interest Ud ¼ U500 are fixed throughout

the simulation. The domain y-total ydþ ¼ SU500
yk is always the target of estimation.

Estimator (6.1) depends on a number of factors. In our simulation, we considered the

following factors and values, where xCk ¼ dCkxk and �xCs ¼ SsxCk=n:

(1) the auxiliary vector xk : xk ¼ xk and xk ¼ ð1; xkÞ
T :

(2) the instrument vector zk : zk ¼ zsk ¼ xCk 2 �xCs; zk ¼ xCk and zk ¼ xk:

(3) the calibration group UC : UC ¼ U5000; UC ¼ U2500; UC ¼ U1000; UC ¼ U600 and

UC ¼ U500:

(4) the subpopulation UM : UM ¼ U5000; UM ¼ U2500; UM ¼ U1000, UM ¼ U600 and

UM ¼ U500:

(5) the subpopulation UL : UL ¼ U5000; UL ¼ U2500; UL ¼ U1000; UL ¼ U600 and UL ¼

U500:

Fig. 1. Scatter plot and regression fit of the simulated population
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The auxiliary vector xk establishes an important classification of the estimators. Each of

the two auxiliary vectors creates a family of estimators, and in each family we can

determine an asymptotically optimal estimator for any given sampling design, such as

the SRS design used here. For the family of estimators with xk ¼ xk we need to know the

C-group auxiliary total xCþ: The other family has xk ¼ ð1; xkÞ
T and we must know the size

NC of the group UC; in addition to xCþ:

For a given xk; the optimal CALWEIGHT estimator for SRS is the one with the

instrument vector zk ¼ zsk ¼ xCk 2 �xCs: This follows from (9.4) since ðn=ðn 2 1ÞÞ �

ð1=f 2 1Þ is constant and cancels out in the case of H ¼ 1 stratum. We also consider the

simple “obvious” choices zk ¼ xCk and zk ¼ xk: Thus our simulation involves six sets of

estimators ŷdþ; produced by the two choices of xk and the three choices of zk:

We use the same five choices for UM; UL and UC: Consequently, for each fixed triple

ðxk; zk;UCÞ; we have 5 £ 5 ¼ 25 well-defined estimators ŷdþ; except when xk ¼ ð1; xkÞ
T ;

zk ¼ zsk and UC ¼ U ¼ U5000: Then the 2 £ 2 matrix ðSsakzkxT
MkÞ is singular, and ŷdþ is

undefined, because the first component of zk ¼ zsk ¼ xCk 2 �xCs ¼ xk 2 �xs is zero for all

k. Two facts have a bearing on this exceptional case:

i) For SRS, xk ¼ ð1; xkÞ
T ; UC , U; UM # UC and UL # UC; one can show that ŷdþ

given by (6.1) is the same for all three instruments zk ¼ zsk ¼ xCk 2 �xCs; zk ¼ xCk

and zk ¼ xk: This holds for any UC that is a proper subset of U, but not when

UC ¼ U: Also, the property does not hold for xk ¼ xk:

ii) In view of the singularity of the 2 £ 2 matrix, we can remove the auxiliary “1” from

xk ¼ ð1; xkÞ
T ; leaving xk ¼ xk: Then, for SRS and UC ¼ U ¼ UM ; ŷdþ with xk ¼ xk

and the corresponding optimal zk ¼ zsk ¼ xCk 2 �xCs is identical to ŷdþ with xk ¼

ð1; xkÞ
T and zk ¼ xk: This follows from Montanari (1998, 2000).

In view of (i) and (ii), it is natural in the exceptional case xk ¼ ð1; xkÞ
T ; zk ¼ zsk ¼

xCk 2 �xCs; UC ¼ U5000 to “import” the simulation results for the case xk ¼ ð1; xkÞ
T ;

zk ¼ xk; UC ¼ U5000: That is, we fill the gap caused by the undefined ŷdþ for the former

case with the well-defined ŷdþ for the latter case.

In the simulation, we drew M ¼ 100; 000 independent SRS samples of size n ¼ 1; 500

from U ¼ U5000: For each of these samples, we computed every estimator within each set

of 25. Let ŷdþ; j represent the value of ŷdþ (one of the estimators in the simulation) in

sample j, for j ¼ 1; : : : ;M ¼ 100; 000: Then for each estimator, we computed the

following statistics:

. the Monte Carlo expectation, 1
M
S

M
j¼1 ŷdþ; j

. the Monte Carlo variance (MCVar), 1
M21

S
M
j¼1 ŷdþ; j 2

1
M
S

M
j¼1 ŷdþ; j

� �2

. the asymptotic variance (AVar) of ŷdþ

N 2 1

n
2

1

N

� �P
UðeCk 2 �eCUÞ

2

N 2 1
with

eCk ¼ ydk 2 xT
CkQMLz and �eCU ¼

P
UeCk

N

ð11:1Þ

Formula (11.1) is derived by applying Result 7.1 to the special case of SRS.
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A measure of the bias of any of the estimators is obtained as the difference between the

Monte Carlo expectation and the true value of the domain total. As expected by theory, the

square of this difference was always negligible in comparison with the Monte Carlo

variance, thus contributing insignificantly to the mean squared error. Consequently, our

tables do not show figures for the bias.

For every one of the five groups UC; Table 1 shows the MCVar of the 25 estimators ŷdþ

in (6.1) for xk ¼ ð1; xkÞ
T and the optimal instrument zk ¼ zsk ¼ xCk 2 �xCs: For the same

specifications, Table 2 shows the AVar of ŷdþ; computed by (11.1) with zk in QMLz given

by zk ¼ zUk ¼ xCk 2 �xCU ¼ xCk 2 ðSUxCk=NÞ: Table 2 also shows the ratio MCVar/

AVar. We cannot compute the estimator for the case UC ¼ U ¼ U5000 in Tables 1 and 2

because of the singularity of ðSsakzsk xT
Mk). The matrix ðSUzUkxT

Mk) is also singular.

However, the rationale given earlier allows us to justify using the results of zk ¼ xk for this

exceptional case.

For each UC, the cells of principal interest, out of the 25 in Tables 1 and 2, are those with

UM ¼ UC and UL ¼ Ud (the CALWEIGHT estimator), and the five cells on the diagonal

having UM ¼ UL (the REGFIT estimators). Other cells are included for comparison only;

these estimators belong in the family (6.1) but have no clear interpretation. Results for

other combinations of xk and zk are not reported here to save space, but some comments

are given below.

11.1. Comparing the Monte Carlo variance to the asymptotic variance

By theory, we expect the MCVar to agree closely with the AVar for every one of the

estimators in each table. This was confirmed for the majority of the table cells. We computed

the ratio (MCVar / AVar). It is shown in parentheses in Table 2. This ratio is near 1 for most

of the 25 estimators for a given UC. The ratio is a bit different from 1 for some cells which

are not of primary interest. For example, this occurs when a small UM is “sandwiched”

in the computation between a big UC and a big UL, or when a big UM lies between a small

UC and a small UL. For these estimators, AVar underestimates the true variance.

11.2. Results for a fixed C-group

For each fixed C-group UC, Table 1 (which has MCVar) and Table 2 (which has AVar)

show the results for the 25 estimators of ydþ. Out of these, 20 are indirect (borrowing

strength) estimators, namely those in columns UL ¼ U5000, UL ¼ U2500, UL ¼ U1000 and

UL ¼ U600. The remaining five estimators, in the column UL ¼ U500, are direct. One of

these is the CALWEIGHT, defined by UM ¼ UC. The five REGFIT estimators are found

on the diagonal, that is, when UM ¼ UL.

Consider the 25 entries in Table 2 for fixed UC such that Ud , UC. That is, the domain

is a proper subset of a calibration group. There are four of these groups: UC ¼ U5000,

UC ¼ U2500, UC ¼ U1000 and UC ¼ U600. We know from Result 8.1 that CALWEIGHT

has the smallest AVar among the 25 values in each of these groups. For example, when

UC ¼ U2500, Table 2 shows the minimum value is 940,134. All 20 indirect estimators have

a higher AVar than CALWEIGHT, which also has the smallest AVar out of the five direct

estimators.
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Table 1. Monte Carlo variance of ŷdþ under SRS for xk ¼ ð1; xkÞ
T; zk ¼ zsk ¼ xCk 2 �xCs and different UC ; UM and UL

UC UM UL

L ¼ 5,000 L ¼ 2,500 L ¼ 1,000 L ¼ 600 L ¼ 500

C ¼ 5,000 M ¼ 5,000 1,485,500 1,158,591 1,046,523 1,040,439 1,040,074
M ¼ 2,500 2,855,729 1,535,378 1,080,227 1,047,787 1,045,264
M ¼ 1,000 15,675,453 5,169,699 1,382,711 1,123,654 1,101,471
M ¼ 600 55,664,447 16,647,895 2,416,787 1,316,962 1,247,356
M ¼ 500 82,813,284 24,399,453 3,097,482 1,453,117 1,331,781

C ¼ 2,500 M ¼ 5,000 1,197,931 8,776,427 1,751,298 1,126,672 1,054,162
M ¼ 2,500 1,222,620 2,856,874 1,055,159 943,131 938,217
M ¼ 1,000 2,531,748 18,078,337 2,866,846 1,413,267 1,213,874
M ¼ 600 6,273,725 56,214,333 7,901,223 2,869,123 2,170,815
M ¼ 500 8,739,745 82,733,808 11,506,429 3,974,636 2,882,098

C ¼ 1,000 M ¼ 5,000 709,205 3,629,900 8,464,447 2,642,812 1,858,729
M ¼ 2,500 1,041,542 1,073,121 2,718,465 981,081 776,454
M ¼ 1,000 1,059,066 671,272 1,067,114 634,718 617,825
M ¼ 600 1,209,402 1,373,616 3,257,850 1,069,502 825,387
M ¼ 500 1,323,789 2,000,942 4,998,664 1,512,654 1,074,110

C ¼ 600 M ¼ 5,000 541,422 1,765,690 4,910,243 6,049,269 3,844,633
M ¼ 2,500 988,997 275,875 917,262 1,224,645 712,752
M ¼ 1,000 1,009,973 292,773 273,619 322,187 252,967
M ¼ 600 1,011,596 323,292 248,944 273,415 244,419
M ¼ 500 1,018,348 276,515 324,645 401,365 274,668

C ¼ 500 M ¼ 5,000 493,855 1,188,060 3,714,391 4,651,955 4,899,111
M ¼ 2,500 972,938 61,103 416,776 627,575 686,746
M ¼ 1,000 996,981 195,088 60,321 70,093 75,399
M ¼ 600 999,017 239,006 68,066 60,237 60,739
M ¼ 500 998,976 249,375 71,888 60,678 60,220
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Table 2. Asymptotic variance of ŷdþ under SRS for xk ¼ ð1; xkÞ
T; zk ¼ zsk ¼ xCk 2 �xCs and different UC ; UM and UL: In parentheses, the ratio of the Monte Carlo variance to the

asymptotic variance

UC UM UL

L ¼ 5,000 L ¼ 2,500 L ¼ 1,000 L ¼ 600 L ¼ 500

C ¼ 5,000 M ¼ 5,000 1,488,121 (0.998) 1,161,159 (0.998) 1,051,469 (0.995) 1,046,232 (0.994) 1,046,153 (0.994)

M ¼ 2,500 2,820,876 (1.012) 1,537,858 (0.998) 1,080,549 (1.000) 1,049,921 (0.998) 1,048,107 (0.997)

M ¼ 1,000 14,536,406 (1.078) 4,931,737 (1.048) 1,382,783 (1.000) 1,106,455 (1.016) 1,085,841 (1.014)

M ¼ 600 48,302,023 (1.152) 14,796,285 (1.125) 2,300,726 (1.050) 1,293,625 (1.018) 1,215,270 (1.026)

M ¼ 500 69,047,159 (1.199) 20,870,854 (1.169) 2,872,564 (1.078) 1,412,687 (1.029) 1,298,258 (1.026)

C ¼ 2,500 M ¼ 5,000 1,204,138 (0.995) 8,665,675 (1.013) 1,732,854 (1.011) 1,118,151 (1.008) 1,048,195 (1.006)

M ¼ 2,500 1,233,565 (0.991) 2,859,783 (0.999) 1,055,107 (1.000) 944,373 (0.999) 940,134 (0.998)

M ¼ 1,000 2,505,161 (1.011) 17,769,617 (1.017) 2,869,494 (0.999) 1,402,775 (1.007) 1,204,255 (1.008)

M ¼ 600 6,007,813 (1.044) 54,059,998 (1.040) 7,746,131 (1.020) 2,871,561 (0.999) 2,165,339 (1.003)

M ¼ 500 8,235,994 (1.061) 78,691,698 (1.051) 11,169,500 (1.030) 3,949,164 (1.006) 2,885,773 (0.999)

C ¼ 1,000 M ¼ 5,000 706,483 (1.004) 3,397,715 (1.068) 7,861,335 (1.077) 2,403,798 (1.099) 1,689,106 (1.100)

M ¼ 2,500 1,047,549 (0.994) 1,076,956 (0.996) 2,728,890 (0.996) 973,577 (1.008) 767,905 (1.011)

M ¼ 1,000 1,065,925 (0.994) 673,201 (0.997) 1,071,021 (0.996) 629,835 (1.008) 612,769 (1.008)

M ¼ 600 1,206,045 (1.003) 1,343,480 (1.022) 3,204,525 (1.017) 1,072,492 (0.997) 822,131 (1.004)

M ¼ 500 1,311,360 (1.009) 1,935,384 (1.034) 4,876,968 (1.025) 1,508,428 (1.003) 1,077,188 (0.997)

C ¼ 600 M ¼ 5,000 534,239 (1.013) 1,469,525 (1.202) 4,096,244 (1.199) 5,053,992 (1.197) 3,170,367 (1.213)

M ¼ 2,500 993,760 (0.995) 274,980 (1.003) 913,322 (1.004) 1,219,820 (1.004) 703,947 (1.013)

M ¼ 1,000 1,016,013 (0.994) 294,052 (0.996) 273,300 (1.001) 321,435 (1.002) 249,451 (1.014)

M ¼ 600 1,017,789 (0.994) 324,991 (0.995) 248,983 (1.000) 273,165 (1.001) 241,565 (1.012)

M ¼ 500 1,024,122 (0.994) 277,111 (0.998) 321,100 (1.011) 396,590 (1.012) 274,073 (1.002)

C ¼ 500 M ¼ 5,000 483,039 (1.022) 881,015 (1.349) 2,851,184 (1.303) 3,593,203 (1.295) 3,789,620 (1.293)

M ¼ 2,500 976,832 (0.996) 58,691 (1.041) 415,671 (1.003) 627,311 (1.000) 686,817 (1.000)

M ¼ 1,000 1,002,480 (0.995) 194,371 (1.004) 58,646 (1.029) 68,385 (1.025) 73,709 (1.023)

M ¼ 600 1,004,721 (0.994) 238,751 (1.001) 66,517 (1.023) 58,646 (1.027) 59,134 (1.027)

M ¼ 500 1,004,719 (0.994) 249,240 (1.001) 70,388 (1.021) 59,102 (1.027) 58,646 (1.027)
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The results on AVar are confirmed by the MCVar in Table 1. It shows CALWEIGHT

has the smallest MCVar among the 25 values for every fixed UC. Thus both AVar and

MCVar support a decision to choose CALWEIGHT over other estimators, including the

REGFIT estimators. Differences between CALWEIGHT and REGFIT are sometimes

large. For example, when UC ¼ U2500, the MCVar of most REGFIT estimators (on the

diagonal) is over three times that of CALWEIGHT. For UC ¼ Ud ¼ U500, CALWEIGHT

and REGFIT/DOM are the same. We know by Result 8.1 that its AVar is the smallest.

Table 2 shows that this AVar has a value of 58,646. The corresponding minimum value in

Table 1 is 60,220. Here, the minimum is very flat; other values on the diagonal are very

close.

11.3. Comparing results for the five different C-groups

Figure 2 shows the progression of MCVar for CALWEIGHT, REGFIT/SAMPLE and

REGFIT/DOM as UC moves from U500 to U ¼ U5000: The points for the five UC groups

were joined by spline fitting to produce a curve for the variance of each of the estimators.

The figure also shows the variance of the HT estimator as a horizontal line with constant

value 1,048,376. For the CALWEIGHT estimator in particular, the value of the auxiliary

information diminishes drastically as the calibration group UC expands away from the

fixed domain Ud: The effect is felt as soon as UC becomes larger than Ud: The MCVar of

the optimal CALWEIGHT estimator increases sharply from 60,220 when UC ¼ Ud ¼

U500 to 244,419 when UC ¼ U600: The increase continues but tapers off to a value which is

essentially the variance of the HT estimator. The sharp increase in the variance of

CALWEIGHT can be explained by saying that the correlation between xCk and ydk

diminishes due to an increasingly larger proportion of zero values ydk: The gain over the

HT estimator is small when we use auxiliary information for a C-group considerably

above the domain.

Fig. 2. Comparison of CALWEIGHT, REGFIT/SAMPLE, REGFIT/DOM and HT estimators. The horizontal

axis shows the size of the C-group UC
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11.4. The effect of extending the auxiliary vector x to include the constant “1”

We constructed our finite population to have a significant intercept by putting a ¼ 20: As

a result, when the domain itself is the C-group, UC ¼ Ud ¼ U500; the optimal

CALWEIGHT estimator has much smaller variance for xk ¼ ð1; xkÞ
T than for xk ¼ xk:

However, when the C-group is larger than Ud; there are only minor differences in the

variance of the optimal CALWEIGHT estimator between xk ¼ ð1; xkÞ
T and xk ¼ xk:

11.5. Comparing with the HT estimator

The HT estimator ŷd%p uses no auxiliary information at all. For our population, its

variance is 1,048,376. By comparison, although the REGFIT estimators on the diagonal of

Table 2 use auxiliary information, they all have a larger MCVar for several of the

C-groups. The optimal CALWEIGHT estimator always has smaller MCVar than the HT,

but for UC ¼ U5000 it is only slightly smaller at 1,040,074. When UC ¼ Ud ¼ U500; the

auxiliary information produces an impressive variance reduction over the HT estimator.

The MCVar of CALWEIGHT ( ¼ REGFIT/DOM) is then only 6% of that of the HT

estimator, even though the correlation between y and x is not exceptionally strong at 0.67.

12. Conclusions and Recommendations

Design-based survey sampling theory is not in all respects like “ordinary statistical

theory.” This has been evidenced a number of times over the years. A concept in ordinary

statistical theory cannot always be transferred to the theory of sampling from finite

populations and be expected there to deliver the same effect. An illustration was found in

this article: Borrowing strength is not a fruitful concept within the class of design-based

domain estimators considered in this article. A direct estimator, the CALWEIGHT

estimator, is better than all estimators that borrow strength. The CALWEIGHT estimator

is also better than all other direct estimators in the class.

An earlier example of the same kind was Godambe’s (1955) proof of the nonexistence of a

minimum variance unbiased estimator, within a certain, perfectly viable class of estimators

of a finite population. The concept of “minimum variance unbiased estimation” is more

limited in its usefulness in design-based sampling theory than in other branches of statistics.

Nevertheless, Godambe’s result does not contradict Neyman’s (1934) optimality results for

STSRS, because different classes of estimators were considered by these two authors.

Another example was Godambe’s (1966) observation that there exists no unique

maximum likelihood estimate of a finite population parameter such as its total or mean.

He showed that the likelihood function is constant over “the relevant part” of the

N-dimensional parameter space, and zero outside. Because of the “flat likelihood,” no

unique maximum likelihood estimate is obtained. Thus maximum likelihood is not a

fruitful concept in design-based estimation theory, in contrast to its vital role in “ordinary

statistical theory.”

What is going to be the future role of design-based domain estimation theory? Design-

based estimates, such as those presented in this article, are recognized for their objectivity,

impartiality and freedom from assumptions. These features make them well suited for the

objectives of a statistical agency. On the one hand, some may see it as a weakness that this
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branch of survey theory cannot profit from an attractive statistical concept such as

borrowing strength. On the other hand, our results caution that any domain of interest can

always be so specific that its own y-values resemble no y-values from outside the domain

and that, as a consequence, direct estimation prevails.

We believe that our results emphasize the need for clarity in two respects. There is a

need for (i) clarity in the presentation made to users of statistical results and the methods

behind them; (ii) clarity in norms and guiding principles for the production of domain

estimates, particularly in national statistical agencies.

Users differ considerably in their ability to perceive and understand the differences that

exist in the interpretation of design-based estimates on the one hand and model-dependent

estimates on the other. Still, users do appreciate a clear declaration of the statistical

agency’s methodological stand in regard to published statistics for domains. If the

agency’s norm is to publish, whenever possible, design-based domain estimates, then this

should be unequivocally declared. The agency owes it to users to explain whether

estimates are design-based and thus free of assumptions, or whether the agency has taken

the step to produce them via model assumptions and borrowing strength. It should be

explained whether published measures of precision for domain estimates are design-based,

referring to repeated draws of samples, or are computed from other principles.

Norms or rules for the practice of domain estimation need to be clearly formulated to

assist the professionals working in national statistical agencies and similar environments.

Expressed norms help to ensure that the production in a statistical agency follows uniform

and coherent principles. While norms and rules may be useful in that setting, they cannot

be given for scientific activity. Creative research will continue on its own terms. For

domain estimation in particular, future research will undoubtedly continue to produce

interesting results, both in the theory of design-based domain estimation and in the

tradition of model-dependent small area estimation.
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