Journal of Official Statistics, Vol. 28, No. 2, 2012, pp. 239-277

Calibration Inspired by Semiparametric Regression
as a Treatment for Nonresponse

Giorgio E. Montanari' and M. Giovanna Ranalli*

In the last decade, calibration has been used to reduce both sampling error and nonresponse
bias in surveys. In the presence of auxiliary variables with known population totals or with
known values on the originally sampled units, the calibration procedure generates final
weights for observations that, when applied to those auxiliary variables, yield their population
totals or unbiased estimates of these totals, respectively. A single set of variables and a single
calibration step is employed to this end. In this article, we extend this approach to allow for
more flexible implicit description of the relationship of the auxiliary variables with either the
response probabilities or the survey variable(s). By using penalized splines the simplicity of
the original proposal and the linearity of the estimator are preserved. The conditions under
which the proposed estimator of the total is design consistent and its asymptotic properties are
explored, and its finite sample behavior is investigated via simulations.

Key words: Auxiliary information; nonparametric regression; penalized splines; nonresponse
bias; shrinkage; unit nonresponse.

1. Introduction

Nonresponse can harm the quality of the estimates of a survey. In particular, since we have
to accept that those who respond are in general different from those who do not respond,
bias is introduced. In this article we will not deal with imputation, but only with design
weights modification to adjust for unit nonresponse bias. Note that techniques for handling
nonresponse can be employed also for nonresponse adjustments in censuses. Commonly, a
two-phase approach is used, with the response mechanism as the second phase; this is
based on quasi-randomization theory, where the response distribution has corresponding
response probabilities assumed to be independent of the realized sample (e.g., Sdrndal et al.
1992, Ch. 9). In practice, such response probabilities have to be estimated assuming a
response model. The prefix “quasi” is added to emphasize that inference depends not only
on the design, but also on the assumed response model.
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One of the most common and simple techniques for handling nonresponse is given by
constructing response homogeneity groups: the population (or the sample) can be
partitioned into groups in such way that units belonging to the same group are assumed to
have the same response probability. Sometimes, a more complex direct modeling of the
response probabilities is conducted, for example through logistic regression models (Little
1986; Ekholm and Laaksonen 1991). Asymptotic properties in this situation are explored
in Kim and Kim (2007). More generally, the probability of response can be assumed to be
the inverse of a known /ink function of an unknown (but estimable) linear combination of
model variables (Folsom 1991; Fuller et al. 1994; Kott 2006). Nonparametric regression
that allows relaxing the assumption of a known functional relationship between response
probabilities and model variables has been explored through kernel smoothing (Giommi
1987; Silva and Opsomer 2006).

Lundstrom and Sédrndal (1999) propose a simple approach for the treatment of
nonresponse based on calibration (Deville and Siarndal 1992). This is pursued by the
construction of a single set of weights for all variables of interest that are as close as
possible to specified initial weights (usually the design weights), while satisfying
benchmark constraints on known auxiliary information. No discrimination is made within
the set of auxiliary variables available to the researcher: a single set of variables is
employed at the same time for nonresponse treatment, sampling error reduction and
coherence among estimates. No explicit model is specified for the treatment of the
nonresponse mechanism; it is implicitly given by the calibration procedure.

The relationship between regression estimation and calibration is well known (Deville
and Sarndal 1992; Séarndal 2007): the efficiency of the calibration procedures relies on how
well a linear model describes the relationship between the variable(s) of interest and the
auxiliary ones. It therefore may be inefficient when the underlying relationship is indeed
nonlinear (Wu and Sitter 2001; Montanari and Ranalli 2005). We argue that the approach in
Lundstrom and Sidrndal (1999) can be usefully generalized to include more complex
relationships through semiparametric regression (Rupper et al. 2003) without losing in
simplicity. Semiparametric regression based on penalized splines (Eilers and Marx 1996)
has been usefully employed for model-assisted inference in the case of complete response
(Breidt et al. 2005). More easily than with kernel smoothing, it allows for the treatment, at
the same time, of categorical and continuous auxiliary variables. Categorical variables can
be inserted parametrically, while continuous variables can be accounted for nonparame-
trically. Recently, a kernel-based model-assisted estimator that can handle both continuous
and categorical covariates has been proposed in Sanchez-Borrego et al. (2011).

The article proceeds as follows: in Section 2, calibration with particular regards to
treatment of nonresponse is reviewed. In Section 3, semiparametric regression is employed
to extend nonparametrically calibration to the treatment of nonresponse. Simulation studies
that explore the finite sample behavior of the proposed estimator are reported in Section 4.
Some concluding remarks and directions for future research are provided in Section 5.

2. Calibration as a Treatment for Nonresponse

Consider a finite population of N elements U = {1, . . .k, . . ., N}; the aim is to estimate
the total ¥ = ), vk, where y; is the value of the variable of interest y for the kth unit.
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We will use the shorthand ) °, for ), ,, with A C U an arbitrary set. A sample s of size n
is drawn from U through the sampling design p(s) that induces positive first and second
order inclusion probabilities m = P(k € s) and m; = P(k,j € s), respectively, with
i = . Let I, be the indicator variable for unit k selected in the sample, so that
E(I|F) = @, where F ={uy,...,uy}, uy= (yk,x,{), and x; is the value of the
p-vector of auxiliary variables x on unit k. Therefore, expectation is taken with respect to
the sampling design and conditional of the realized finite population F. We will denote
with dy, = 1/ the design weight of unit k. Since nonresponse occurs, the response set 7 of
size m is obtained, with » C s and m = n. Let 6, = 1 if unit k responds and O otherwise.

Lundstrom and Sarndal (1999) consider auxiliary information on two separate levels. In
particular, x is considered a vector of auxiliary variables assumed to contain information
for reducing both the sampling error and the nonresponse bias, and the two following
“information levels” are considered:

info-s: x; is known for all k € s;
info-U: x, is observed for all k € r and ), x; is known.

In the first case, information goes up to the sample level, while in the second case, it refers
to the population. A combination of the two can of course be considered (Sidrndal and
Lundstrom 2005), but we will consider them separately in order to keep this discussion
simple.

Design weights d;. for responding units are on average too small to produce reasonable
Horvitz-Thompson estimates of totals when there is nonresponse. They need to be
adjusted by a factor v,. Calibrated weights wy = djv; used to compute the estimator
)A/C,, = >, wiyy of Y are obtained so that they satisfy calibration equations given by either

info-s: > wixy = > dixy, or
info-U: > wixy = > Xk

A simple choice for the factors v, may be vy = 1+ & x;, which is linear and has
considerable computational advantages. Note that this choice is equivalent to finding
calibrated weights by minimizing a chi-squared distance measure from basic design
weights (see e.g. Deville and Sédrndal 1992; Siarndal and Lundstrdm 2005, p.58). Other
forms for v, are considered in Deville (2000) and Kott (2006). The vector & is determined
after substitution in the calibration equations. The calibration estimator in these cases
takes the following forms:

info-s: )A’C, = > divsyr, with

T -1
vg = 1+ (dexk - dexk> <dexkx,{> xi, fork € r;

info-U: Y., = 3", divurys, with

1

T _
vor =1+ Zxk - dexk <dexkx,{> xi, fork e r. (1)
U r r
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Note that the estimator is constructed using calibration in a single phase and without
explicit introduction of a model for the response mechanism. In addition, the weights do
not depend on the study variable y, and therefore the estimator is said to be linear. Such a
property is very valuable in a survey setting, because the calibrated weights can then be
applied to all variables of interest. Poststratification is included as a special case of )A/C,, if
the auxiliary vector x; denotes membership to poststrata. In case of full response, when
r=-s, f/m = Z; dyyr, that is, the Horvitz-Thompson estimator for info-s, and
?C"S = Zx dkgc,k)’k, with 8ck = 1+ (Euxk - ZS dkxk)T(Zs dkxkka)flxk, that is, the
generalized regression estimator for info-U.

In the two-phase approach to handling nonresponse, an unbiased estimator is given by

- d
Py =Y G @

where 0, = P(&; = 1|I; = 1) is the conditional probability that unit k responds, given that
the unit is selected in the sample (Sédrndal et al. 1992, Ch. 9). Of course such estimator
cannot be computed, since nonresponse probabilities are not known. However, we can
note that f/cv, uses proxy values given by v and vy to approximate 6} ', that is, the inverse
of the response probability for unit k is implicitly approximated by a linear combination of
the vector of auxiliary variables x;.

Weights in (1) provide a calibration estimator that is equivalent to the regression
estimator in the presence of nonresponse. In fact, it can be written in the form

T,

Fep =3 i (3w = Dodew ) b, 3)

where I;,. = (Z, dkxkx,{) _IZ, dix iy, that is, the regression estimator when the regres-
sion coefficient is computed only on respondents. This estimator has been considered and
studied in Fuller et al. (1994) and Fuller and An (1998).

To review the large sample properties of f/c?,, we will consider the traditional finite
population asymptotic framework considered in Isaki and Fuller (1982), where
the population U and the sampling design p(-) are embedded into a sequence of finite
populations and associated probability samples. The set of indices of the elements in the

Nth finite populationis Uy = {1,2, .. .,N} withN =p + 1,p+ 2,. . ., while the design
is py(-) and the sample size ny is assumed to grow with N. Let Fy =
{(iv.xly)s (v, x2y), - -+, (yav,xky) | be the set of vectors of both survey and

auxiliary variables for the Nth finite population. In the following, the subscript N on the
vectors will often be dropped for ease of notation.

Now, under regularity conditions such as those reported in Fuller (2002), b.isa design-
consistent estimator of

—1
cy = Zekxkx/{ ZHkxkyk, 4)
U U
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in the sense that, given Fy for all N>p + 2, lim y—ooP{1b, — eyl > €l Fn} =0
for all e > 0. The population total of y can be written as

Y= Zak + Zx,{cU
U U

with g = y; — x,{c u- Therefore, the regression estimator in (3) — and consequently f/cv,
for info-U — will be a design-consistent estimator for Y, in the sense that
limN_,ooP{llA/C,, — Y| > Ne|Fy} =0, if the probability limit of ), ay is zero. There
are several ways in which this occurs. Fuller et al. (1994) give the three following
situations.

(i) The probability limit of ), ay is zero when the sequence of finite populations is a
sequence of random samples from an infinite population in which the linear model
Vi = x,{b + e, with the ¢, independent of the x; and with zero expectation, holds for
all k.
(ii) The total 3 y Gk 18 zero when 6 is constant for all k, because in this case
cy=by= (Zuxkx,{)ilzuxkyk, and >, vk —xlby = 0.
(iii) A sufficient condition for ), a, to be zero is the existence of a vector d such that

xjd=6;" (S)

for all k € U. Therefore, if the inverse of the response probability is a linear function
of the auxiliary variables, the regression estimator is consistent for Y.

Note that to have design consistency, it is sufficient that any one of these conditions holds.
Apart from condition (ii), which is unlikely to hold in practice, it is enough that the
auxiliary variables fulfill either the prediction model in (i) or the response model in (iii ) to
achieve a vanishing bias. This property has been called “double protection” against
nonresponse bias.

The third condition sheds some light on the implicit modeling of the response
mechanism done with the one-step calibration technique. A sufficient condition for
consistency is that the inverse of the response probabilities belongs to the space spanned by
the columns of the N X p matrix of population values of x. In the following section, the
approach in Lundstrom and Sérndal (1999) is generalized to make condition (i ) above valid
for a wider range of models through semiparametric regression without loss of simplicity.

3. Calibration Inspired by Semiparametric Regression for the Treatment of
Nonresponse

Semiparametric regression that relies on penalized splines has been usefully employed for
model-assisted inference in the case of complete response (Breidt et al. 2005). Penalized
splines are now often referred to as p-splines and have been brought to attention by Eilers
and Marx (1996). P-splines provide an attractive smoothing method due to their simplicity
of implementation, being a relatively straightforward extension of linear regression, and to
their flexibility, as they are applicable in a wide range of modeling contexts. Ruppert et al.
(2003) provide a thorough treatment of p-splines and their applications. In this section,



244 Journal of Official Statistics

we first describe p-splines in the general context of model-assisted estimation regardless of
nonresponse, and then move to semiparametric regression-based calibration for treatment
of nonresponse.

3.1. Review of p-splines for Model-Assisted Regression Estimation

Let us first consider only smoothing with one covariate z. In Breidt et al. (2005), a
nonparametric superpopulation regression model is written as

Vi = m(z) + &, (6)

where the errors g, are independent random variables with mean zero and variance v(z;).
The p-spline estimator of the unknown function m(-) may be given by

L
mzB) = Po+ Biz+ Y Bz~ Ki)s (7)
=1

where the so-called plus functions () are such that (r), = ¢ if > 0 and O otherwise (see
Figure 1), k; for I=1,...,L is a set of fixed knots, 8= (Bo,B1, - - ., Bi+r) is the
coefficient vector made of a parametric portion (the first two coefficients) and a spline part
(the last L coefficients). The latter portion of the model allows for handling departures
from a linear fit in the structure of the relationship. If the number of knots L is sufficiently
large, the class of functions in (7) is very large and can approximate most smooth
functions. In the p-splines context, a knot is placed every 4 or 5 observations; however, to
avoid an excessive number of knots (and therefore parameters), a maximum number of
allowable knots, say 35, is recommended. In addition, knots are usually placed at the
quantiles of the distribution of z, making unequally spaced intervals so as to more properly
account for the possible skewness of such a distribution. More details on knots choice can
be found in Ruppert et al. (2003, Ch. 3 and 5). In the survey context, the choice of the
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Fig. 1. Example of a truncated linear spline basis (x — k), with k = 1 (solid line) and of its derivative
(dashed line).
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location of the knots may be also influenced by the available population level auxiliary
information. More details on this aspect will be given in Section 3.2.

The spline model (7) uses a truncated linear spline basis to approximate the function
m(-). In this case, the slope of the relationship between y and z is allowed to change when it
hits a knot. The amount of the change is given by the coefficient of the corresponding base
function, which represents the change in the first derivative of the approximating function
at the knot (see Figure 1). Truncated polynomials of higher order, say 2 or 3, can be used,
in which, similarly, coefficients for the base functions provide the change in the 2nd and
3rd, respectively, derivative. Different bases can be used, like thin plate splines or
B-splines; more details on choice of base can be found in Ruppert et al. (2003, Ch. 3 and
5). In this article we will use p-splines with a truncated linear basis, not only for their
simplicity of interpretation, but also because of their implication on the auxiliary
information required. We will see this in more detail in the next section.

Given the large number of knots, model (7) can be too complex; the influence of the
knots can be limited by putting a constraint on the size of the spline coefficients.
Estimation can be accommodated by including this constraint in the least squares criterion,
so that the census level estimator of the parameter vector is given by the minimizer of

L
> = ms B+ 1> B,
U =1

for some fixed positive constant A. The smoothness of the resulting fit depends on the value
of A, with larger values corresponding to smoother fits. Choice of A will be discussed later.
Letzy = (1, zg, (z — K1)y - - - (Z — KL)+)T and A = diag{0,0,A, .. ., A} bean L +2
diagonal matrix. Then, the census level penalized least squares estimator of the coefficient
vector has the following ridge regression representation

-1
Bu = szz,{ + A szyk.
U U

The role of the matrix A is to shrink the magnitude of the value of the coefficient B for
the spline part of the function in (7). Under the conditions in Breidt et al. (2005), consistent
design-based estimates of By can be obtained as B, = (X, dizrzf + A)flz‘y diziyx-
Finally, sample-based fits 77, = m(zy; B5) are used to define the model-assisted p-spline
estimator

Voo = i+ diyx = i) =Y _digpiv ®)
U s K

with g, = 1+ (X 2k — Sy dizi)” (X, drzazl + A) ™ 'zi. Breidt et al. (2005, Sec. 2.2)
discuss in detail the properties of this estimator. Here note that it can be seen as a
calibration estimator in which calibration constraints are met for the first two variables
{1, z} and are relaxed for the other L. The amount of relaxation depends on the smoothing
parameter A. Relaxing the constraints on the L variables related to the knots has a
shrinkage effect on the range of the final set of weights.
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3.2.  P-splines and Calibration for the Treatment of Nonresponse

Now, we want to exploit the enhanced flexibility provided by using p-splines in a model-
assisted framework while retaining the simplicity of the proposal of Lundstrom and
Sdrndal (1999) for handling nonresponse. To achieve this, we introduce the following
calibration estimator based on p-splines:

info-s: ¥,, = 3", dyvayi, with
T —1
vg = 1+ (dezk - dezk> (dezkz,z + A) Zks 9)

info-U: ¥,, = 3, dyvyuy, with
T

-1
vor = 1+ sz - dezk (dezkz,{ + A) Zk- (10)
U r r

It is easy to see that in the case of full response, that is, when r = s, f’p’, reduces to the
Horvitz-Thompson estimator for info-s and to f/p,s in (8) for info-U. Recall that the
auxiliary information for unit k used to compute these estimators is given by
7 = (l,zk,z;:T)T, with z; = ((zx — K1)4, - - -, (zx — k2)4)". The first two entries of the
vector are those usually employed for calibration, while z; allows for handling departures
from a linear fit in the structure of the relationship between y and z as illustrated in the
previous section. Calibrating on the whole vector g, however, may lead to a very erratic
final set of weights. Therefore, the influence of the knots is limited by relaxing the binding
constraint for that part of the auxiliary information. This is accomplished by minimizing a
penalized version of the chi-square distance measure between final and initial weights. In
particular, weights satisfy either of the two following conditions:

T
. Wy — d 2 = * — * *
info—s : min sz% + (Zwkzk - dezk> ALl <Zwkzk - dezk>
7 k T g r s
under the constraint Z wi(l,z;) = Z di(1,z);

T

_ 2
info-U : min sz% F D owz =z | AT D Swig =D &
r U r U

7

under the constraint Z wi(l,z4) = Z(l, ),
r U

where A. = diag{A, ..., A} and A here represents the inverse cost of relaxing those
constraints. In general, smaller values of A mean a large penalization and therefore that the
calibration constraints are more stringent. Larger values imply increasingly relaxing the
constraint for those variables and, therefore, a shrinkage effect on the range of the final set
of weights. The results of those constrained minimization problems provide the estimators
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considered above. See also Rao and Singh (1997) on relaxing the calibration constraints,
and Fuller (2002, Sec. 9), Park and Fuller (2009) and Guggemos and Tillé (2010) on the
link between the penalized minimum distance criterion and mixed effects models, and
Beaumont and Bocci (2008) for a review on ridge calibration.

Let us consider again the estimator under the two-phase approach to handling
nonresponse in (2). Here, for f/,,,, we can see that the inverse of the response probability is
approximated by proxy values given by vy, and vy for info-U and info-s respectively,
which depend on the whole vector of auxiliary variables z and not only on its linear part
(1, zz) as it would be the case under classical calibration estimation. This allows for a more
flexible implicit description of the nonresponse mechanism.

Let us now consider the auxiliary information required to compute these estimators. The
vector g indeed contains information on only one variable z, so that the info-s needed to
compute it reduces to g known for each k € s, that is, the same information needed to
compute f/,,_, with the auxiliary vector given by x = (1,z)7. As for info-U, on the other
hand, the information required to compute f’p_, is more than that needed to compute f/&,
with x = (1, z)T. In particular, we need y Zk to be known. This means that, other than
N and ) ,zr, we need population counts and totals of z in subgroups defined
by the knots, that is, >, I(zx > kpand Y, zl(z > k)forl=1,... L. In fact,
You = k) =y — k)@ > k) =Yy ad (@ > k) — k1Y Iz > ;). Note that
with other nonparametric techniques, like local polynomials or neural networks, the
amount of auxiliary information required is much larger; in particular, z; has to be known
for all kK € U (see e.g. Montanari and Ranalli 2005).

A particularly valuable property in the survey estimation contexts of f’p,r — inherited by
Y,s — is that of being a linear estimator. This result assumes that the number and
placement of the knots and the value of the penalty constant A are all determined and fixed
before the model is fitted. The efficiency of the estimator will depend on the choice of
these factors. However, for p-splines it is sufficient to focus on the choice of A, since the
choice of the other settings has been shown to have a limited effect on the final fit once the
value of A is allowed to vary (see e.g. Ruppert 2002; Ruppert et al. 2003, Ch. 5).

In addition, Breidt et al. (2005) note that, in the survey context, trying to find the
optimal penalty is not as relevant as in the classical nonparametric regression context: the
estimator is not constructed for a single variable, but for a large set of variables collected
during the survey. A penalty that is optimal for a variable may well not be adequate for
another one and using different sets of weights would not be feasible for practical
purposes and for coherence issues. We will therefore consider a single fixed value for
\ representing a compromise choice that may work reasonably well for many variables in
a survey. In Section 3.4, we will give some guidelines to select such a value and in the
simulation studies we will look at its effects on the final performance of the proposed
estimator.

N

3.3.  Asymptotic Properties

To study the asymptotic properties of )A’,,,, we will follow closely the approach mentioned
in Section 2 to discuss the properties of )A/C‘,. In particular, to discuss the large sample
properties of f/p,r, we will again consider the asymptotic framework discussed in Section 2
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in which Fy = [un,uon, . . ., uyy] is the set of vectors uyy = (ykN,z,{N) for Nth finite
population. In this regard, given that the regression coefficient in f/,,’, resembles a ridge
type coefficient, conditions on the value of Ay as the population and sample sizes increase
should also be added. In particular, we can consider the following two cases.

Case A. In the first case one accepts that the shrinking effect vanishes asymptotically and,
therefore, that the penalized coefficient vector converges to the unpenalized one. This can
be reasonable, given that the number of knots is kept fixed asymptotically. For the
shrinking effect to vanish, as ny— 00, Ay can remain constant or go to zero. More
generally, Ay can also grow as ny grows, but at a slower rate, that is,
Ay = O(nf\‘,) with « < 1, so that the ratio between Ay and ny goes to zero. In this case,
the properties of Y, coincide with those discussed for the classical calibration estimator
Yc‘r~

Case B. In the second case, one wants to ensure that the shrinking effect does not vanish
asymptotically. This is reasonable when one wants to keep a smooth relationship between
y and z also asymptotically. In this case, Ay is allowed to grow as ny grows. Theorem 3.1
proves the consistency of f/,),, in this case. To this purpose, consider the following
assumptions.

Al. Assume Lis fixed and the knots k;forl = 1, . . ., L are fixed and such that {wy} is a
sequence of (L + 3)-dimensional independent random vectors with bounded eighth
moments.

A2. Assume { Fy,pn()} is a sequence of populations and designs such that for any u
with bounded fourth moments the Horvitz-Thompson estimator of its mean for a complete
sample satisfies a central limit theorem:

@ de"k—;uk | FvLn0.3), as

where
T
- Mg — T T Wkl
3= 1\;1m ny E E —
- TT N T T
is positive definite.
A3. Assume lim Nﬁoon;,l)w = A¥, where \* is a positive constant.

Ad. Assume the sampling rate is such that lim y_.oN 'ny = wwith 0 < 7 <1 and
O0<li=m=0L<Iforall k€ U. In addition, assume for a sample with nonresponse
that ) < =6, = 1forallke€ U.

AS. Assume for a sample with nonresponse that there exists a vector d such that
dd=zld +zdy= 6., with Zx = (1,20" and z; = (&% — K1), - - -, (@ — KL))"
and such that d, = O(n;,l).

A6. Assume for a sample with nonresponse that responses are independent, i.e.,
P& =1&8 =1l =1; = 1) = 6 = 60,.
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A7. Assume that the Horvitz-Thompson estimator of the variance of the mean of any
variable with finite fourth moments for a complete sample has a variance that is O, (njf)
almost surely.

Assumption Al requires that the number and placement of knots is kept fixed over
repeated sampling and asymptotically, and together with A2 it allows that the variance of
the Horvitz- Thompson estimator of a mean of certain variables for a complete sample
has a variance that is Op(n_l). Assumption A3 allows Ay to grow at the same rate as ny
and, therefore, that \y/ny does not vanish asymptotically. Assumptions A4 and A6
concern the nonresponse mechanism, while Assumption A5 has a particular relevance. It
plays a similar role to the sufficient condition (iii ) considered at the end of Section 2 for
the regression estimator. It is the main condition for consistency that makes the mean of
population residuals, similarly to the a;s of Section 2, vanish asymptotically. Note that in
this case the inverse of the response probabilities is allowed to be a linear combination
of both the linear and the spline part of the auxiliary vector z, where the coefficients for
the spline part are required to decrease with n to make shrinkage reasonable also for
large samples. This also implies that the part of population mean of the residuals
associated with the spline part is decreasing by the assumption on d,. Finally,
Assumption A7 ensures that the Horvitz-Thompson estimator of the variance of a mean
is a consistent estimator.

Theorem 3.1
Assume Al—-A6. Then, estimator Ypr is design /ny-consistent for Y, in the sense that

Y -Y=0 (Nan/z) Furthermore,

v,,— Y= ZW—%+0 (Nny')  a.s.forinfo-U an

p'_Y Z

-1
where Ty = m b = O /dy, ex = yi — zL yu and yu = (3, Ozizl + An) >y Ozives

LSS S0, (V) asporinfo-s (1)

Tk

with Ay = diag{0,0, Ay, . . ., Ay }. In addition,
N 1/2
{VW(YP.")} / ( )l:FN_’N(O 1), a.s. (13)
where
o €k € .
o (¥pr) = = )——L -U 14
;;(Wzkj T2k ) p— Sforinfo (14)
5 Yk i e~V .
w(Ypr) = ZZ(WZk] — T Ty) -+ 27(1 — 60, forinfo—s (15)
U U Tk Tj U Tk

with Tk = 7Tkj0k0j-

Proof.  See the Appendix. |
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Theorem 3.2.
Assume AI—-A7. Then,

PPN T — T o a4 PN 2%
V(Yp,r) = ZZ%wkekwjej + Z(’ﬂk = 1/W)we;
T T TTkj T

A

=Vo(¥,,) +0, (NanT,S/Z), a.s.forinfo-U

‘A/(?p,r) = ZZ %%ﬁwkykﬁ/j){j + Z(l - I/VAV/(W]()VAV%(A?%
r r J r
=0 = 1 iemd( = mEE = Ve () + 0, (N0 %),

a.s. forinfo—s

where
-1
Wy = Zz,{ (dezkz,f + AN> Zidy for info-U, (16)
U T
-1
W= dizf <dezkz,{ + AN> zidy for info-s, an

.
&=y — 2z} B, and wy = Suik (ZU:@kaZZ + AN) Zped.

Proof.  See the Appendix. |

Theorem 3.1 proves consistency of f/p,r when A is allowed to grow as n. On the other
hand, as pointed out for Case A, if A remains constant or goes to zero as ny — o0, then the
penalized coefficient vector converges to the unpenalized one and provides an estimator
that is unbiased with respect to model (6) with mean function approximated by (7).
Therefore, the model with respect to which IA/,,J is model-unbiased under assumption A3 is
not model (6) with mean function given by (7), but a model in which it is reasonable to
shrink the coefficients of the spline part, even in large samples. Then, exploiting the
relationship between penalized splines and the mixed effects model (e.g., Ruppert et al.
2003, Sec. 4.9), we would restate condition (i) at the end of Section 2 as follows: the
probability limit of N ! >-yex is zero when the sequence of finite populations is a
sequence of random samples from an infinite population in which the linear mixed model

Ve =Z B1+2, Ba+ €&

holds, where the €;s and 3, are uncorrelated random variables such that E(eg|z;) = 0,
E(B2lz) = 0. In other words, an alternative sufficient condition for f/,,’, to be design-
consistent is that the finite population is a random sample from an infinite superpopulation
mixed-effects model in which Z = (1, 2)T is the fixed component of the model and z* =
(z— k1), ..., (2— k)T is the random component. Park and Fuller (2009) study the
properties of the regression estimator based on a mixed effects model in the case of full
response.
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Note that the double protection property considered in Section 2 holds here too. In
particular, then, if either the conditions in the Theorems stated above — and in particular
Assumption A5 that is the counterpart of the corresponding condition (iii ) of Section 2 —
or the aforementioned mixed-effect model holds, then the proposed estimator is design-
consistent. We have explicitly worked out the asymptotic properties under the former,
because most large surveys involve many y-variables, and to achieve a low bias the mixed-
effects model has to hold for all of them. We argue that, given its flexibility, this would be
much more frequent than with a simple linear regression model, but it could also not be the
case. We have then focused instead on the modeling for the response distribution.
Condition A5, in fact, is sufficient to have the population mean of the residuals e, vanish
asymptotically. Note that this is similar to assuming mixed-effect model for the inverse of
the response probabilities 6, and then having more flexible modeling for it. This comment
builds a bridge to most nonresponse literature in which such a condition would be
comparable with a case in which data is missing at random (MAR). This latter situation
arises when the response probability 6, depends on gz but not on y;; then nonresponse
depends only on observed values and can be successfully modeled. Now, if probability 6,
depends on z, then it cannot be independent of y, given that usually z; and y, are related
themselves, however, AS tells us that if data is MAR conditional on g, then the proposed
estimator is design-consistent. Evidence of this implicit modeling for 6, emerges from the
simulation studies of Section 4.

Theorem 3.2 provides variance estimators for f/p,r under both the info-s and the info-U
settings. Such estimators follow closely the proposal in Sédrndal and Lundstrom (2005,
Ch. 11) where variance estimation for the calibration approach is derived using the
connection with a two phase design. See also Fuller (2009, Ch. 5) for the variance estimator
under the info-U setting for the regression estimator. Note that also for variance estimation
in (16) and (17) 6,:1 is replaced by its proxy values v and vy, respectively.

3.4.  Selection of A

The properties of the proposed estimator have been provided when A is decided in advance
and kept fixed over repeated sampling. As we saw in Section 3.2, in this context \ has a
double interpretation. From a calibration perspective, it can be considered as the quantity
that governs the amount of relaxing of the constraints on the L truncated linear variables
and, therefore, the shrinking of the final set of weights (see Rao and Singh 1997; Fuller
2002; Beaumont and Bocci 2008, for different ways of selecting the amount of relaxing).
From a smoothing perspective, as noted earlier, it provides the degree of smoothness of the
final function fit. To determine the optimal value of A for a particular variable of interest,
Breidt et al. (2005) exploit the fact that penalized splines can be seen as mixed effect
models, and use for \ the ratio between the estimates of the variances of the two random
components (the spline and the error) obtained via restricted maximum likelihood. We
will not look at this latter interpretation to select its value, but will look at an alternative
way to try to find a compromise value for a set of different y-variables, instead of an
optimal one for a single y-variable.

In particular, let Azy = (A, . . ., iy, . . .,iy)! denote the vector of predictions that
use By in Equation (7), that is, for which /7y = m(zy; Bu) = zj Bu. Now
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iy =2Zy(Z5Zy +A) ' Zhyy = Suyu (18)

where Z;, is the N X (L 4 2) matrix with z; on its kth row and y;, is the vector of population
vy values. The degrees of freedom used to approximate the relationship between y and z can
be computed as the trace of the smoother matrix Sy. In particular

-1
df(\y) = trace{Sy} = trace szz,{ +A szz,f (19)
T T

We can see that increasing values of N provide a decreasing number of degrees of freedom.
Therefore, a value for A;; can be chosen by fixing in advance the number of degrees of
freedom, i.e., Ay defined through df (Ay) = d*, where the number of degrees of freedom
d” should not be either too few in order to be able to capture a complex relationship, nor
too many so that overfitting may be an issue. This quantity does not depend on y and
represents a compromise that accounts for the multipurpose aim of a survey. In the
simulation studies in Section 4 we investigate the performance of the proposed estimator
for a wide range of values of d*. Note that, since it depends on population quantities, it can
be computed only when the auxiliary information available is such that the population
totals involved in (19) are known. In addition, once it is computed, it is a fixed quantity
over repeated sampling and theoretical results in Section 3.3 apply.

When we are in an info-s setting, we can consider the vector m;=
(1, . . ., f,. . ..m,)T of predictions based on B,. In particular, in this case

m, =Z7Z (ZzDXZY + A)_IZZDSys = S.ny

where subscript s denotes sample versions of matrices and vectors used in (18) and
D, = diag{dy } e, In this case the aforementioned rule of thumb can be applied to

-1
df () = trace{S,} = trace <dezkz,f + A) dezkz,z

In this case, the value of \, defined through df(A;) = d* changes with the sample selected.
However, consistency of the estimator still holds since, under the regularity conditions
considered in Section 3.3, it is straightforward to show that for a given d*, A\ =
Ay + O, (n&l/ 2) (see e.g. the technique proposed in Wu and Sitter 2001).

Finally, in both information settings, a value for A may also be determined only looking
at respondents. In particular, if subscript r denotes matrices and vectors that include only
respondent information,

w,=Z,(Z'D,Z, + N) 'Z'D,y, =: Sy,

and

~1
df(A,) = trace{S,} = trace (dezsz + A) dezkz,f
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In this case, for a given d*, N\, converges in probability to a different quantity than
Ay because of nonresponse. In particular, let Ay, be such that

-1
df(Agy) = traceS | Y Ozizy +A | > bazf p =d”,
U T

then A, = Agy + O, (nl;l/ 2). Simulation studies in Section 4 explore the behavior of f/p,
for different values of d* and choices of A.

As far as variance estimation is concerned, while for A\, the result in Theorem 3.2 holds,
for \; and A\, the variance estimator proposed does not account for the extra variability
introduced with estimation of \.

3.5. Moving to Multivariate Auxiliary Information: Semiparametric Modeling

Multivariate auxiliary information can be easily considered in IA/,,‘,. In fact, additional
auxiliary variables — both categorical and continuous — can be inserted parametrically by
adding them to the binding part of the calibration procedure; namely, they will be part of
the set of auxiliary variables for which the calibration constraints are met exactly.
Additional continuous variables can be added nonparametrically by adding the linear part
to the binding part of the calibration procedure, and another set of relaxed constraints with
a different penalty on the nonbinding one. In particular, assume that we want to insert the
vector x of p variables parametrically and the variables z; and z, nonparametrically. The v,
weights of the proposed estimator can be then written in these cases as

T -1
info-s: vy =1+ (Z dix — de.fk> (def/{i}{ + A) X,
T -1
info-U:vy, =1+ ka _dei?k deikiz‘i‘/i X,
U r r

where ¥, = (l,xZ,lek,zgk)T, Zie = @it @ik = Ki)4s - - - @i — Ki,)4)! fori = 1,2 with
L, and L, number of knots for z; and gz, respectively. In addition,
A=1{0,11,0,A1, .. .,A1,0,As, ..., A}, withp + 1 zeroes on the diagonal — intercept

and x variables — followed by a zero and L; penalty constants A, and by a zero and L,
penalty constants A;.

Extension to bivariate smoothing is also possible — although not pursued here — by
using a different set of basis functions than truncated linear, such as radial basis functions.
Smoothing in two dimensions is particularly relevant when auxiliary information comes in
the form of geographic coordinates. For more details see Ruppert et al. (2003, Ch. 11).

4. Simulation Studies

In this section, results from a simulation study that aims at investigating the finite sample
behavior of the proposed estimator are presented. In particular, we wish to explore the
double protection provided by the proposed estimator with respect to the description of the
relationship between y and z and of that between 6 and z. To this end we consider different
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relationships and different combinations of such relationships. Firstly, values of a finite
population of N = 5,000 units are generated for an auxiliary variable z from a uniform
[0,1] distribution. Then, six survey variables are obtained by using the following three
regression functions:

LIN : m{z) = 0.8 + 3z;

SIN : m(z) = 1.8 + 1.5zsin[47(z — 0.6)];

DIS :m(z) = (0.8 — 1.52)I(z < 0.25) + (0.8 + 22)1(0.25 < 7 < 0.50)
+ (— 1.7+ 52)1(0.50 < z < 0.75) + (2.8 — 3)I(z > 0.75).

Units are then randomly divided into two strata of equal dimension 2,500, to simulate
stratification on a variable different from z. Then, a constant value of 0.3 is added to m(z)
only for units in the first of the two strata. Then, the survey variables are constructed by
adding to m(z,) for k=1,...,5,000 a heteroskedastic error component of the form
2./zker, where g ~ IN(0, 0) and o is set to 0.15 for a first set of three survey variables,
and to 0.50 for a second set.

Figure 2 shows the scatter plots of the six survey variables thus obtained. Grey crosses
and black circles distinguish units belonging to different strata. The LIN populations
(the first column) are considered as cases in which a calibration estimator that uses {1, z}
as auxiliary variables should provide a good protection against nonresponse bias. The SIN
populations (the second column) provide a situation in which the aforementioned vector of
auxiliary variables is not sufficiently adequate and for which gains in bias reduction are
expected from the proposed splines estimator. Finally, the DIS populations (the third
column) are generated under a discontinuous function of z, for which the spline estimator
is also based on a misspecified model.

LIND.15 EKE DIS0.15

- LING 50 SINO.50 DIS0.50

Fig. 2. Scatter plot of the six survey variables versus the auxiliary variable. Variables in the first row have
errors with standard deviation 0.15, while those on the second row have errors with standard deviation 0.50.
Grey crosses and black circles denote units belonging to the two different strata.
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Each unit in the population has its own response probability attached. To study under
which circumstances the proposed estimator provides more protection against
nonresponse bias with respect to the classical calibration estimator, we will consider
different relationships between z; and 6. In particular, what is relevant here is the
relationship between z; and 1/6; as considered in Section 2 and 3.3. For this reason we
have considered the following four cases:

LIN: 6, = 1/(1.2+ z);

LOGH+ : 6, = 0.3 +0.5/[1 + exp (6 — 15z)];
LOG— : 6, =0.340.5/[1 + exp(—6 + 10z)];
GAU : 6, = 0.5/ exp[—(z — 0.5)*/0.4].

The response rate is approximately 60% in all cases. Figure 3 depicts these four sets of 6;s,
together with 1/6;. Different levels of complexity of the relationship between 1/6; and the
auxiliary variable allow to investigate in which situations the double protection property of
the calibration estimators holds with respect to the proposed spline estimator. For
example, the GAU case is inspired by the kernel of a Gaussian distribution and 6, takes a
U-shape.

LIN LOG+

Fig. 3. Scatter plot of the four sets of response probabilities versus the auxiliary variable (black). The dashed
line plots the inverse of the response probabilities versus z.
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From each population, J = 1,000 stratified random samples of dimensions n = 250,
n = 500 and n = 800 have been selected. Disproportionate allocation is considered so that
40% of the sample comes from the first stratum and the remaining 60% comes from the
second. Recall that the first stratum is the one with the increased values. For all survey
variables this makes a 3 X 4 design for the simulation — 3 sample sizes by 4 types of
response probabilities. For each unit in the sample, a Bernoulli experiment with
probability of success given by its response probability is conducted to simulate the
response mechanism.

On the response set the following estimators of the total of each survey variable have
been computed:

e cxp = Ny,, the expansion estimator where y, = > diyr/ ) . dr, no auxiliary
information used;

e pwa = Z}f:lN »Yr, population weighting adjustment, poststratified estimator
where P =3 poststrata are defined using the 0.33 and 0.66 quantiles of z
and y,, = Z diye/ 3=, dk. with r, the respondents set in poststratum p;

® wCc = Zp ley, welghtlng class estimator, poststratified estimator with estimated
population counts N Z dy, with s, the sample set in poststratum p;

era=> %y, dkyk/ > dkzk, the ratio estimator;

e reg = exp + (ZU Zk — expz)b, the regression estimator with exp,=
NY diz/ >, dpand b =" di(ze — 2) (v — 32/ 3, dilz — 2)%

o reg2 =exp+ (Y, z — exp:)bi + (3,27 — exp.2)by, the quadratic regression
estimator;

o reg3=exp+ (X yz — exp.)bi+ (Xyat — exp2)br + (Dyzh — exp.s)bs,
the cubic regression estimator;

e sepra=>" 3 u, % ¥r, /%, the separate ratio estimator (the three poststrata in pwa
are used);

® sepreg = Z;JZIN » {)_?r,, + (Z u, %k~ Z,ﬂ)b,,}, the separate regression estimator with
b, = er di(zx — 2, )Yk = 3r,)/ Zr’) di(z = Z,P)2 (the three post-strata in pwa are
used);

e splinedf, eight different p-splines estimators according to the value of the degrees of
freedom used to approximate all survey variables; in particular, \ is chosen so that
df = {3,4,6,8,10,12,14,16}.

Estimators ra, reg, reg2, reg3, sepra, sepreg, and all the spline estimators are computed in
the estimators info-U and info-s scenario. For the latter case, an extra ‘s’ will be attached to
the name of the estimator. In addition, for the spline estimators the value of N has been
determined in two different ways for info-U and for info-s. In particular, for info-U \ is
determined (7 ) at the population level — using values of z; for k € U — and kept fixed over
repeated sampling and (ii ) for each sample, at the response set level — using values of z;
for k € r. Similarly, for info-s A is determined for each sample (i) at the sample level —
using values of z; for k € s — and (i) at the response set level — using values of z; for
k € r. Estimators with \ determined as in (ii) for either info-s or info-U will be denoted
with an extra ‘r’ in the name of the estimator. So, for example, spline4 denotes the
estimator that also uses 4 degrees of freedom, auxiliary information of type info-U and A
determined at the population level and then kept fixed over repeated sampling; while



Montanari and Ranalli: Semiparametric Regression for Nonresponse Treatment 257

splinedrs denotes the estimator that also uses 4 degrees of freedom, but auxiliary
information of type info-s and A computed at each replication at a response set level. The
spline-based estimators all use L = 35 knots, placed at the quantiles of population values
of z and kept fixed over repeated sampling. Note that the choice of the position of the knots
is not as crucial as the choice of the position of thresholds for poststrata, once penalization
is included in the estimation procedure.

The performance of the estimators is evaluated for each survey variable using the
following measures in which f/, denotes the value taken by a generic estimator ¥ of Y at
replication j, withj =1, . . ., J.

e % Relative Bias, given by
B3
%RB = 5D 100
Y
where B(Y)=E(Y)— Y is the Monte Carlo estimate of the bias with
Edy =773

e % Coefficient of Variation, given by

MSE(Y)

%CV = 7

100

where the Monte Carlo estimate of the mean squared error is given by
MSE(Y) =J 'S (¥ — V)%

In addition, the performance of the variance estimators for the proposed estimator
illustrated in Theorem 3.2 has also been tested by means of the empirical coverage rate for
a 95% nominal confidence interval based on the normal approximation. Note that
estimators from exp to sepregs are “conventional” and also considered in Sdrndal and
Lundstrom (2005). We will see that results are in line with those in for instance, Sarndal
and Lundstrom (2005, Sec. 10.3).

We will report results only for n = 500 and then discuss the differences occurring when
considering a smaller or a larger sample size. Tables 1 and 2 report the % Relative Bias in
the different settings. Estimators that use info-U are displayed in the first half of the
tables. In general, it can be noted that for the same estimator, info-s shows the same
performance as info-U in terms of bias. Under the columns with the heading 6 LIN in
Table 1 we report results when the reciprocal of the nonresponse probabilities is a linear
function of the auxiliary variable. This is a situation in which condition (5) holds when the
auxiliary vector contains an intercept and the values of z;. This is the case for all reg
estimators — reg, reg2, reg3 — that, in fact, show an almost zero bias also for any population
of interest. This is also true for the sepreg and all the spline estimators even if they are using
a more complicated set of auxiliary variables than needed. Poststratification corresponds to
a piecewise constant approximation to the linear function that provides some reduction in
bias compared to exp, but not as well as the others. Estimators ra and sepra use an auxiliary
information vector which suffices approximate neither the nonresponse model nor the
population model, and in most cases show a larger bias than does exp.

When the inverse of the response probability is a more complicated function of z, as for
the case 6 LOG+ in Table 1 and 6 LOG— and 6 GAU in Table 2, then the reg estimator



Table 1. Percent Relative Bias — %RB — for all estimators and survey variables. Response probabilities type LIN and LOG+ , n = 500

60 LIN 0LOG+

o=0.15 o= 0.50 o=0.15 o= 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
exp —5.99 1.04 142  —596 1.09 1.28 11.19 —1.54 —0.45 11.16 —1.50 —0.49
pwa —0.70 0.53 0.77  —0.66 0.65 0.71 0.98 0.23 0.43 0.97 0.17 0.41
ra 4.27 12.17 12.60 431 12.23 1245 —-6.02 —1674 —1580 —6.05 —1670 —15.83
reg —0.02 0.05 0.15 0.03 0.13 0.11 —0.02 0.98 858 —0.18 1.01 8.35
reg2 —0.03 0.08 —0.01 0.02 0.17  —=0.05 —0.01 —1.33 0.58 —0.01 —1.38 0.51
reg3 —0.03 0.06 —0.08 0.02 0.15 —-0.13 —0.02 —1.82 0.33 0.00 —1.89 0.27
sepra 0.75 2.66 2.72 0.79 2.77 265 —1.03 —2.46 —251 —1.05 —2.52 —2.52
sepreg —-0.04 -004 —0.17 0.01 005 -0.19 —0.03 —0.52 —-0.07 —-0.02 —0.58 —0.07
spline3 —0.03 0.07 0.08 0.02 0.16 0.04 —0.02 —0.08 421 —0.09 —0.09 4.07
spline3r —0.03 0.07 0.04 0.02 0.15 0.00 —0.02 —0.36 298 —0.07 —0.39 2.86
spline4 —0.03 0.06 0.00 0.02 0.15 =004 —0.02 —0.68 145 —0.05 —-0.72 1.35
spline4r —0.03 0.05 —0.02 0.02 0.14 —-0.06 —0.02 —-0.73 090 —0.04 —-0.77 0.81
spline6 —0.04 0.01  —0.05 0.01 0.10 —0.08 —0.02 —0.51 027 —0.04 —0.55 0.20
spline6r —-0.04 —-0.01 —0.05 0.01 0.08 —0.09 —0.02 —0.38 0.17  —0.05 —0.41 0.10
spline8 —-0.05 —-0.03 —0.05 0.00 0.06 —0.09 —0.03 —0.25 0.08 —0.05 —0.27 0.01
spline8r —0.05 —004 —0.05 0.00 0.04 —-0.09 —0.03 —0.17 0.03 —0.05 —0.19 —0.04
spline10 —0.05 —-005 —0.06 0.00 0.03 —-0.09 —0.03 —0.14 0.00 —0.05 —0.16 —0.07
spline10r —0.06 —005 —-006 —0.01 0.02 —-0.09 —0.04 —0.12 —0.04 —0.06 —0.13 —-0.12
splinel2 -006 —-006 —0.07 —0.01 0.02 —-0.10 —0.04 —0.11 —0.05 —0.06 —0.13 —0.13
spline12r —-0.07 —0.06 —0.08 —0.01 001 -0.11 —0.05 —0.10 —0.09 —0.06 —0.12 —0.18
splinel4 -0.07 -007 —-0.08 —0.01 001 -—=0.11 —0.05 —0.10 —-0.10 —0.06 —0.12 —0.18
splinel4r -0.07 -007 —-010 —0.02 0.00 —0.14 —0.06 —0.10 —-0.14  —0.07 —0.12 —0.22
spline16 -0.07 -007 -010 —0.02 -0.01 —0.14 —0.06 —0.10 —-0.13  —0.07 —0.12 —0.22

splinel6r -008 -008 —-0.12 —-003 -002 —-016 —0.07 —0.11 —0.18 —0.07 —0.13 —0.26
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Table 1.

Continued

0 LIN O0LOG+

o=0.15 o= 0.50 o=0.15 o=0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
we —0.75 0.54 0.81 —0.71 0.65 0.74 0.94 0.24 0.46 0.92 0.17 0.44
ras 4.16 12.00 12.43 4.19 12.06 1227 —-6.11 —1684 —1592 —-6.14 —1681 —1595
regs —0.07 0.05 0.10  —0.02 0.13 0.06 —0.07 0.97 855 —0.23 0.99 8.31
reg2s —0.07 0.09 0.12 —0.02 0.17 0.08 —0.06 —1.30 0.73  —0.05 —1.36 0.66
reg3s —0.07 0.06 0.08 —0.02 0.14 0.03 —0.06 —1.85 0.50 —0.04 —1.93 0.46
sepras 0.71 2.66 2.74 0.75 2.77 2.67 —1.08 —2.47 —249 —1.10 —2.53 —2.50
sepregs —0.08 0.03 0.05 —0.02 0.11 0.02 —0.07 —0.46 0.16 —0.06 —0.52 0.16
spline3s —0.07 0.07 0.12  —0.02 0.15 0.08 —0.06 —0.08 425 —0.14 —0.11 4.10
spline3rs —0.07 0.07 0.12  —0.02 0.15 0.07 —0.06 —0.37 306 —0.12 —0.40 2.94
spline4s —0.07 0.06 0.11 —0.02 0.15 0.07  —0.06 —0.69 1.55 —0.09 —0.73 1.46
splinedrs —0.07 0.06 0.11 —0.02 0.14 0.07  —0.06 —-0.73 1.02  —0.08 —0.77 0.95
spline6s —0.08 0.03 0.10 —0.03 0.11 0.06 —0.06 —-0.49 042 —0.08 —0.53 0.36
spline6rs —0.08 0.02 0.10 —0.03 0.10 0.06 —0.06 —0.35 032 —0.08 —0.38 0.26
splinc8s —0.08 0.01 0.10 —0.03 0.09 0.06  —0.06 —0.20 024 —0.08 —0.23 0.18
spline8rs —0.08 0.01 0.10 —0.03 0.09 0.06  —0.06 —0.12 0.19  —0.09 —0.15 0.13
splinel0s —0.08 0.01 0.10 —0.03 0.08 0.07  —0.06 —0.09 0.16 —0.09 —0.11 0.10
splinelOrs ~ —0.08 0.00 0.10 —0.04 0.08 0.07  —0.07 —0.06 0.13  —0.09 —0.08 0.06
splinel2s —0.08 0.00 0.11  —0.04 0.08 0.07 —0.07 —0.05 0.11  —0.09 —0.07 0.05
splinel2rs ~ —0.09 0.00 0.10 —0.04 0.07 0.07 —0.07 —0.03 0.09 —0.09 —0.06 0.02
spline14s —0.09 0.00 0.10 —0.04 0.07 0.07  —0.07 —0.03 0.08 —0.09 —0.06 0.02
splineldrs  —0.09 0.00 0.10 —0.04 0.06 0.06  —0.08 —0.03 0.06 —0.09 —0.06 0.00
splinel6s —0.09 0.00 0.10 —0.04 0.06 0.06  —0.08 —0.03 0.06 —0.09 —0.06 0.00
splinelérs  —0.09  —0.01 0.10  —0.05 0.06 0.06  —0.08 —0.03 0.04 —0.10 —0.06 —0.02
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Table 2. Percent Relative Bias — %RB — for all estimators and survey variables. Response probabilities type LOG—, and GAU, n = 500

0 LOG— 0 GAU

o=0.15 o=0.50 o=0.15 o=0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
exp —10.62 0.92 6.48 —10.61 0.89 6.30 0.17 —2.14 —7.97 0.34 —2.14 —7.96
pwa —1.06 1.31 3.07 —1.04 1.39 3.07 0.01 —3.04 —3.80 0.12 —3.02 —3.88
ra 8.18 22.25 28.97 8.19 22.21 28.75 —0.03 —2.23 —8.05 0.15 —2.23 —8.03
reg —0.06 —-0.77 6.01 —0.05 —0.76 5.97 0.02 —2.07 —17.81 0.19 —2.06 —7.80
reg2 —0.04 —1.23 0.17 0.04 —1.22 0.17 —0.01 0.28 —0.20 0.00 0.36 —0.32
reg3 —0.05 —1.06 0.28 0.02 —1.05 0.25 —0.01 0.23 —0.25 0.00 0.32 —0.37
sepra 0.54 2.81 4.86 0.56 2.90 4.86 1.13 0.20 —1.11 1.24 0.20 —1.21
sepreg —0.06 —0.41 —0.03 0.02 —0.41 —0.02 —0.02 —0.03 0.00 0.00 0.06 —0.10
spline3 —0.05 —0.81 2.81 —0.01 —0.80 2.78 0.00 —0.89 —3.31 0.08 —0.84 —3.37
spline3r —0.05 —0.80 1.95 0.00 —0.79 1.92 0.00 —0.69 —2.52 0.07 —0.63 —2.59
spline4 —0.05 —0.73 0.86 0.01 —-0.72 0.84 —0.01 —0.29 —1.01 0.03 —0.22 —1.11
spline4r —0.05 —0.67 0.50 0.01 —0.65 0.47 —0.01 —0.21 —0.68 0.02 —0.13 —0.78
spline6 —0.05 —0.39 0.10 0.00 —0.38 0.07 —0.02 —0.09 —0.19 0.00 —0.01 —0.29
spline6r —0.05 —-0.29 0.06 —0.01 —0.28 0.02 —0.02 —0.09 —0.13 0.00 0.00 —0.23
spline8 —0.06 —0.20 0.03 —0.02 —0.18 —0.01 —0.03 —0.08 —0.08 —0.01 0.01 —0.18
spline8r —0.06 —0.15 0.02 —0.02 —0.14 —0.02 —0.03 —0.08 —0.07 —0.01 0.01 —0.16
spline10 —0.07 —0.13 0.01 —0.03 —0.12 —0.03 —0.03 —0.08 —0.07 —0.01 0.01 —0.16
splinel0r —0.07 —0.12 0.00 —0.04 —0.10 —0.05 —0.04 —0.08 —0.07 —0.02 0.00 —0.16
splinel2 —0.07 —0.11 —0.01 —0.04 —0.10 —0.05 —0.04 —0.09 —0.07 —0.02 0.00 —0.16
splinel2r —0.08 —0.11 —0.03 —0.06 —0.10 —0.07 —0.05 —0.09 —0.08 —0.02 —0.01 —0.18
splinel4 —0.08 —0.11 —0.03 —0.06 —0.10 —0.08 —0.05 —0.09 —0.09 —0.02 —0.01 —0.18
splinel4r —0.09 —0.11 —0.05 —0.07 —0.11 —0.11 —0.05 —0.10 —0.10 —0.03 —0.02 —0.20
splinel6 —0.09 —0.11 —0.05 —0.07 —0.11 —0.10 —0.05 —0.10 —0.10 —0.03 —0.02 —0.20
splinel6r —0.10 —0.12 —0.08 —0.08 —0.11 —0.14 —0.06 —0.11 —0.12 —0.03 —0.03 —0.22
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Table 2. Continued

0 LOG— 0 GAU

o=0.15 o= 0.50 o=0.15 o=0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
we —1.11 1.32 3.10 —1.08 1.41 3.11 —0.04 —-3.02 —3.76 0.07 —3.02 —3.85
ras 8.06 22.07 28.78 8.07 22.03 28.57 —0.13 —239 =821 0.04 —239 —8.20
regs -0.10 -—0.76 5.96 —0.10 —0.75 5.91 —0.03 —2.07 —17.84 0.14  —2.07 —17.84
reg2s —0.09 —1.23 0.30 —0.01 —1.23 030 —0.05 0.30  —0.06 —0.04 0.38 —0.17
reg3s —0.09 —1.06 0.44 —-0.02 —1.07 042  —0.05 024 —0.09 —0.04 0.32 —0.20
sepras 0.49 2.81 4.89 0.51 2.90 4.89 1.08 0.21 —1.08 1.19 020 —1.19
sepregs —-0.10 —0.34 0.17 —-0.02 —0.33 020 —0.06 0.05 0.21 —0.04 0.13 0.12
spline3s —0.09 —0.81 2.83 —0.05 —0.80 2.81 —-004 —-089 —324 0.04 —0.84 —3.30
spline3rs —0.09 —0.81 2.01 —0.04 —0.80 1.99  —0.05 —0.68 —2.44 0.02 —0.63 —2.51
spline4s —0.09 —0.74 0.96 —0.03 —0.73 094 —0.05 —0.28 —0.89 —0.01 —0.21 —0.97
splinedrs —0.09 —0.66 0.61 —0.03 —0.65 059 —0.05 —-020 —0.55 —-0.02 —0.13 —0.64
spline6s —0.09 —0.37 0.24 —0.04 —0.35 022 —0.06 —0.06 —0.04 —0.04 0.02 —0.13
spline6rs —0.09 —0.26 0.20 —-0.04 —0.24 0.17 —0.06 —0.04 0.02 —0.04 0.03 —0.08
spline8s —0.09 —0.15 0.18 —0.05 —0.13 0.15 —0.06 —0.03 0.07 —0.04 0.05 —0.02
spline8rs —0.09 —0.10 0.17 —0.06 —0.08 0.14  —0.06 —0.02 0.09 —0.04 0.05 0.00
splinel0s —0.10 —0.08 0.17 —0.06 —0.06 0.13 —0.06 —0.02 0.10 —0.04 0.06 0.01
spline10rs —0.10 —0.06 0.17 —0.07 —0.04 0.13 —0.06 —0.02 0.10 —0.04 0.06 0.01
splinel2s —-0.10 —0.05 0.16 —0.07 —0.03 0.12 —0.07 —0.02 0.10 —0.04 0.06 0.01
splinel2rs —-0.10 —0.04 0.16 —0.08 —0.02 0.11 —0.07 —0.02 0.10 —0.04 0.05 0.01
spline14s —0.10 —0.04 0.16 —0.08 —0.02 0.11 —0.07 —0.02 0.10 —0.04 0.05 0.01
splinel4rs —0.11 —0.04 0.15 —-0.09 —-0.02 0.10 —0.07 —0.03 0.10  —0.04 0.05 0.01
splinel6s —0.11 —0.04 0.15 —-0.09 —0.02 0.10 —0.07 —0.03 0.10 —0.04 0.05 0.01
spline16rs —0.11 —0.04 0.14 —-0.09 —-0.02 0.09 —0.07 —0.03 0.10  —0.05 0.05 0.00

JUAUIDAL], ISUOAS2AUON A0f UOISSIAEDY IJAUDIDANUIS “1]JPUDY PUD LIDUDIUO

19¢



262 Journal of Official Statistics

successfully reduces bias to almost zero only with a LIN population. For the other
populations, reg always suffers from a misspecified response or population model.
By contrast, reg2 and reg3, that use, respectively, a quadratic and a cubic model for either
the relationship between y and z or between 1/6 and z, allow the reduction of nonresponse
bias also in the case of the SIN or DIS populations, when the response probabilities are of
type GAU. Note that for info-U reg2 requires the knowledge of the population total of z %,
and reg3 further requires also the population total of z>. Estimator sepreg succeeds in
decreasing bias every time a piecewise linear approximation in each poststratum provides
a good description of the relationship between y and z — for instance the DIS cases — or
between 1/60 and z — for instance the GAU cases.

On the other hand, the spline estimators almost always succeed in taking the bias to zero
because the inclusion of the basis functions allow handling departures from linearity in
either the response model or the population model. Note, for instance, that the DIS
population is based on a function of z that the spline estimators cannot handle because the
function is discontinuous. In these cases also, though, bias is reduced because the implicit
estimation of the inverse of the response probabilities allows to handle the LOG and the
GAU functions.

The ability of the spline estimators to capture either the response model or the population
model depends on the penalty A and, therefore, on the number of degrees of freedom used.
The simulation studies show that it is better to have a relatively larger value for the degrees
of freedom: this allows the handling of even complicated structures, like the SIN population
or the LOG response models, and does not provide significant losses when in the presence
of simple linear structures. In addition, it is hard to detect differences in the performance of
the alternative spline estimators, once at least 8 degrees of freedom are used.

Tables 3 and 4 report %CV for the simulations. In these tables, as expected, the
difference between info-s and info-U versions of the same estimator are more clear, with
the latter providing gains in efficiency over the former when the vector of auxiliary
variables employed by the estimator provides a good approximation of the population
model. It is the case of reg in the LIN populations, and of spline estimators for LIN and
SIN populations. Estimator sepreg, that showed a good performance in decreasing bias,
suffers from its coarse approximation of functions like the SIN or the LOG and GAU, by a
relatively larger overall error.

As for the role of A for the spline estimators, again here there is very little difference in
performance among estimators with a number of degrees of freedom going from 8 to 16. In
addition, virtually no difference can be detected for each spline estimator with a given
number of degrees of freedom when A is chosen at the population (sample) level on the one
hand or at a response set level on the other. This provides evidence of little increase in
variability due to the estimation of its value at a response set level (see Section 3.4).

In general, simulations with a larger (smaller) sample size show, other things being
equal, an increase (decrease) in the role of bias as opposed to that of variance. The spline
estimators, as all nonparametric regression techniques, suffer from a reduced number of
observations and therefore provide better performances both in terms of %RB and %CV
when n = 800.

As for the performance of the variance estimators for the proposed estimators, Tables 5
and 6 report coverage rates for 95% confidence intervals for all spline estimators.



Table 3. % Coefficient of variation for all estimators and survey variables. Response probabilities type LIN and LOG+, n = 500

6 LIN 6 LOG+
o=0.15 o =0.50 o=0.15 o=0.50
LIN  SIN DIS LIN  SIN DIS LIN SIN DIS LIN SIN DIS
exp 634 217 352 649 296 460 1135 270  3.63 1143 353 5.02
pwa 115 220 322 203 3.5 473 1.33 171 2.95 199 267 428
ra 459 1314 1386 490 1338 1418 609 1700 1636 627 1708  16.65
reg 057 219 349 178 313 487 056 206  9.30 160 290 957
reg2 057 212 235 179 308 423 056 = 232 251 156 308 400
reg3 0.58 175 232 179 28 424 056 262 227 157 335 388
sepra 124 419 457 209 480 575 152 397 407 213 445 520
sepreg 0.58 115 216 180 254 415 0356 L4 214 158 235 3.75
spline3 057 206 262 178 304 434 055 167 493 157 261 5.69
spline3r 0.57 199 247 178 299 427 056 1.63 3.80 157 258 482
spline4 0.57 175 229 179 28 419 056 155 263 157 254 403
splinedr 0.57 159 224 179 273 418 056 146 235 157 249 388
spline6 0.58 110 211 179 247 413 056 106 2.06 157 228 373
spline6r 058 098 206 179 242 410 056 091 1.96 157 221 3.68
spline8 0.58  0.86 195 180 238 405 056 0.9 1.84 158 217 3.6l
spline8r 0.58 082 188 180 237 402 056 075 175 158 215 3.57
spline10 0.58  0.80 183 180 237 399 056 073 1.70 158 215 355
splinel0r 059 0.8 177 181 237 396 057 072 1.64 159 215 352
spline12 059 078 175 181 237 395 057 072 1.63 159 215 3.52
splinel2r 059 0.77 170 181 237 394 057 072 1.59 159 215 351
spline14 059 077 169 181 237 394 057 072 1.59 159 215 351
splineldr 059 077 166 182 238 393 057 072 1.56 160 2.15 3.50
spline16 059 077 166 182 238 393 057 072 1.56 160 215 351
splinelér 059 0.77 163 182 238 393 058 073 1.53 1.61 216 351
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Table 3. Continued

6 LIN 6 LOG+
o=0.15 o =050 oc=0.15 o =050
LIN  SIN DIS LIN  SIN DIS LIN SIN DIS LIN SIN DIS

we 1.83 2.25 345 248 3.17 4.85 1.91 1.78 3.21 2.42 2.71 4.41
ras 453 1255 1327 484 1280  13.55 640  17.03 1633 657 1711  16.62
regs 1.61 2.20 352 233 3.14 4.90 1.60 2.05 9.27 2.19 2.90 9.56
reg2s 1.61 2.15 3.04 233 3.10 459 1.60 2.31 3.18 2.18 3.07 4.34
reg3s 1.61 1.96 3.06 233 2.96 4.62 1.60 2.76 3.00 2.17 3.47 4.24
sepras 1.77 3.76 452 245 4.42 5.66 2.12 3.64 4.10 2.58 4.16 5.16
sepregs 1.61 1.73 301 232 2.82 457 1.60 1.69 2.98 2.18 2.63 420
spline3s 1.61 2.13 315 233 3.08 4.65 1.60 1.77 5.25 2.18 2.68 5.94
spline3rs 1.61 2.09 310 233 3.05 4.62 1.60 1.80 4.29 2.17 2.69 5.15
splineds 1.61 1.98 3.03 233 2.97 4.58 1.60 1.86 3.34 2.17 2.74 4.44
splinedrs 1.61 1.91 3.02 233 2.92 458 1.60 1.85 3.12 2.17 2.73 4.29
spline6s 1.61 1.72 299 233 2.79 4.56 1.60 170 2.94 2.18 2.62 4.18
spline6rs 1.61 1.68 297 233 2.77 455 1.60 1.64 2.90 2.18 2.58 4.15
spline8s 161 1.64 2.94 233 2.75 453 1.60 1.60 2.86 2.18 2.55 4.12
spline8rs 1.61 1.63 292 233 2.74 451 1.60 1.59 2.83 2.18 2.54 4.10
spline10s 1.61 1.63 290 233 2.74 4.49 1.60 1.59 2.81 2.18 2.54 4.08
splinelOrs  1.61 1.62 2.89 233 2.74 4.48 1.60 1.58 2.80 2.18 2.54 4.07
spline12s 1.61 1.62 2.88 233 2.74 4.48 1.60 1.58 2.79 2.18 2.54 4.07
splinel2rs  1.61 1.62 2.88 233 2.74 4.47 1.60 1.58 2.78 2.18 2.54 4.06
splinelds 1.6l 1.62 2.87 233 2.74 4.47 1.60 1.58 2.78 2.18 2.54 4.06
splineldrs  1.61 1.62 2.87 233 2.74 4.46 1.60 1.58 2.77 2.18 2.54 4.05
spline16s 1.61 1.62 2.86 233 2.74 4.46 1.60 1.58 2.77 2.18 2.54 4.05
splinelérs 1.6l 1.62 2.86 233 2.75 4.46 1.60 1.58 2.76 2.18 2.54 4.05
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Table 4. % Coefficient of variation for all estimators and survey variables. Response probabilities type LOG— and GAU, n = 500

6 LOG— 6 GAU
o=0.15 o =050 o=0.15 o =050
LIN SIN DIS LIN SIN DIS LIN SIN DS LIN SIN  DIS
exp 10.78 1.98 720 10.87 2.77 756 221 297 866 271 36l 9.17
pwa 1.4 2.74 4.76 2.33 3.78 598 090 359 462 180 412 5.69
ra 838 2285 2958 857 2292 2957 149 504 964 213 552 1013
reg 0.62 2.48 7.15 1.92 3.50 790 055 286 845 163 349 8.96
reg2 0.65 2.71 2.56 1.98 3.70 463 056 206 225 166 292 3.97
reg3 0.65 2.27 2.53 1.98 3.36 467 056 177 220 166 272 3.97
sepra 1.10 4.45 6.46 2.16 5.24 745 155 319 347 227 383 4.78
sepreg 0.65 129 2.32 1.98 2.87 461 057 119 204 167 245 3.88
spline3 0.63 2.46 4.08 1.94 3.50 547 055 205 409 164 287 5.20
spline3r 0.64 2.41 3.37 1.95 3.47 502 055 194 340 164 279 4.70
spline4 0.64 2.19 2.67 1.97 3.32 466 056 164 237 165 26l 4.05
splinedr 0.64 1.98 2.50 1.97 3.19 460 056 151 222 165 254 3.97
spline6 0.65 1.35 2.32 1.98 2.83 456 056 106 201 166 231 3.88
spline6r 0.65 114 2.26 1.98 2.74 454 056 095 195 166 227 3.85
spline8 0.65 0.98 2.15 1.98 2.68 450 056 082 184 166 223 3.80
spline8r 0.66 0.92 2.06 1.99 2.66 447 056 078 178 167 222 3.77
spline10 0.66 0.89 2.00 1.99 2.66 445 056 076 173 167 222 3.74
spline10r 0.66 0.86 1.93 2.00 2.65 443 056 075 168 167 222 3.72
spline12 0.66 0.86 1.90 2.00 2.65 443 057 075 165 167 222 3.71
spline12r 0.66 0.85 1.84 2.00 2.66 441 057 075 161 168 223 3.69
spline14 0.66 0.85 1.84 2.00 2.66 441 057 075 160 168 223 3.69
splinel4r 0.67 0.85 1.80 2.01 2.66 441 057 075 157 168 223 3.68
spline16 0.67 0.85 1.80 2.01 2.66 441 057 075 157 168 223 3.68
spline10r 0.67 0.85 176 2.02 2.67 441 057 075 154 169 224 3.68
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Table 4. Continued

6 LOG— 6 GAU

oc=0.15 o =050 oc=0.15 o =050

LIN SIN DIS LIN SIN DIS LIN SIN DS LN SIN  DIS
we 2.01 2.79 4.96 2.71 3.80 613 172 360 481 231 415 5.80
ras 830 2244 292 848 2251 2920 157 390 918 217 442 9.67
regs 1.63 2.48 7.10 2.42 3.51 787 159 289 851 220 354 9.03
reg2s 1.64 2.72 3.18 2.46 3.72 495 159 210 296 221 295 432
reg3s 1.64 2.40 3.20 2.46 3.46 502 159 199 294 221 2.86 4.32
sepras 1.74 4.09 6.45 2.53 4.90 741 191 249 343 251 324 4.68
sepregs 1.64 1.82 3.09 2.46 3.11 500 159 175 290 221 271 4.28
spline3s 1.63 2.50 4.42 2.44 3.53 571 159 216 442 220 296 5.42
spline3rs 1.63 2.47 3.86 2.4 3.52 533 159 208 384 220 290 4.97
splineds 1.63 2.34 3.33 2.45 3.43 502 159 192 306 221 279 439
splinedrs 1.64 2.21 3.22 2.45 3.34 498 159 186 297 221 276 433
spline6s 1.64 1.86 3.13 2.46 3.11 496 159 170 289 221 264 427
spline6rs 1.64 1.77 3.10 2.46 3.05 496 159 167 287 221 262 4.6
spline8s 1.64 171 3.06 2.46 3.01 494 159 1.63 285 221 260 4.3
spline8rs 1.64 1.68 3.03 2.46 3.00 493 159 162 283 221 260 422
spline10s 1.64 1.67 3.00 2.46 3.00 492 159 161 282 221 260 420
spline10rs 1.64 1.67 2.97 2.47 3.00 491 159 161 281 221 260 4.19
spline12s 1.64 1.67 2.96 2.47 3.00 491 159 161 281 221 260 4.19
spline12rs 1.64 1.66 2.94 2.47 3.00 490 159 161 280 221 260 4.18
splinel4s 1.64 1.66 2.94 2.47 3.00 490 159 161 279 221 2.60 4.18
spline 14rs 1.64 1.66 2.93 2.47 3.00 490 159 161 279 221 26l 4.17
spline16s 1.64 1.66 2.93 2.47 3.00 490 159 161 279 221 26l 4.17
splinel6rs 1.64 1.67 2.92 2.47 3.00 491 159 161 278 221 26l 4.17
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Table 5. Coverage rate for 95% confidence intervals for all p-splines based estimators and survey variables. Response probabilities type LIN and LOG+, n = 500

6 LIN 6 LOG+

o=0.15 o =050 o=0.15 a=050

LIN SIN DS LIN SIN  DIS LIN SIN DS LN  SIN  DIS
spline3 946 938 953 954 940 956 953 961 629 947 951 856
spline3r 946 939 950 954 938 956 95.1 954 746 945 946  90.
spline4 946 946 948 951 939 955 948 942 897 943 938 936
splinedr 944 946 950 951 941 955 948 927 929 943 936 950
spline6 940 953 951 945 944 953 949 932 949 943 934 950
spline6r 939 952 951 944 943 951 948 947 945 943 935 952
spline8 939 955 940 940 941 95l 945 953 949 943 934 952
spline8r 940 951 936 940 941 947 943 951 946 942 941 951
spline10 940 948 937 938 940 943 943 949 947 942 940 954
spline10r 935 951 939 936 939 943 942 950 945 942 938 958
spline12 934 946 937 936 936 944 942 951 945 942 939 957
spline12r 935 945 931 933 937 94l 940 950 947 939 938 957
spline14 934 944 928 933 936 94l 940 948 947 938 938 957
splinel4r 933 938 924 930 936 941 93.6 950 948 934 936 955
spline16 933 938 924 930 936 94l 937 950 948 934 936 955
spline16r 934 934 922 929 934 941 935 946 942 934 931 952
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Table 5. Continued

6 LIN 6 LOG+

o=0.15 o=050 o=0.15 o =050

LIN SIN DS LIN SIN  DIS LIN  SIN  DIS LIN  SIN  DIS
spline3s 949 948 954 946 943 955 948 961 708 940 951 866
spline3rs 950 952 953 946 943 956 950 958 814 938 947 910
splineds 950 946 952 946 942 955 952 949 908 940 944 942
splinedrs 950 945 948 946 939 954 954 947 929 940 943 954
spline6s 950 947 947 947 941 957 954 948 947 941 945 957
spline6rs 950 947 947 948 943 957 954 951 949 941 948 958
spline8s 950 950 942 948 943 956 953 954 948 941 945 957
spline8rs 950 953 943 948 943 954 954 951 946 940 949 959
spline10s 950 951 945 948 942 952 954 949 946 940 948 959
splinelOrs 950 952 947 947 943 948 955 949 946 940 950 960
spline12s 950 952 946 947 944 949 955 949 948 940 950 962
splinel2rs 949 953 946 947 945 947 955 950 947 941 952 963
splinel4s 949 954 947 947 945 948 955 950 948 942 952 963
splineldrs 949 955 947 947 945 948 955 950 948 940 953  96.4
spline16s 949 955 947 947 944 948 955 950 948 940 953 964
splinelérs 949 955 951 946 945 947 956 952 949 941 951  96.4
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Table 6. Coverage rate for 95% confidence intervals for all p-splines based estimators and survey variables. Response probabilities type LOG— and GAU; n = 500

0 LOG— 0 GAU

o=0.15 o= 0.50 o=0.15 o= 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
spline3 94.0 92.5 86.6 94.5 93.7 91.8 94.5 91.2 71.8 94.2 93.1 87.3
spline3r 94.0 92.2 90.3 94.4 93.5 93.5 94.5 923 81.9 94.1 94.0 90.8
spline4 93.8 92.2 93.4 94.3 93.8 94.9 94.4 94.4 93.2 94.1 94.1 95.0
spline4r 93.9 92.9 94.0 94.2 93.7 94.8 94.3 95.7 94.7 94.2 94.0 95.5
spline6 93.3 94.1 94.4 94.2 93.2 94.9 93.9 94.9 94.7 93.9 94.0 96.1
spline6r 93.3 94.9 94.4 94.2 93.5 94.7 93.9 94.5 94.6 94.0 94.4 96.3
spline8 93.2 94.4 94.2 93.9 93.5 94.5 94.0 93.8 94.3 93.9 94.3 95.9
spline8r 93.0 94.4 94.5 93.8 93.7 94.4 93.9 93.7 93.9 93.8 94.4 95.7
spline10 92.6 94.0 94.9 93.8 93.9 94.5 93.9 92.7 93.7 93.8 94.3 95.5
spline10r 92.8 94.3 94.5 93.7 94.0 94.7 93.7 92.7 93.2 93.8 94.1 95.3
spline12 92.6 94.2 94.2 93.2 93.9 94.6 93.5 92.8 93.3 93.8 94.0 95.4
spline12r 92.1 93.9 94.0 92.8 93.6 94.3 93.2 92.9 93.4 93.8 93.8 95.5
splinel4 92.1 93.9 93.8 92.8 93.6 94.3 93.1 92.9 93.6 93.9 93.6 95.5
spline14r 91.8 93.7 93.5 92.6 93.0 94.2 93.0 92.7 94.0 93.7 93.3 95.4
splinel6 91.9 93.7 93.6 92.6 93.0 94.2 93.0 92.5 94.0 93.7 93.3 95.4
splinel6r 91.5 93.8 93.1 92.6 92.4 93.8 92.7 92.5 93.9 93.5 93.4 95.7
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Table 6. Continued

6 LOG— 6 GAU

o=0.15 o =050 o=0.15 o =050

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS
spline3s 949 930 874 953 93.7 9.6 958 92.2 824 960 933 89.5
spline3rs 95.1 93.0 919 953 93.3 94.1 95.8 93.2 880 960 939 91.9
splineds 95.3 93.1 94.3 952 933 95.6 955 942  95. 95.8 94.5 95.1
splinedrs 95.3 93.3 94.3 954 936 953 954 942 955 95.7 94.5 95.6
spline6s 95.5 94.7 94.3 954 941 954 952 947 95.3 959 952 959
spline6rs 95.5 95.3 944 953 94.3 954 951 94.8 952 959 950 959
spline8s 954 952 943 952 945 95.5 95.1 94.8 950 959 952  96.1
spline8rs 95.3 95.1 946 950 947 95.3 95.1 949 949 95.8 952 96.1
spline10s 95.3 949 948 950 950 953 95.1 950 946 958 95.1 96.2
splinelOrs  95.3 94.6 947 950 950  95. 95.1 952 944 957 95.0 963
spline12s 95.3 946 946 949 950 952 951 952 944 957 94.9 96.2
splinel2rs 954 946 949 949 949 949 951 952 945 95.7 950 963
splinel4s 954 946 948 949 949 949 952 952 945 95.7 95.1 96.2
splineldrs 954 946 951 94.8 94.8 94.7 952 952 942 957 95.1 96.1
spline16s 954 946 951 94.8 94.8 94.7 952 952 942 957 95.1 96.1
splinelérs 954 946 95 949 946 946 951 952 943 95.7 94.9 96.2
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Coverage rates are satisfactory, with almost all rates between 93% and 96%. Serious
undercoverage is displayed essentially only for the spline3 estimators when a large relative
bias was also recorded, that is, in those cases in which 3 degrees of freedom are far too few
to estimate complicated structures such as the GAU or the LOG+ response models in
combination with the DIS or the SIN populations.

5. Conclusions

It is well known that nonresponse can harm the quality of the estimates from a survey by
introducing bias. Put simply, this can happen in two ways: either the response probabilities
depend on the variable of interest — direct effect — or on other variables that, in turn,
influence the variable of interest — mediated effect. In both cases, it is possible to reduce
the bias only if we have some auxiliary information that is able to describe either the
variable of interest or the nonresponse probabilities, either at the level of the original
sample (info-s) or for the whole population (info-U).

In this article we propose to use such auxiliary information to build a calibration type
estimator following in the footsteps of those studied in Sdrndal and Lundstrém (2005).
These latter estimators can reduce bias as long as the auxiliary information used in the
calibration procedure provides a good proxy for the values of the variable of interest or,
alternatively, for the inverse of the response probabilities. In classical calibration, such
proxy values are constructed as linear combinations of the auxiliary information
introduced in the calibration procedure. The estimator proposed here tries to bring such
proxy values closer to the values of the variable of interest in a larger class of situations by
using the results from model-assisted estimation based on nonparametric regression
models. In particular, here we look at the penalized splines regression estimator proposed
by Breidt et al. (2005) in the case of full response, since it has a close relationship with
calibration.

The p-splines calibration estimator proposed here allows us to account for situation in
which the effect of some auxiliary variables on the variable(s) of interest is more
complicated than a linear function. In addition, it allows also for handling auxiliary
information in the form of geographical coordinates and complicated spatial structures.
Such flexibility grants a better description of the variable of interest for both respondents
and nonrespondents and, therefore, more chances to reduce nonresponse bias. This comes
at the price of extra auxiliary information required in the info-U setting, while it can be
computed without extra auxiliary information in the info-s setting.

The asymptotic properties of the proposed estimator have been studied, conditions for
consistency discussed and variance estimation proposed. The finite sample behavior has
been explored via a limited simulation study on simulated data. Results show that the
proposed estimator allows the reduction of bias, is not any less efficient than competing
estimators that use the same auxiliary variables, and may be more efficient for complex
survey variables. Of course, estimators that use auxiliary information at info-U level are
more efficient than the corresponding estimators that use the info-s level. However, if bias
is the main concern, then estimators that use info-s can provide the same reduction in bias
as the info-U ones.
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Like all nonparametric regression-based estimators, the performance of the proposed
estimator depends on the selection of a smoothing parameter that governs its
approximation ability. However, note that in the survey context, trying to find the
optimal parameter is not as relevant as in the standard context: the estimator is not
constructed for a single variable, but for a large set of variables collected during the
survey. A penalty that is optimal for one variable may well not be adequate for another, but
using different sets of weights would not be feasible for coherence issues. We have
therefore considered a single fixed value for it and given some guidelines to selecting its
value. In this regard, Sérndal and Lundstrém (2008) have proposed an indicator that allows
the ranking of different auxiliary vectors for their potential to reduce the bias for the
calibration estimator. It will be interesting to investigate how this indicator can be
modified to encompass penalized calibration (and hence p-splines) by comparing the use
of a continuous auxiliary variable as it stands (linear), with dividing it into different groups
or poststrata (piecewise linear), and with p-splines (nonparametrical).

A. Proofs

Proof of Theorem 3.1. First note that for info-U IA/,,J = ZU Z,{f}r, with

-1
B, = (dezkzz +AN) > dizivi, (A.T)

because de (yk -7 B,) = 0 for the properties of GLS estimators and notlng that the first
element of B, remains unpenahzed Therefore, Y,,, —Y= ZUzk (B, Yu) = Yoy ek
where ¢, = y; — zk Yu. For info-s Y,,J = ZS dkzk B, and

T
Y, - Y= Zzl(ﬁr —vu)+ deZk - sz Yu
T 5 U

T
> dizi =z | Br—vo) =Y e (A2)
s U

U

Note that 1y, is such that

ZekaZ;{ +Ay Z9k1k€k + ZHkaZI{YU +Anvu — Anvu
T T T

= YU + ZOkaZ,{ + AN ZOkzkek — AN'YU .
U U
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This implies that > 6izrer = Ayyy. Now,
U

—1
B o= (zdkzkzz 4 AN) S -

_] -
= (deZkaT + AN) > diziye — (dezkzl + AN) 'YU‘|

-1
= (deZkZ/Z + AN) > dizier + Y _dizizi vu — deZkZZYU — Anvu

1
= (dezkz,f + AN> dezkek - Z(ikzkek.]
r L r U

The conditional expectation of the components of [§r in (A.1) is given by

E{deZkZﬂfN} = ZGkaZZ and E{dezk}’klfN} = ZOkayk
r U r U

Then, by Assumption A2 it follows that ﬁ, —vu =0, (nl;l/Z
N~! (Zr dizizl + AN) is bounded by bounding arguments on z and Assumptions A3
and A4. In addition, given that ), 6izxex = Anyy by the first part of assumption A5,
for which there exists a vector d such that z/d = z/d, +z,'d, = 6, !, with z; = (1,z)”
and z; = ((zx — K1)y, - - -, (zx — kr);)", then we can write >, e =d Ayyy =
(O, 0, )\NdzT) Yu = O(Nngl) The last equality follows from the second part of
Assumption AS.

To obtain representation (11) we follow Fuller (2009, Ch. 5). Assume, without loss of
generality, that the first element of z is 6, ! In fact, because of A5, 0,:1 is in the space
spanned by the columns of Z, and we can transform the matrix of values of z; so that the
first element is the inverse of 6. In particular, consider the following transformation of the
vector Z by {; = sz with

because

=0
i =z + Luqu

where

-1
qu=— (deﬁk> deglkzlkv

for [=23,...,L+2 and Q = diag{1, 41}, 1+»- Now, for info-U,
Vo =Y =SpdBr —yo) + X pe =Sy &G0 (B, — yu) + O(Nny'). Note that

ZQ{ = Zélk,o, ...,0 +O,,<Nn];1/2)
U

U
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because of A1, A2 and A4. Now

0 'B,—yv)= (des“kgf + QANQ)_1> (degkek + QAN'YU>7

whose first element is such that

1

» -
(deﬁk> deflkek = Zflk deé'lkek +0,(Nny'),
r r U r

so that (11) is obtained. Finally, (12) can be obtained for info-s from (A.2). The ¢, (and the
z} yu for info-s) have bounded fourth moments by the moment assumptions so that, by
assumption A2, N ’1\/1%(1? o Y)|Fy has a normal distribution in the limit. The form of
the variance in (14) follows from (11), while (15) can be obtained from

€k €k Yk
E(ZE_ZH+ZH'S>]

V(Z:i -~ Z;—Trz;—’;lﬁv) = Vi)

Mok
€
\% — s
(Z - )

where subscript p(s) denotes expectation and variance taken with respect to the sampling
design. |

+ Eps)

2
S - ek)] , (A3)
~ T

Yk
= Vo) lZ;k + Eps)

K

Proof of Theorem 3.2. First note that by using conditional arguments as in (A.3),
variances in (14) and in (15) can be rewritten as

2k

1% (Z:‘ |s>1 , forinfo-U

A €
VooTp) = Vi) lz | T E

2k

V(Z;—k s>], forinfo—s.

3 Yk
Voo(Ypr) = Vs [Z ;k + Eps)

The expectation of the following Horvitz-Thompson variance estimator for ), wyey is



Montanari and Ranalli: Semiparametric Regression for Nonresponse Treatment 275

given by

T — Tk Tkj
E E E 7Wkekwjej|j:N
T i

- Z ) Owiel + ZZ(% ) O Owierwie;

Ui U

= Z(Wk kakek + ZZ(’TTkj ) O Owrerwie;
T

DICTEE TN

U

= ZZ(Wzk] Tk T )WierWwjej — Z(Wk — W) TuWie;.
7T

By A7 and given that B8, — yy = O, n;,l/ 2) the variance estimator constructed using &

is asymptotically equivalent to the one that uses e, and the result is proven. |
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