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In the last decade, calibration has been used to reduce both sampling error and nonresponse
bias in surveys. In the presence of auxiliary variables with known population totals or with
known values on the originally sampled units, the calibration procedure generates final
weights for observations that, when applied to those auxiliary variables, yield their population
totals or unbiased estimates of these totals, respectively. A single set of variables and a single
calibration step is employed to this end. In this article, we extend this approach to allow for
more flexible implicit description of the relationship of the auxiliary variables with either the
response probabilities or the survey variable(s). By using penalized splines the simplicity of
the original proposal and the linearity of the estimator are preserved. The conditions under
which the proposed estimator of the total is design consistent and its asymptotic properties are
explored, and its finite sample behavior is investigated via simulations.
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1. Introduction

Nonresponse can harm the quality of the estimates of a survey. In particular, since we have

to accept that those who respond are in general different from those who do not respond,

bias is introduced. In this article we will not deal with imputation, but only with design

weights modification to adjust for unit nonresponse bias. Note that techniques for handling

nonresponse can be employed also for nonresponse adjustments in censuses. Commonly, a

two-phase approach is used, with the response mechanism as the second phase; this is

based on quasi-randomization theory, where the response distribution has corresponding

response probabilities assumed to be independent of the realized sample (e.g., Särndal et al.

1992, Ch. 9). In practice, such response probabilities have to be estimated assuming a

response model. The prefix “quasi” is added to emphasize that inference depends not only

on the design, but also on the assumed response model.
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One of the most common and simple techniques for handling nonresponse is given by

constructing response homogeneity groups: the population (or the sample) can be

partitioned into groups in such way that units belonging to the same group are assumed to

have the same response probability. Sometimes, a more complex direct modeling of the

response probabilities is conducted, for example through logistic regression models (Little

1986; Ekholm and Laaksonen 1991). Asymptotic properties in this situation are explored

in Kim and Kim (2007). More generally, the probability of response can be assumed to be

the inverse of a known link function of an unknown (but estimable) linear combination of

model variables (Folsom 1991; Fuller et al. 1994; Kott 2006). Nonparametric regression

that allows relaxing the assumption of a known functional relationship between response

probabilities and model variables has been explored through kernel smoothing (Giommi

1987; Silva and Opsomer 2006).

Lundström and Särndal (1999) propose a simple approach for the treatment of

nonresponse based on calibration (Deville and Särndal 1992). This is pursued by the

construction of a single set of weights for all variables of interest that are as close as

possible to specified initial weights (usually the design weights), while satisfying

benchmark constraints on known auxiliary information. No discrimination is made within

the set of auxiliary variables available to the researcher: a single set of variables is

employed at the same time for nonresponse treatment, sampling error reduction and

coherence among estimates. No explicit model is specified for the treatment of the

nonresponse mechanism; it is implicitly given by the calibration procedure.

The relationship between regression estimation and calibration is well known (Deville

and Särndal 1992; Särndal 2007): the efficiency of the calibration procedures relies on how

well a linear model describes the relationship between the variable(s) of interest and the

auxiliary ones. It therefore may be inefficient when the underlying relationship is indeed

nonlinear (Wu and Sitter 2001; Montanari and Ranalli 2005). We argue that the approach in

Lundström and Särndal (1999) can be usefully generalized to include more complex

relationships through semiparametric regression (Rupper et al. 2003) without losing in

simplicity. Semiparametric regression based on penalized splines (Eilers and Marx 1996)

has been usefully employed for model-assisted inference in the case of complete response

(Breidt et al. 2005). More easily than with kernel smoothing, it allows for the treatment, at

the same time, of categorical and continuous auxiliary variables. Categorical variables can

be inserted parametrically, while continuous variables can be accounted for nonparame-

trically. Recently, a kernel-based model-assisted estimator that can handle both continuous

and categorical covariates has been proposed in Sànchez-Borrego et al. (2011).

The article proceeds as follows: in Section 2, calibration with particular regards to

treatment of nonresponse is reviewed. In Section 3, semiparametric regression is employed

to extend nonparametrically calibration to the treatment of nonresponse. Simulation studies

that explore the finite sample behavior of the proposed estimator are reported in Section 4.

Some concluding remarks and directions for future research are provided in Section 5.

2. Calibration as a Treatment for Nonresponse

Consider a finite population of N elements U ¼ {1; : : : ; k; : : : ;N}; the aim is to estimate

the total Y ¼
P

U yk, where yk is the value of the variable of interest y for the kth unit.
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We will use the shorthand
P

A for
P

k[A, with A # U an arbitrary set. A sample s of size n

is drawn from U through the sampling design p(s) that induces positive first and second

order inclusion probabilities pk ¼ Pðk [ sÞ and pkj ¼ Pðk; j [ sÞ, respectively, with

pkk ¼ pk. Let Ik be the indicator variable for unit k selected in the sample, so that

EðIkjF Þ ¼ pk, where F ¼ {u1; : : : ; uN}; uk ¼ yk; x
T
k

� �
, and xk is the value of the

p-vector of auxiliary variables x on unit k. Therefore, expectation is taken with respect to

the sampling design and conditional of the realized finite population F . We will denote

with dk ¼ 1=pk the design weight of unit k. Since nonresponse occurs, the response set r of

size m is obtained, with r # s and m # n. Let dk ¼ 1 if unit k responds and 0 otherwise.

Lundström and Särndal (1999) consider auxiliary information on two separate levels. In

particular, x is considered a vector of auxiliary variables assumed to contain information

for reducing both the sampling error and the nonresponse bias, and the two following

“information levels” are considered:

info-s: xk is known for all k [ s;

info-U: xk is observed for all k [ r and
P

U xk is known.

In the first case, information goes up to the sample level, while in the second case, it refers

to the population. A combination of the two can of course be considered (Särndal and

Lundström 2005), but we will consider them separately in order to keep this discussion

simple.

Design weights dk for responding units are on average too small to produce reasonable

Horvitz-Thompson estimates of totals when there is nonresponse. They need to be

adjusted by a factor vk. Calibrated weights wk ¼ dkvk used to compute the estimator

Ŷc;r ¼
P

r wkyk of Y are obtained so that they satisfy calibration equations given by either

info-s:
P

r wkxk ¼
P

s dkxk, or

info-U:
P

r wkxk ¼
P

U xk.

A simple choice for the factors vk may be vk ¼ 1 þ jTxk, which is linear and has

considerable computational advantages. Note that this choice is equivalent to finding

calibrated weights by minimizing a chi-squared distance measure from basic design

weights (see e.g. Deville and Särndal 1992; Särndal and Lundström 2005, p. 58). Other

forms for vk are considered in Deville (2000) and Kott (2006). The vector j is determined

after substitution in the calibration equations. The calibration estimator in these cases

takes the following forms:

info-s: Ŷc;r ¼
P

r dkvskyk, with

vsk ¼ 1 þ
s

X
dkxk 2

r

X
dkxk

 !T

r

X
dkxkx

T
k

 !21

xk; for k [ r;

info-U: Ŷc;r ¼
P

r dkvUkyk, with

vUk ¼ 1 þ
U

X
xk 2

r

X
dkxk

0
@

1
A

T

r

X
dkxkx

T
k

 !21

xk; for k [ r: ð1Þ
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Note that the estimator is constructed using calibration in a single phase and without

explicit introduction of a model for the response mechanism. In addition, the weights do

not depend on the study variable y, and therefore the estimator is said to be linear. Such a

property is very valuable in a survey setting, because the calibrated weights can then be

applied to all variables of interest. Poststratification is included as a special case of Ŷc;r if

the auxiliary vector xk denotes membership to poststrata. In case of full response, when

r ¼ s, Ŷc;s ¼
P

s dkyk, that is, the Horvitz-Thompson estimator for info-s, and

Ŷc;s ¼
P

s dkgc;kyk, with gc;k ¼ 1 þ
P

U xk 2
P

s dkxk
� �T P

s dkxkx
T
k

� �21
xk, that is, the

generalized regression estimator for info-U.

In the two-phase approach to handling nonresponse, an unbiased estimator is given by

Ŷ2p ¼
r

X dk

uk
yk ð2Þ

where uk ¼ Pðdk ¼ 1jIk ¼ 1Þ is the conditional probability that unit k responds, given that

the unit is selected in the sample (Särndal et al. 1992, Ch. 9). Of course such estimator

cannot be computed, since nonresponse probabilities are not known. However, we can

note that Ŷc;r uses proxy values given by vsk and vUk to approximate u21
k , that is, the inverse

of the response probability for unit k is implicitly approximated by a linear combination of

the vector of auxiliary variables xk.

Weights in (1) provide a calibration estimator that is equivalent to the regression

estimator in the presence of nonresponse. In fact, it can be written in the form

Ŷc;r ¼
r

X
dkyk þ

�
U

X
xk 2

r

X
dkxk

�T
b̂r; ð3Þ

where b̂r ¼
P

r dkxkx
T
k

� �21P
r dkxkyk, that is, the regression estimator when the regres-

sion coefficient is computed only on respondents. This estimator has been considered and

studied in Fuller et al. (1994) and Fuller and An (1998).

To review the large sample properties of Ŷc;r, we will consider the traditional finite

population asymptotic framework considered in Isaki and Fuller (1982), where

the population U and the sampling design p(·) are embedded into a sequence of finite

populations and associated probability samples. The set of indices of the elements in the

Nth finite population is UN ¼ {1; 2; : : : ;N} with N ¼ pþ 1; pþ 2; : : :, while the design

is pN(·) and the sample size nN is assumed to grow with N. Let FN ¼

y1N ; x
T
1N

� �
; y2N ; x

T
2N

� �
; : : : ; yNN ; x

T
NN

� �� �
be the set of vectors of both survey and

auxiliary variables for the Nth finite population. In the following, the subscript N on the

vectors will often be dropped for ease of notation.

Now, under regularity conditions such as those reported in Fuller (2002), b̂r is a design-

consistent estimator of

cU ¼
U

X
ukxkx

T
k

0
@

1
A
21

U

X
ukxkyk; ð4Þ

Journal of Official Statistics242



in the sense that, given FN for all N . p þ 2, lim N!1P{jb̂r 2 cU j . ejFN} ¼ 0

for all e . 0. The population total of y can be written as

Y ¼
U

X
ak þ

U

X
xTk cU

with ak ¼ yk 2 xTk cU . Therefore, the regression estimator in (3) – and consequently Ŷc;r
for info-U – will be a design-consistent estimator for Y, in the sense that

lim N!1P{jŶc;r 2 Yj . Ne jFN} ¼ 0, if the probability limit of
P

U ak is zero. There

are several ways in which this occurs. Fuller et al. (1994) give the three following

situations.

(i) The probability limit of
P

U ak is zero when the sequence of finite populations is a

sequence of random samples from an infinite population in which the linear model

yk ¼ xTk bþ ek, with the ek independent of the xk and with zero expectation, holds for

all k.

(ii) The total
P

U ak is zero when uk is constant for all k, because in this case

cU ¼ bU ¼
P

U xkx
T
k

� �21P
U xkyk, and

P
U yk 2 xTk bU ¼ 0.

(iii) A sufficient condition for
P

U ak to be zero is the existence of a vector d such that

xTk d ¼ u21
k ð5Þ

for all k [ U. Therefore, if the inverse of the response probability is a linear function

of the auxiliary variables, the regression estimator is consistent for Y.

Note that to have design consistency, it is sufficient that any one of these conditions holds.

Apart from condition (ii ), which is unlikely to hold in practice, it is enough that the

auxiliary variables fulfill either the prediction model in (i ) or the response model in (iii ) to

achieve a vanishing bias. This property has been called “double protection” against

nonresponse bias.

The third condition sheds some light on the implicit modeling of the response

mechanism done with the one-step calibration technique. A sufficient condition for

consistency is that the inverse of the response probabilities belongs to the space spanned by

the columns of the N £ p matrix of population values of x. In the following section, the

approach in Lundström and Särndal (1999) is generalized to make condition (i ) above valid

for a wider range of models through semiparametric regression without loss of simplicity.

3. Calibration Inspired by Semiparametric Regression for the Treatment of

Nonresponse

Semiparametric regression that relies on penalized splines has been usefully employed for

model-assisted inference in the case of complete response (Breidt et al. 2005). Penalized

splines are now often referred to as p-splines and have been brought to attention by Eilers

and Marx (1996). P-splines provide an attractive smoothing method due to their simplicity

of implementation, being a relatively straightforward extension of linear regression, and to

their flexibility, as they are applicable in a wide range of modeling contexts. Ruppert et al.

(2003) provide a thorough treatment of p-splines and their applications. In this section,
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we first describe p-splines in the general context of model-assisted estimation regardless of

nonresponse, and then move to semiparametric regression-based calibration for treatment

of nonresponse.

3.1. Review of p-splines for Model-Assisted Regression Estimation

Let us first consider only smoothing with one covariate z. In Breidt et al. (2005), a

nonparametric superpopulation regression model is written as

yk ¼ mðzkÞ þ 1k; ð6Þ

where the errors 1k are independent random variables with mean zero and variance v(zk).

The p-spline estimator of the unknown function m(·) may be given by

mðz;bÞ ¼ b0 þ b1zþ
XL
l¼1

b1þlðz2 klÞþ ð7Þ

where the so-called plus functions (t)þ are such that (t)þ ¼ t if t . 0 and 0 otherwise (see

Figure 1), kl for l ¼ 1; : : : ; L is a set of fixed knots, b ¼ ðb0;b1; : : : ;b1þLÞ
T is the

coefficient vector made of a parametric portion (the first two coefficients) and a spline part

(the last L coefficients). The latter portion of the model allows for handling departures

from a linear fit in the structure of the relationship. If the number of knots L is sufficiently

large, the class of functions in (7) is very large and can approximate most smooth

functions. In the p-splines context, a knot is placed every 4 or 5 observations; however, to

avoid an excessive number of knots (and therefore parameters), a maximum number of

allowable knots, say 35, is recommended. In addition, knots are usually placed at the

quantiles of the distribution of z, making unequally spaced intervals so as to more properly

account for the possible skewness of such a distribution. More details on knots choice can

be found in Ruppert et al. (2003, Ch. 3 and 5). In the survey context, the choice of the

2.0 Plus function
Derivative1.8

1.6

1.4
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Fig. 1. Example of a truncated linear spline basis (x 2 k)þ with k ¼ 1 (solid line) and of its derivative

(dashed line).
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location of the knots may be also influenced by the available population level auxiliary

information. More details on this aspect will be given in Section 3.2.

The spline model (7) uses a truncated linear spline basis to approximate the function

m(·). In this case, the slope of the relationship between y and z is allowed to change when it

hits a knot. The amount of the change is given by the coefficient of the corresponding base

function, which represents the change in the first derivative of the approximating function

at the knot (see Figure 1). Truncated polynomials of higher order, say 2 or 3, can be used,

in which, similarly, coefficients for the base functions provide the change in the 2nd and

3rd, respectively, derivative. Different bases can be used, like thin plate splines or

B-splines; more details on choice of base can be found in Ruppert et al. (2003, Ch. 3 and

5). In this article we will use p-splines with a truncated linear basis, not only for their

simplicity of interpretation, but also because of their implication on the auxiliary

information required. We will see this in more detail in the next section.

Given the large number of knots, model (7) can be too complex; the influence of the

knots can be limited by putting a constraint on the size of the spline coefficients.

Estimation can be accommodated by including this constraint in the least squares criterion,

so that the census level estimator of the parameter vector is given by the minimizer of

U

X
{yk 2 mðzk;bÞ}

2 þ l
XL
l¼1

b2
1þl

for some fixed positive constant l. The smoothness of the resulting fit depends on the value

of l, with larger values corresponding to smoother fits. Choice of l will be discussed later.

Let zk ¼ ð1; zk; ðzk 2 k1Þþ; : : : ; ðzk 2 kLÞþÞ
T and L ¼ diag{0; 0; l; : : : ; l} be an L þ 2

diagonal matrix. Then, the census level penalized least squares estimator of the coefficient

vector has the following ridge regression representation

bU ¼
U

X
zkz

T
k þL

0
@

1
A

21

U

X
zkyk:

The role of the matrix L is to shrink the magnitude of the value of the coefficient bU for

the spline part of the function in (7). Under the conditions in Breidt et al. (2005), consistent

design-based estimates of bU can be obtained as b̂s ¼
P

s dkzkz
T
k þL

� �21P
s dkzkyk.

Finally, sample-based fits m̂k ¼ mðzk; b̂sÞ are used to define the model-assisted p-spline

estimator

Ŷp;s ¼
U

X
m̂k þ

s

X
dkð yk 2 m̂kÞ ¼

s

X
dkgp;kyk ð8Þ

with gp;k ¼ 1 þ
P

U zk 2
P

s dkzk
� �T P

s dkzkz
T
k þL

� �21
zk. Breidt et al. (2005, Sec. 2.2)

discuss in detail the properties of this estimator. Here note that it can be seen as a

calibration estimator in which calibration constraints are met for the first two variables

{1, z} and are relaxed for the other L. The amount of relaxation depends on the smoothing

parameter l. Relaxing the constraints on the L variables related to the knots has a

shrinkage effect on the range of the final set of weights.
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3.2. P-splines and Calibration for the Treatment of Nonresponse

Now, we want to exploit the enhanced flexibility provided by using p-splines in a model-

assisted framework while retaining the simplicity of the proposal of Lundström and

Särndal (1999) for handling nonresponse. To achieve this, we introduce the following

calibration estimator based on p-splines:

info-s: Ŷp;r ¼
P

r dkvskyk, with

vsk ¼ 1 þ
s

X
dkzk 2

r

X
dkzk

 !T

r

X
dkzkz

T
k þL

 !21

zk; ð9Þ

info-U: Ŷp;r ¼
P

r dkvUkyk, with

vUk ¼ 1 þ
U

X
zk 2

r

X
dkzk

0
@

1
A

T

r

X
dkzkz

T
k þL

 !21

zk: ð10Þ

It is easy to see that in the case of full response, that is, when r ¼ s, Ŷp;r reduces to the

Horvitz-Thompson estimator for info-s and to Ŷp;s in (8) for info-U. Recall that the

auxiliary information for unit k used to compute these estimators is given by

zk ¼ 1; zk; z
*T
k

� �T
, with z*

k ¼ ððzk 2 k1Þþ; : : : ; ðzk 2 kLÞþÞ
T . The first two entries of the

vector are those usually employed for calibration, while z*
k allows for handling departures

from a linear fit in the structure of the relationship between y and z as illustrated in the

previous section. Calibrating on the whole vector zk, however, may lead to a very erratic

final set of weights. Therefore, the influence of the knots is limited by relaxing the binding

constraint for that part of the auxiliary information. This is accomplished by minimizing a

penalized version of the chi-square distance measure between final and initial weights. In

particular, weights satisfy either of the two following conditions:

info–s : min wk
r

X ðwk 2 dkÞ
2

dk
þ

r

X
wkz

*
k 2

s

X
dkz

*
k

 !T

L21
*

r

X
wkz

*
k 2

s

X
dkz

*
k

 !

under the constraint
X
r

wkð1; zkÞ ¼
X
s

dkð1; zkÞ;

info–U : min wk
r

X ðwk 2 dkÞ
2

dk
þ

r

X
wkz

*
k 2

U

X
z*
k

0
@

1
A

T

L21
*

r

X
wkz

*
k 2

U

X
z*
k

0
@

1
A

under the constraint
X
r

wkð1; zkÞ ¼
X
U

ð1; zkÞ;

where L* ¼ diag{l; : : : ; l} and l here represents the inverse cost of relaxing those

constraints. In general, smaller values of l mean a large penalization and therefore that the

calibration constraints are more stringent. Larger values imply increasingly relaxing the

constraint for those variables and, therefore, a shrinkage effect on the range of the final set

of weights. The results of those constrained minimization problems provide the estimators
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considered above. See also Rao and Singh (1997) on relaxing the calibration constraints,

and Fuller (2002, Sec. 9), Park and Fuller (2009) and Guggemos and Tillé (2010) on the

link between the penalized minimum distance criterion and mixed effects models, and

Beaumont and Bocci (2008) for a review on ridge calibration.

Let us consider again the estimator under the two-phase approach to handling

nonresponse in (2). Here, for Ŷp;r we can see that the inverse of the response probability is

approximated by proxy values given by vUk and vsk for info-U and info-s respectively,

which depend on the whole vector of auxiliary variables zk and not only on its linear part

(1, zk) as it would be the case under classical calibration estimation. This allows for a more

flexible implicit description of the nonresponse mechanism.

Let us now consider the auxiliary information required to compute these estimators. The

vector zk indeed contains information on only one variable z, so that the info-s needed to

compute it reduces to zk known for each k [ s, that is, the same information needed to

compute Ŷp;r with the auxiliary vector given by x ¼ ð1; zÞT . As for info-U, on the other

hand, the information required to compute Ŷp;r is more than that needed to compute Ŷc;r
with x ¼ ð1; zÞT . In particular, we need

P
U zk to be known. This means that, other than

N and
P

U zk, we need population counts and totals of z in subgroups defined

by the knots, that is,
P

U Iðzk . klÞ and
P

U zkIðzk . klÞ for l ¼ 1; : : : ; L. In fact,P
Uðzk 2 klÞþ ¼

P
Uðzk 2 klÞIðzk . klÞ ¼

P
U zkIðzk . klÞ2 kl

P
U Iðzk . klÞ. Note that

with other nonparametric techniques, like local polynomials or neural networks, the

amount of auxiliary information required is much larger; in particular, zk has to be known

for all k [ U (see e.g. Montanari and Ranalli 2005).

A particularly valuable property in the survey estimation contexts of Ŷp;r – inherited by

Ŷp;s – is that of being a linear estimator. This result assumes that the number and

placement of the knots and the value of the penalty constant l are all determined and fixed

before the model is fitted. The efficiency of the estimator will depend on the choice of

these factors. However, for p-splines it is sufficient to focus on the choice of l, since the

choice of the other settings has been shown to have a limited effect on the final fit once the

value of l is allowed to vary (see e.g. Ruppert 2002; Ruppert et al. 2003, Ch. 5).

In addition, Breidt et al. (2005) note that, in the survey context, trying to find the

optimal penalty is not as relevant as in the classical nonparametric regression context: the

estimator is not constructed for a single variable, but for a large set of variables collected

during the survey. A penalty that is optimal for a variable may well not be adequate for

another one and using different sets of weights would not be feasible for practical

purposes and for coherence issues. We will therefore consider a single fixed value for

l representing a compromise choice that may work reasonably well for many variables in

a survey. In Section 3.4, we will give some guidelines to select such a value and in the

simulation studies we will look at its effects on the final performance of the proposed

estimator.

3.3. Asymptotic Properties

To study the asymptotic properties of Ŷp;r, we will follow closely the approach mentioned

in Section 2 to discuss the properties of Ŷc;r. In particular, to discuss the large sample

properties of Ŷp;r, we will again consider the asymptotic framework discussed in Section 2
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in which FN ¼ ½u1N ; u2N ; : : : ; uNN� is the set of vectors ukN ¼ ð ykN ; z
T
kNÞ for Nth finite

population. In this regard, given that the regression coefficient in Ŷp;r resembles a ridge

type coefficient, conditions on the value of lN as the population and sample sizes increase

should also be added. In particular, we can consider the following two cases.

Case A. In the first case one accepts that the shrinking effect vanishes asymptotically and,

therefore, that the penalized coefficient vector converges to the unpenalized one. This can

be reasonable, given that the number of knots is kept fixed asymptotically. For the

shrinking effect to vanish, as nN ! 1, lN can remain constant or go to zero. More

generally, lN can also grow as nN grows, but at a slower rate, that is,

lN ¼ O naN
� �

witha , 1, so that the ratio between lN and nN goes to zero. In this case,

the properties of Ŷp;r coincide with those discussed for the classical calibration estimator

Ŷc;r.

Case B. In the second case, one wants to ensure that the shrinking effect does not vanish

asymptotically. This is reasonable when one wants to keep a smooth relationship between

y and z also asymptotically. In this case, lN is allowed to grow as nN grows. Theorem 3.1

proves the consistency of Ŷp;r in this case. To this purpose, consider the following

assumptions.

A1. Assume L is fixed and the knots kl for l ¼ 1; : : : ; L are fixed and such that {ukN} is a

sequence of (L þ 3)-dimensional independent random vectors with bounded eighth

moments.

A2. Assume {FN ; pNð·Þ} is a sequence of populations and designs such that for any u

with bounded fourth moments the Horvitz-Thompson estimator of its mean for a complete

sample satisfies a central limit theorem:

ffiffiffiffiffiffi
nN

p

N s

X
dkuk 2

U

X
uk

0
@

1
AjFN

L
�!N ð0;SÞ; a:s:

where

S ¼
N!1
lim nN

U

X
U

Xpkj 2 pkpj

N 2

uku
T
j

pkpj

is positive definite.

A3. Assume lim N!1n
21
N lN ¼ l*, where l* is a positive constant.

A4. Assume the sampling rate is such that lim N!1N
21nN ¼ p with 0 , p , 1 and

0 , l1 # pk # l2 , 1 for all k [ U. In addition, assume for a sample with nonresponse

that 0 , l3 # uk # 1 for all k [ U.

A5. Assume for a sample with nonresponse that there exists a vector d such that

zTk d ¼ ~zTk d1 þ z*T
k d2 ¼ u21

k , with ~zk ¼ ð1; zkÞ
T and z*

k ¼ ððzk 2 k1Þþ; : : : ; ðzk 2 kLÞþÞ
T

and such that d2 ¼ O n21
N

� �
.

A6. Assume for a sample with nonresponse that responses are independent, i.e.,

Pðdk ¼ 1 & dj ¼ 1jIk ¼ Ij ¼ 1Þ ¼ ukj ¼ ukuj.
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A7. Assume that the Horvitz-Thompson estimator of the variance of the mean of any

variable with finite fourth moments for a complete sample has a variance that is Op n23
N

� �
almost surely.

Assumption A1 requires that the number and placement of knots is kept fixed over

repeated sampling and asymptotically, and together with A2 it allows that the variance of

the Horvitz- Thompson estimator of a mean of certain variables for a complete sample

has a variance that is Opðn
21Þ. Assumption A3 allows lN to grow at the same rate as nN

and, therefore, that lN/nN does not vanish asymptotically. Assumptions A4 and A6

concern the nonresponse mechanism, while Assumption A5 has a particular relevance. It

plays a similar role to the sufficient condition (iii ) considered at the end of Section 2 for

the regression estimator. It is the main condition for consistency that makes the mean of

population residuals, similarly to the aks of Section 2, vanish asymptotically. Note that in

this case the inverse of the response probabilities is allowed to be a linear combination

of both the linear and the spline part of the auxiliary vector z, where the coefficients for

the spline part are required to decrease with n to make shrinkage reasonable also for

large samples. This also implies that the part of population mean of the residuals

associated with the spline part is decreasing by the assumption on d2. Finally,

Assumption A7 ensures that the Horvitz-Thompson estimator of the variance of a mean

is a consistent estimator.

Theorem 3.1

Assume A1–A6. Then, estimator Ŷp;r is design
ffiffiffiffiffiffi
nN

p
-consistent for Y, in the sense that

Ŷp;r 2 Y ¼ Op Nn
21=2
N

� �
. Furthermore,

Ŷp;r 2 Y ¼
r

X ek

p2k

þ Op Nn21
N

� �
a:s: for info–U ð11Þ

Ŷp;r 2 Y ¼
r

X ek

p2k

2
s

X ek

pk

þ
s

X yk

pk

2
U

X
yk þ Op Nn21

N

� �
a:s: for info–s ð12Þ

where p2k ¼ pkuk ¼ uk=dk, ek ¼ yk 2 zTkgU and gU ¼
P

U ukzkz
T
k þLN

� �21P
U ukzkyk,

with LN ¼ diag{0; 0; lN ; : : : ; lN}. In addition,

V1 Ŷp;r
� �� �21=2

Ŷp;r 2 Y
� �

FN
L
�!N ð0; 1Þj ; a:s: ð13Þ

where

V1 Ŷp;r
� �

¼
U

X
U

X
ðp2kj 2 p2kp2jÞ

ek

p2k

ej

p2j

; for info–U ð14Þ

V1 Ŷp;r
� �

¼
U

X
U

X
ðp2kj 2 p2kp2jÞ

yk

p2k

yj

p2j

þ
U

X e2
k 2 y2

k

p2k

ð1 2 ukÞ; for info–s ð15Þ

with p2kj ¼ pkjukuj.

Proof. See the Appendix. B

Montanari and Ranalli: Semiparametric Regression for Nonresponse Treatment 249



Theorem 3.2.

Assume A1–A7. Then,

V̂ Ŷp;r
� �

¼
r

X
r

Xpkj 2 pkpj

pkj

ŵkêkŵjêj þ
r

X
ðpk 2 1=ŵkÞŵ

2
k ê

2
k

¼ V1 Ŷp;r
� �

þ Op N 2n
23=2
N

� �
; a:s: for info–U

V̂ Ŷp;r
� �

¼
r

X
r

Xpkj 2 pkpj

pkj

ŵkykŵjyj þ
r

X
ð1 2 1=ŵkpkÞŵ

2
k ê

2
k

2
r

X
ð1 2 1=ŵkpkÞð1 2 pkÞŵ

2
ky

2
k ¼ V1 Ŷp;r

� �
þ Op N 2n

23=2
N

� �
;

a:s: for info–s
where

ŵk ¼
U

X
zTk

r

X
dkzkz

T
k þLN

 !21

zkdk for info–U; ð16Þ

ŵk ¼
s

X
dkz

T
k

r

X
dkzkz

T
k þLN

 !21

zkdk for info–s; ð17Þ

êk ¼ yk 2 zTk b̂r, and wk ¼
P

U zTk
U

P
ukzkz

T
k þLN

 !21

zkdk.

Proof. See the Appendix. B

Theorem 3.1 proves consistency of Ŷp;r when l is allowed to grow as n. On the other

hand, as pointed out for Case A, if l remains constant or goes to zero as nN !1, then the

penalized coefficient vector converges to the unpenalized one and provides an estimator

that is unbiased with respect to model (6) with mean function approximated by (7).

Therefore, the model with respect to which Ŷp;r is model-unbiased under assumption A3 is

not model (6) with mean function given by (7), but a model in which it is reasonable to

shrink the coefficients of the spline part, even in large samples. Then, exploiting the

relationship between penalized splines and the mixed effects model (e.g., Ruppert et al.

2003, Sec. 4.9), we would restate condition (i ) at the end of Section 2 as follows: the

probability limit of N21
P

U ek is zero when the sequence of finite populations is a

sequence of random samples from an infinite population in which the linear mixed model

yk ¼ ~zTkb1 þ z*T
k b2 þ ek

holds, where the eks and b2 are uncorrelated random variables such that EðekjzkÞ ¼ 0,

Eðb2jzÞ ¼ 0. In other words, an alternative sufficient condition for Ŷp;r to be design-

consistent is that the finite population is a random sample from an infinite superpopulation

mixed-effects model in which ~z ¼ ð1; zÞT is the fixed component of the model and z* ¼

ððz2 k1Þ; : : : ; ðz2 kLÞÞ
T is the random component. Park and Fuller (2009) study the

properties of the regression estimator based on a mixed effects model in the case of full

response.
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Note that the double protection property considered in Section 2 holds here too. In

particular, then, if either the conditions in the Theorems stated above – and in particular

Assumption A5 that is the counterpart of the corresponding condition (iii ) of Section 2 –

or the aforementioned mixed-effect model holds, then the proposed estimator is design-

consistent. We have explicitly worked out the asymptotic properties under the former,

because most large surveys involve many y-variables, and to achieve a low bias the mixed-

effects model has to hold for all of them. We argue that, given its flexibility, this would be

much more frequent than with a simple linear regression model, but it could also not be the

case. We have then focused instead on the modeling for the response distribution.

Condition A5, in fact, is sufficient to have the population mean of the residuals ek vanish

asymptotically. Note that this is similar to assuming mixed-effect model for the inverse of

the response probabilities uk, and then having more flexible modeling for it. This comment

builds a bridge to most nonresponse literature in which such a condition would be

comparable with a case in which data is missing at random (MAR). This latter situation

arises when the response probability uk depends on zk but not on yk; then nonresponse

depends only on observed values and can be successfully modeled. Now, if probability uk
depends on zk, then it cannot be independent of yk given that usually zk and yk are related

themselves, however, A5 tells us that if data is MAR conditional on zk, then the proposed

estimator is design-consistent. Evidence of this implicit modeling for uk emerges from the

simulation studies of Section 4.

Theorem 3.2 provides variance estimators for Ŷp;r under both the info-s and the info-U

settings. Such estimators follow closely the proposal in Särndal and Lundström (2005,

Ch. 11) where variance estimation for the calibration approach is derived using the

connection with a two phase design. See also Fuller (2009, Ch. 5) for the variance estimator

under the info-U setting for the regression estimator. Note that also for variance estimation

in (16) and (17) u21
k is replaced by its proxy values vUk and vsk respectively.

3.4. Selection of l

The properties of the proposed estimator have been provided when l is decided in advance

and kept fixed over repeated sampling. As we saw in Section 3.2, in this context l has a

double interpretation. From a calibration perspective, it can be considered as the quantity

that governs the amount of relaxing of the constraints on the L truncated linear variables

and, therefore, the shrinking of the final set of weights (see Rao and Singh 1997; Fuller

2002; Beaumont and Bocci 2008, for different ways of selecting the amount of relaxing).

From a smoothing perspective, as noted earlier, it provides the degree of smoothness of the

final function fit. To determine the optimal value of l for a particular variable of interest,

Breidt et al. (2005) exploit the fact that penalized splines can be seen as mixed effect

models, and use for l the ratio between the estimates of the variances of the two random

components (the spline and the error) obtained via restricted maximum likelihood. We

will not look at this latter interpretation to select its value, but will look at an alternative

way to try to find a compromise value for a set of different y-variables, instead of an

optimal one for a single y-variable.

In particular, let m̂U ¼ ðm̂1; : : : ; m̂k; : : :; m̂NÞ
T denote the vector of predictions that

use bU in Equation (7), that is, for which m̂k ¼ mðzk;bUÞ ¼ zTkbU . Now
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m̂U ¼ ZU ZT
UZU þL

� �21
ZT
UyU ¼: SUyU ð18Þ

where ZU is the N £ (L þ 2) matrix with zk on its kth row and yU is the vector of population

yk values. The degrees of freedom used to approximate the relationship between y and z can

be computed as the trace of the smoother matrix SU. In particular

df ðlUÞ ¼ trace{SU} ¼ trace
U

X
zkz

T
k þL

0
@

1
A

21

U

X
zkz

T
k

8<
:

9=
; ð19Þ

We can see that increasing values of l provide a decreasing number of degrees of freedom.

Therefore, a value for lU can be chosen by fixing in advance the number of degrees of

freedom, i.e., lU defined through df ðlUÞ ¼ d *, where the number of degrees of freedom

d * should not be either too few in order to be able to capture a complex relationship, nor

too many so that overfitting may be an issue. This quantity does not depend on y and

represents a compromise that accounts for the multipurpose aim of a survey. In the

simulation studies in Section 4 we investigate the performance of the proposed estimator

for a wide range of values of d *: Note that, since it depends on population quantities, it can

be computed only when the auxiliary information available is such that the population

totals involved in (19) are known. In addition, once it is computed, it is a fixed quantity

over repeated sampling and theoretical results in Section 3.3 apply.

When we are in an info-s setting, we can consider the vector m̂s ¼

ðm̂1; : : : ; m̂k; : : :; m̂nÞ
T of predictions based on bs. In particular, in this case

m̂s ¼ Zs ZT
s DsZs þL

� �21
ZT
s Dsys ¼: Ssys

where subscript s denotes sample versions of matrices and vectors used in (18) and

Ds ¼ diag{dk}k[s. In this case the aforementioned rule of thumb can be applied to

df ðlsÞ ¼ trace{Ss} ¼ trace
s

X
dkzkz

T
k þL

 !21

s

X
dkzkz

T
k

8<
:

9=
;:

In this case, the value of ls defined through df ðlsÞ ¼ d * changes with the sample selected.

However, consistency of the estimator still holds since, under the regularity conditions

considered in Section 3.3, it is straightforward to show that for a given d*, ls ¼

lU þ Op n
21=2
N

� �
(see e.g. the technique proposed in Wu and Sitter 2001).

Finally, in both information settings, a value for l may also be determined only looking

at respondents. In particular, if subscript r denotes matrices and vectors that include only

respondent information,

m̂r ¼ Zr ZT
r DrZr þL

� �21
ZT
r Dryr ¼: Sryr

and

df ðlrÞ ¼ trace{Sr} ¼ trace
r

X
dkzkz

T
k þL

 !21

r

X
dkzkz

T
k

8<
:

9=
;:
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In this case, for a given d*, lr converges in probability to a different quantity than

lU because of nonresponse. In particular, let luU be such that

df ðluUÞ ¼ trace
U

X
ukzkz

T
k þL

0
@

1
A

21

r

X
ukzkz

T
k

8<
:

9=
; ¼ d *;

then lr ¼ luU þ Op n
21=2
N

� �
. Simulation studies in Section 4 explore the behavior of Ŷp;r

for different values of d* and choices of l.

As far as variance estimation is concerned, while for lU the result in Theorem 3.2 holds,

for ls and lr the variance estimator proposed does not account for the extra variability

introduced with estimation of l.

3.5. Moving to Multivariate Auxiliary Information: Semiparametric Modeling

Multivariate auxiliary information can be easily considered in Ŷp;r. In fact, additional

auxiliary variables – both categorical and continuous – can be inserted parametrically by

adding them to the binding part of the calibration procedure; namely, they will be part of

the set of auxiliary variables for which the calibration constraints are met exactly.

Additional continuous variables can be added nonparametrically by adding the linear part

to the binding part of the calibration procedure, and another set of relaxed constraints with

a different penalty on the nonbinding one. In particular, assume that we want to insert the

vector x of p variables parametrically and the variables z1 and z2 nonparametrically. The vk
weights of the proposed estimator can be then written in these cases as

info–s : vsk ¼ 1 þ
X
s

dk ~xk 2
X
r

dk ~xk

 !T X
r

dk ~xk ~x
T
k þ ~L

 !21

~xk;

info–U : vUk ¼ 1 þ
X
U

~xk 2
X
r

dk ~xk

 !T X
r

dk ~xk ~x
T
k þ ~L

 !21

~xk;

where ~xk ¼ 1; xTk ; z
T
1k; z

T
2k

� �T
, zik ¼ ðzik; ðzik 2 ki1Þþ; : : : ; ðzik 2 kiLi ÞþÞ

T for i ¼ 1; 2 with

L1 and L2 number of knots for z1 and z2, respectively. In addition,
~L ¼ {0pþ1; 0; l1; : : : ; l1; 0; l2; : : : ; l2}, with p þ 1 zeroes on the diagonal – intercept

and x variables – followed by a zero and L1 penalty constants l1, and by a zero and L2

penalty constants l2.

Extension to bivariate smoothing is also possible – although not pursued here – by

using a different set of basis functions than truncated linear, such as radial basis functions.

Smoothing in two dimensions is particularly relevant when auxiliary information comes in

the form of geographic coordinates. For more details see Ruppert et al. (2003, Ch. 11).

4. Simulation Studies

In this section, results from a simulation study that aims at investigating the finite sample

behavior of the proposed estimator are presented. In particular, we wish to explore the

double protection provided by the proposed estimator with respect to the description of the

relationship between y and z and of that between u and z. To this end we consider different
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relationships and different combinations of such relationships. Firstly, values of a finite

population of N ¼ 5,000 units are generated for an auxiliary variable z from a uniform

[0,1] distribution. Then, six survey variables are obtained by using the following three

regression functions:

LIN : m{zÞ ¼ 0:8 þ 3z;

SIN : mðzÞ ¼ 1:8 þ 1:5zsin½4pðz2 0:6Þ�;

DIS :mðzÞ ¼ ð0:8 2 1:5zÞIðz , 0:25Þ þ ð0:8 þ 2zÞIð0:25 , z , 0:50Þ

þ ð21:7 þ 5zÞIð0:50 , z , 0:75Þ þ ð2:8 2 3zÞIðz . 0:75Þ:

Units are then randomly divided into two strata of equal dimension 2,500, to simulate

stratification on a variable different from z. Then, a constant value of 0.3 is added to m(z)

only for units in the first of the two strata. Then, the survey variables are constructed by

adding to m(zk) for k ¼ 1, : : : ,5,000 a heteroskedastic error component of the form

2
ffiffiffiffiffiffiffiffi
zk1k

p
, where 1k , N ð0;sÞ and s is set to 0.15 for a first set of three survey variables,

and to 0.50 for a second set.

Figure 2 shows the scatter plots of the six survey variables thus obtained. Grey crosses

and black circles distinguish units belonging to different strata. The LIN populations

(the first column) are considered as cases in which a calibration estimator that uses {1, z}

as auxiliary variables should provide a good protection against nonresponse bias. The SIN

populations (the second column) provide a situation in which the aforementioned vector of

auxiliary variables is not sufficiently adequate and for which gains in bias reduction are

expected from the proposed splines estimator. Finally, the DIS populations (the third

column) are generated under a discontinuous function of z, for which the spline estimator

is also based on a misspecified model.

Fig. 2. Scatter plot of the six survey variables versus the auxiliary variable. Variables in the first row have

errors with standard deviation 0.15, while those on the second row have errors with standard deviation 0.50.

Grey crosses and black circles denote units belonging to the two different strata.
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Each unit in the population has its own response probability attached. To study under

which circumstances the proposed estimator provides more protection against

nonresponse bias with respect to the classical calibration estimator, we will consider

different relationships between zk and uk. In particular, what is relevant here is the

relationship between zk and 1/uk as considered in Section 2 and 3.3. For this reason we

have considered the following four cases:

LIN : uk ¼ 1=ð1:2 þ zkÞ;

LOGþ : uk ¼ 0:3 þ 0:5=½1 þ exp ð6 2 15zkÞ�;

LOG2 : uk ¼ 0:3 þ 0:5=½1 þ exp ð26 þ 10zkÞ�;

GAU : uk ¼ 0:5= exp ½2ðzk 2 0:5Þ2=0:4�:

The response rate is approximately 60% in all cases. Figure 3 depicts these four sets of uks,

together with 1/uk. Different levels of complexity of the relationship between 1/uk and the

auxiliary variable allow to investigate in which situations the double protection property of

the calibration estimators holds with respect to the proposed spline estimator. For

example, the GAU case is inspired by the kernel of a Gaussian distribution and uk takes a

U-shape.
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Fig. 3. Scatter plot of the four sets of response probabilities versus the auxiliary variable (black). The dashed

line plots the inverse of the response probabilities versus z.
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From each population, J ¼ 1,000 stratified random samples of dimensions n ¼ 250,

n ¼ 500 and n ¼ 800 have been selected. Disproportionate allocation is considered so that

40% of the sample comes from the first stratum and the remaining 60% comes from the

second. Recall that the first stratum is the one with the increased values. For all survey

variables this makes a 3 £ 4 design for the simulation – 3 sample sizes by 4 types of

response probabilities. For each unit in the sample, a Bernoulli experiment with

probability of success given by its response probability is conducted to simulate the

response mechanism.

On the response set the following estimators of the total of each survey variable have

been computed:

. exp ¼ N �yr, the expansion estimator where �yr ¼
P

r dkyk=
P

r dk, no auxiliary

information used;

. pwa ¼
PP

p¼1Np �yrp population weighting adjustment, poststratified estimator

where P ¼ 3 poststrata are defined using the 0.33 and 0.66 quantiles of z

and �yrp ¼
P

rp
dkyk=

P
rp
dk, with rp the respondents set in poststratum p;

. wc ¼
PP

p¼1N̂p �yrp weighting class estimator, poststratified estimator with estimated

population counts N̂p ¼
P

sp
dk, with sp the sample set in poststratum p;

. ra ¼
P

U zk
P

r dkyk=
P

r dkzk, the ratio estimator;

. reg ¼ exp þ
P

U zk 2 exp z

� �
b, the regression estimator with exp z ¼

N
P

r dkzk=
P

r dk and b ¼
P

r dkðzk 2 �zrÞð yk 2 �yrÞ=
P

r dkðzk 2 �zrÞ
2;

. reg2 ¼ exp þ
P

U zk 2 exp z

� �
b1 þ

P
U z2

k 2 exp z 2

� �
b2, the quadratic regression

estimator;

. reg3 ¼ exp þ
P

U zk 2 exp z

� �
b1 þ

P
U z2

k 2 exp z 2

� �
b2 þ

P
U z3

k 2 exp z 3

� �
b3,

the cubic regression estimator;

. sepra ¼
PP

p¼1

P
Up

zk �yrp=�zrp , the separate ratio estimator (the three poststrata in pwa

are used);

. sepreg ¼
PP

p¼1Np �yrp þ
P

Up
zk 2 �zrp

� �
bp

n o
, the separate regression estimator with

bp ¼
P

rp
dkðzk 2 �zrpÞð yk 2 �yrp Þ=

P
rp
dkðzk 2 �zrp Þ

2 (the three post-strata in pwa are

used);

. splinedf, eight different p-splines estimators according to the value of the degrees of

freedom used to approximate all survey variables; in particular, l is chosen so that

df ¼ {3,4,6,8,10,12,14,16}.

Estimators ra, reg, reg2, reg3, sepra, sepreg, and all the spline estimators are computed in

the estimators info-U and info-s scenario. For the latter case, an extra ‘s’ will be attached to

the name of the estimator. In addition, for the spline estimators the value of l has been

determined in two different ways for info-U and for info-s. In particular, for info-U l is

determined (i ) at the population level – using values of zk for k [ U – and kept fixed over

repeated sampling and (ii ) for each sample, at the response set level – using values of zk
for k [ r. Similarly, for info-s l is determined for each sample (i ) at the sample level –

using values of zk for k [ s – and (ii ) at the response set level – using values of zk for

k [ r. Estimators with l determined as in (ii) for either info-s or info-U will be denoted

with an extra ‘r’ in the name of the estimator. So, for example, spline4 denotes the

estimator that also uses 4 degrees of freedom, auxiliary information of type info-U and l

determined at the population level and then kept fixed over repeated sampling; while
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spline4rs denotes the estimator that also uses 4 degrees of freedom, but auxiliary

information of type info-s and l computed at each replication at a response set level. The

spline-based estimators all use L ¼ 35 knots, placed at the quantiles of population values

of z and kept fixed over repeated sampling. Note that the choice of the position of the knots

is not as crucial as the choice of the position of thresholds for poststrata, once penalization

is included in the estimation procedure.

The performance of the estimators is evaluated for each survey variable using the

following measures in which Ŷj denotes the value taken by a generic estimator Ŷ of Y at

replication j, with j ¼ 1; : : : ; J.

. % Relative Bias, given by

%RB ¼
B̂ðŶÞ

Y
100

where B̂ðŶÞ ¼ ÊðŶÞ2 Y is the Monte Carlo estimate of the bias with

ÊðŶÞ ¼ J21
PJ

j¼1Ŷj;

. % Coefficient of Variation, given by

%CV ¼

ffiffiffiffiffiffiffiffiffiffi
^
MSE

p
ðŶÞ

Y
100

where the Monte Carlo estimate of the mean squared error is given by
^
MSEðŶÞ ¼ J21

PJ
j¼1ðŶj 2 YÞ2.

In addition, the performance of the variance estimators for the proposed estimator

illustrated in Theorem 3.2 has also been tested by means of the empirical coverage rate for

a 95% nominal confidence interval based on the normal approximation. Note that

estimators from exp to sepregs are “conventional” and also considered in Särndal and

Lundström (2005). We will see that results are in line with those in for instance, Särndal

and Lundström (2005, Sec. 10.3).

We will report results only for n ¼ 500 and then discuss the differences occurring when

considering a smaller or a larger sample size. Tables 1 and 2 report the % Relative Bias in

the different settings. Estimators that use info-U are displayed in the first half of the

tables. In general, it can be noted that for the same estimator, info-s shows the same

performance as info-U in terms of bias. Under the columns with the heading u LIN in

Table 1 we report results when the reciprocal of the nonresponse probabilities is a linear

function of the auxiliary variable. This is a situation in which condition (5) holds when the

auxiliary vector contains an intercept and the values of zk. This is the case for all reg

estimators – reg, reg2, reg3 – that, in fact, show an almost zero bias also for any population

of interest. This is also true for the sepreg and all the spline estimators even if they are using

a more complicated set of auxiliary variables than needed. Poststratification corresponds to

a piecewise constant approximation to the linear function that provides some reduction in

bias compared to exp, but not as well as the others. Estimators ra and sepra use an auxiliary

information vector which suffices approximate neither the nonresponse model nor the

population model, and in most cases show a larger bias than does exp.

When the inverse of the response probability is a more complicated function of z, as for

the case u LOGþ in Table 1 and u LOG2 and u GAU in Table 2, then the reg estimator
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Table 1. Percent Relative Bias – %RB – for all estimators and survey variables. Response probabilities type LIN and LOGþ , n ¼ 500

u LIN uLOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

exp 25.99 1.04 1.42 25.96 1.09 1.28 11.19 21.54 20.45 11.16 21.50 20.49
pwa 20.70 0.53 0.77 20.66 0.65 0.71 0.98 0.23 0.43 0.97 0.17 0.41
ra 4.27 12.17 12.60 4.31 12.23 12.45 26.02 216.74 215.80 26.05 216.70 215.83
reg 20.02 0.05 0.15 0.03 0.13 0.11 20.02 0.98 8.58 20.18 1.01 8.35
reg2 20.03 0.08 20.01 0.02 0.17 20.05 20.01 21.33 0.58 20.01 21.38 0.51
reg3 20.03 0.06 20.08 0.02 0.15 20.13 20.02 21.82 0.33 0.00 21.89 0.27
sepra 0.75 2.66 2.72 0.79 2.77 2.65 21.03 22.46 22.51 21.05 22.52 22.52
sepreg 20.04 20.04 20.17 0.01 0.05 20.19 20.03 20.52 20.07 20.02 20.58 20.07
spline3 20.03 0.07 0.08 0.02 0.16 0.04 20.02 20.08 4.21 20.09 20.09 4.07
spline3r 20.03 0.07 0.04 0.02 0.15 0.00 20.02 20.36 2.98 20.07 20.39 2.86
spline4 20.03 0.06 0.00 0.02 0.15 20.04 20.02 20.68 1.45 20.05 20.72 1.35
spline4r 20.03 0.05 20.02 0.02 0.14 20.06 20.02 20.73 0.90 20.04 20.77 0.81
spline6 20.04 0.01 20.05 0.01 0.10 20.08 20.02 20.51 0.27 20.04 20.55 0.20
spline6r 20.04 20.01 20.05 0.01 0.08 20.09 20.02 20.38 0.17 20.05 20.41 0.10
spline8 20.05 20.03 20.05 0.00 0.06 20.09 20.03 20.25 0.08 20.05 20.27 0.01
spline8r 20.05 20.04 20.05 0.00 0.04 20.09 20.03 20.17 0.03 20.05 20.19 20.04
spline10 20.05 20.05 20.06 0.00 0.03 20.09 20.03 20.14 0.00 20.05 20.16 20.07
spline10r 20.06 20.05 20.06 20.01 0.02 20.09 20.04 20.12 20.04 20.06 20.13 20.12
spline12 20.06 20.06 20.07 20.01 0.02 20.10 20.04 20.11 20.05 20.06 20.13 20.13
spline12r 20.07 20.06 20.08 20.01 0.01 20.11 20.05 20.10 20.09 20.06 20.12 20.18
spline14 20.07 20.07 20.08 20.01 0.01 20.11 20.05 20.10 20.10 20.06 20.12 20.18
spline14r 20.07 20.07 20.10 20.02 0.00 20.14 20.06 20.10 20.14 20.07 20.12 20.22
spline16 20.07 20.07 20.10 20.02 20.01 20.14 20.06 20.10 20.13 20.07 20.12 20.22
spline16r 20.08 20.08 20.12 20.03 20.02 20.16 20.07 20.11 20.18 20.07 20.13 20.26

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

2
5

8



Table 1. Continued

u LIN uLOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

wc 20.75 0.54 0.81 20.71 0.65 0.74 0.94 0.24 0.46 0.92 0.17 0.44
ras 4.16 12.00 12.43 4.19 12.06 12.27 26.11 216.84 215.92 26.14 216.81 215.95
regs 20.07 0.05 0.10 20.02 0.13 0.06 20.07 0.97 8.55 20.23 0.99 8.31
reg2s 20.07 0.09 0.12 20.02 0.17 0.08 20.06 21.30 0.73 20.05 21.36 0.66
reg3s 20.07 0.06 0.08 20.02 0.14 0.03 20.06 21.85 0.50 20.04 21.93 0.46
sepras 0.71 2.66 2.74 0.75 2.77 2.67 21.08 22.47 22.49 21.10 22.53 22.50
sepregs 20.08 0.03 0.05 20.02 0.11 0.02 20.07 20.46 0.16 20.06 20.52 0.16
spline3s 20.07 0.07 0.12 20.02 0.15 0.08 20.06 20.08 4.25 20.14 20.11 4.10
spline3rs 20.07 0.07 0.12 20.02 0.15 0.07 20.06 20.37 3.06 20.12 20.40 2.94
spline4s 20.07 0.06 0.11 20.02 0.15 0.07 20.06 20.69 1.55 20.09 20.73 1.46
spline4rs 20.07 0.06 0.11 20.02 0.14 0.07 20.06 20.73 1.02 20.08 20.77 0.95
spline6s 20.08 0.03 0.10 20.03 0.11 0.06 20.06 20.49 0.42 20.08 20.53 0.36
spline6rs 20.08 0.02 0.10 20.03 0.10 0.06 20.06 20.35 0.32 20.08 20.38 0.26
splinc8s 20.08 0.01 0.10 20.03 0.09 0.06 20.06 20.20 0.24 20.08 20.23 0.18
spline8rs 20.08 0.01 0.10 20.03 0.09 0.06 20.06 20.12 0.19 20.09 20.15 0.13
spline10s 20.08 0.01 0.10 20.03 0.08 0.07 20.06 20.09 0.16 20.09 20.11 0.10
spline10rs 20.08 0.00 0.10 20.04 0.08 0.07 20.07 20.06 0.13 20.09 20.08 0.06
spline12s 20.08 0.00 0.11 20.04 0.08 0.07 20.07 20.05 0.11 20.09 20.07 0.05
spline12rs 20.09 0.00 0.10 20.04 0.07 0.07 20.07 20.03 0.09 20.09 20.06 0.02
spline14s 20.09 0.00 0.10 20.04 0.07 0.07 20.07 20.03 0.08 20.09 20.06 0.02
spline14rs 20.09 0.00 0.10 20.04 0.06 0.06 20.08 20.03 0.06 20.09 20.06 0.00
spline16s 20.09 0.00 0.10 20.04 0.06 0.06 20.08 20.03 0.06 20.09 20.06 0.00
spline16rs 20.09 20.01 0.10 20.05 0.06 0.06 20.08 20.03 0.04 20.10 20.06 20.02
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Table 2. Percent Relative Bias – %RB – for all estimators and survey variables. Response probabilities type LOG2 , and GAU, n ¼ 500

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

exp 210.62 0.92 6.48 210.61 0.89 6.30 0.17 22.14 27.97 0.34 22.14 27.96
pwa 21.06 1.31 3.07 21.04 1.39 3.07 0.01 23.04 23.80 0.12 23.02 23.88
ra 8.18 22.25 28.97 8.19 22.21 28.75 20.03 22.23 28.05 0.15 22.23 28.03
reg 20.06 20.77 6.01 20.05 20.76 5.97 0.02 22.07 27.81 0.19 22.06 27.80
reg2 20.04 21.23 0.17 0.04 21.22 0.17 20.01 0.28 20.20 0.00 0.36 20.32
reg3 20.05 21.06 0.28 0.02 21.05 0.25 20.01 0.23 20.25 0.00 0.32 20.37
sepra 0.54 2.81 4.86 0.56 2.90 4.86 1.13 0.20 21.11 1.24 0.20 21.21
sepreg 20.06 20.41 20.03 0.02 20.41 20.02 20.02 20.03 0.00 0.00 0.06 20.10
spline3 20.05 20.81 2.81 20.01 20.80 2.78 0.00 20.89 23.31 0.08 20.84 23.37
spline3r 20.05 20.80 1.95 0.00 20.79 1.92 0.00 20.69 22.52 0.07 20.63 22.59
spline4 20.05 20.73 0.86 0.01 20.72 0.84 20.01 20.29 21.01 0.03 20.22 21.11
spline4r 20.05 20.67 0.50 0.01 20.65 0.47 20.01 20.21 20.68 0.02 20.13 20.78
spline6 20.05 20.39 0.10 0.00 20.38 0.07 20.02 20.09 20.19 0.00 20.01 20.29
spline6r 20.05 20.29 0.06 20.01 20.28 0.02 20.02 20.09 20.13 0.00 0.00 20.23
spline8 20.06 20.20 0.03 20.02 20.18 20.01 20.03 20.08 20.08 20.01 0.01 20.18
spline8r 20.06 20.15 0.02 20.02 20.14 20.02 20.03 20.08 20.07 20.01 0.01 20.16
spline10 20.07 20.13 0.01 20.03 20.12 20.03 20.03 20.08 20.07 20.01 0.01 20.16
spline10r 20.07 20.12 0.00 20.04 20.10 20.05 20.04 20.08 20.07 20.02 0.00 20.16
spline12 20.07 20.11 20.01 20.04 20.10 20.05 20.04 20.09 20.07 20.02 0.00 20.16
spline12r 20.08 20.11 20.03 20.06 20.10 20.07 20.05 20.09 20.08 20.02 20.01 20.18
spline14 20.08 20.11 20.03 20.06 20.10 20.08 20.05 20.09 20.09 20.02 20.01 20.18
spline14r 20.09 20.11 20.05 20.07 20.11 20.11 20.05 20.10 20.10 20.03 20.02 20.20
spline16 20.09 20.11 20.05 20.07 20.11 20.10 20.05 20.10 20.10 20.03 20.02 20.20
spline16r 20.10 20.12 20.08 20.08 20.11 20.14 20.06 20.11 20.12 20.03 20.03 20.22
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Table 2. Continued

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

wc 21.11 1.32 3.10 21.08 1.41 3.11 20.04 23.02 23.76 0.07 23.02 23.85
ras 8.06 22.07 28.78 8.07 22.03 28.57 20.13 22.39 28.21 0.04 22.39 28.20
regs 20.10 20.76 5.96 20.10 20.75 5.91 20.03 22.07 27.84 0.14 22.07 27.84
reg2s 20.09 21.23 0.30 20.01 21.23 0.30 20.05 0.30 20.06 20.04 0.38 20.17
reg3s 20.09 21.06 0.44 20.02 21.07 0.42 20.05 0.24 20.09 20.04 0.32 20.20
sepras 0.49 2.81 4.89 0.51 2.90 4.89 1.08 0.21 21.08 1.19 0.20 21.19
sepregs 20.10 20.34 0.17 20.02 20.33 0.20 20.06 0.05 0.21 20.04 0.13 0.12
spline3s 20.09 20.81 2.83 20.05 20.80 2.81 20.04 20.89 23.24 0.04 20.84 23.30
spline3rs 20.09 20.81 2.01 20.04 20.80 1.99 20.05 20.68 22.44 0.02 20.63 22.51
spline4s 20.09 20.74 0.96 20.03 20.73 0.94 20.05 20.28 20.89 20.01 20.21 20.97
spline4rs 20.09 20.66 0.61 20.03 20.65 0.59 20.05 20.20 20.55 20.02 20.13 20.64
spline6s 20.09 20.37 0.24 20.04 20.35 0.22 20.06 20.06 20.04 20.04 0.02 20.13
spline6rs 20.09 20.26 0.20 20.04 20.24 0.17 20.06 20.04 0.02 20.04 0.03 20.08
spline8s 20.09 20.15 0.18 20.05 20.13 0.15 20.06 20.03 0.07 20.04 0.05 20.02
spline8rs 20.09 20.10 0.17 20.06 20.08 0.14 20.06 20.02 0.09 20.04 0.05 0.00
spline10s 20.10 20.08 0.17 20.06 20.06 0.13 20.06 20.02 0.10 20.04 0.06 0.01
spline10rs 20.10 20.06 0.17 20.07 20.04 0.13 20.06 20.02 0.10 20.04 0.06 0.01
spline12s 20.10 20.05 0.16 20.07 20.03 0.12 20.07 20.02 0.10 20.04 0.06 0.01
spline12rs 20.10 20.04 0.16 20.08 20.02 0.11 20.07 20.02 0.10 20.04 0.05 0.01
spline14s 20.10 20.04 0.16 20.08 20.02 0.11 20.07 20.02 0.10 20.04 0.05 0.01
spline14rs 20.11 20.04 0.15 20.09 20.02 0.10 20.07 20.03 0.10 20.04 0.05 0.01
spline16s 20.11 20.04 0.15 20.09 20.02 0.10 20.07 20.03 0.10 20.04 0.05 0.01
spline16rs 20.11 20.04 0.14 20.09 20.02 0.09 20.07 20.03 0.10 20.05 0.05 0.00
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successfully reduces bias to almost zero only with a LIN population. For the other

populations, reg always suffers from a misspecified response or population model.

By contrast, reg2 and reg3, that use, respectively, a quadratic and a cubic model for either

the relationship between y and z or between 1/u and z, allow the reduction of nonresponse

bias also in the case of the SIN or DIS populations, when the response probabilities are of

type GAU. Note that for info-U reg2 requires the knowledge of the population total of z 2,

and reg3 further requires also the population total of z 3. Estimator sepreg succeeds in

decreasing bias every time a piecewise linear approximation in each poststratum provides

a good description of the relationship between y and z – for instance the DIS cases – or

between 1/u and z – for instance the GAU cases.

On the other hand, the spline estimators almost always succeed in taking the bias to zero

because the inclusion of the basis functions allow handling departures from linearity in

either the response model or the population model. Note, for instance, that the DIS

population is based on a function of z that the spline estimators cannot handle because the

function is discontinuous. In these cases also, though, bias is reduced because the implicit

estimation of the inverse of the response probabilities allows to handle the LOG and the

GAU functions.

The ability of the spline estimators to capture either the response model or the population

model depends on the penalty l and, therefore, on the number of degrees of freedom used.

The simulation studies show that it is better to have a relatively larger value for the degrees

of freedom: this allows the handling of even complicated structures, like the SIN population

or the LOG response models, and does not provide significant losses when in the presence

of simple linear structures. In addition, it is hard to detect differences in the performance of

the alternative spline estimators, once at least 8 degrees of freedom are used.

Tables 3 and 4 report %CV for the simulations. In these tables, as expected, the

difference between info-s and info-U versions of the same estimator are more clear, with

the latter providing gains in efficiency over the former when the vector of auxiliary

variables employed by the estimator provides a good approximation of the population

model. It is the case of reg in the LIN populations, and of spline estimators for LIN and

SIN populations. Estimator sepreg, that showed a good performance in decreasing bias,

suffers from its coarse approximation of functions like the SIN or the LOG and GAU, by a

relatively larger overall error.

As for the role of l for the spline estimators, again here there is very little difference in

performance among estimators with a number of degrees of freedom going from 8 to 16. In

addition, virtually no difference can be detected for each spline estimator with a given

number of degrees of freedom when l is chosen at the population (sample) level on the one

hand or at a response set level on the other. This provides evidence of little increase in

variability due to the estimation of its value at a response set level (see Section 3.4).

In general, simulations with a larger (smaller) sample size show, other things being

equal, an increase (decrease) in the role of bias as opposed to that of variance. The spline

estimators, as all nonparametric regression techniques, suffer from a reduced number of

observations and therefore provide better performances both in terms of %RB and %CV

when n ¼ 800.

As for the performance of the variance estimators for the proposed estimators, Tables 5

and 6 report coverage rates for 95% confidence intervals for all spline estimators.
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Table 3. % Coefficient of variation for all estimators and survey variables. Response probabilities type LIN and LOGþ , n ¼ 500

u LIN u LOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

exp 6.34 2.17 3.52 6.49 2.96 4.60 11.35 2.70 3.63 11.43 3.53 5.02
pwa 1.15 2.20 3.22 2.03 3.15 4.73 1.33 1.71 2.95 1.99 2.67 4.28
ra 4.59 13.14 13.86 4.90 13.38 14.18 6.09 17.00 16.36 6.27 17.08 16.65
reg 0.57 2.19 3.49 1.78 3.13 4.87 0.56 2.06 9.30 1.60 2.90 9.57
reg2 0.57 2.12 2.35 1.79 3.08 4.23 0.56 2.32 2.51 1.56 3.08 4.00
reg3 0.58 1.75 2.32 1.79 2.83 4.24 0.56 2.62 2.27 1.57 3.35 3.88
sepra 1.24 4.19 4.57 2.09 4.80 5.75 1.52 3.97 4.07 2.13 4.45 5.20
sepreg 0.58 1.15 2.16 1.80 2.54 4.15 0.56 1.14 2.14 1.58 2.35 3.75
spline3 0.57 2.06 2.62 1.78 3.04 4.34 0.55 1.67 4.93 1.57 2.61 5.69
spline3r 0.57 1.99 2.47 1.78 2.99 4.27 0.56 1.63 3.80 1.57 2.58 4.82
spline4 0.57 1.75 2.29 1.79 2.83 4.19 0.56 1.55 2.63 1.57 2.54 4.03
spline4r 0.57 1.59 2.24 1.79 2.73 4.18 0.56 1.46 2.35 1.57 2.49 3.88
spline6 0.58 1.10 2.11 1.79 2.47 4.13 0.56 1.06 2.06 1.57 2.28 3.73
spline6r 0.58 0.98 2.06 1.79 2.42 4.10 0.56 0.91 1.96 1.57 2.21 3.68
spline8 0.58 0.86 1.95 1.80 2.38 4.05 0.56 0.79 1.84 1.58 2.17 3.61
spline8r 0.58 0.82 1.88 1.80 2.37 4.02 0.56 0.75 1.75 1.58 2.15 3.57
spline10 0.58 0.80 1.83 1.80 2.37 3.99 0.56 0.73 1.70 1.58 2.15 3.55
spline10r 0.59 0.78 1.77 1.81 2.37 3.96 0.57 0.72 1.64 1.59 2.15 3.52
spline12 0.59 0.78 1.75 1.81 2.37 3.95 0.57 0.72 1.63 1.59 2.15 3.52
spline12r 0.59 0.77 1.70 1.81 2.37 3.94 0.57 0.72 1.59 1.59 2.15 3.51
spline14 0.59 0.77 1.69 1.81 2.37 3.94 0.57 0.72 1.59 1.59 2.15 3.51
spline14r 0.59 0.77 1.66 1.82 2.38 3.93 0.57 0.72 1.56 1.60 2.15 3.50
spline16 0.59 0.77 1.66 1.82 2.38 3.93 0.57 0.72 1.56 1.60 2.15 3.51
spline16r 0.59 0.77 1.63 1.82 2.38 3.93 0.58 0.73 1.53 1.61 2.16 3.51
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Table 3. Continued

u LIN u LOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

wc 1.83 2.25 3.45 2.48 3.17 4.85 1.91 1.78 3.21 2.42 2.71 4.41
ras 4.53 12.55 13.27 4.84 12.80 13.55 6.40 17.03 16.33 6.57 17.11 16.62
regs 1.61 2.20 3.52 2.33 3.14 4.90 1.60 2.05 9.27 2.19 2.90 9.56
reg2s 1.61 2.15 3.04 2.33 3.10 4.59 1.60 2.31 3.18 2.18 3.07 4.34
reg3s 1.61 1.96 3.06 2.33 2.96 4.62 1.60 2.76 3.00 2.17 3.47 4.24
sepras 1.77 3.76 4.52 2.45 4.42 5.66 2.12 3.64 4.10 2.58 4.16 5.16
sepregs 1.61 1.73 3.01 2.32 2.82 4.57 1.60 1.69 2.98 2.18 2.63 4.20
spline3s 1.61 2.13 3.15 2.33 3.08 4.65 1.60 1.77 5.25 2.18 2.68 5.94
spline3rs 1.61 2.09 3.10 2.33 3.05 4.62 1.60 1.80 4.29 2.17 2.69 5.15
spline4s 1.61 1.98 3.03 2.33 2.97 4.58 1.60 1.86 3.34 2.17 2.74 4.44
spline4rs 1.61 1.91 3.02 2.33 2.92 4.58 1.60 1.85 3.12 2.17 2.73 4.29
spline6s 1.61 1.72 2.99 2.33 2.79 4.56 1.60 1.70 2.94 2.18 2.62 4.18
spline6rs 1.61 1.68 2.97 2.33 2.77 4.55 1.60 1.64 2.90 2.18 2.58 4.15
spline8s 1.61 1.64 2.94 2.33 2.75 4.53 1.60 1.60 2.86 2.18 2.55 4.12
spline8rs 1.61 1.63 2.92 2.33 2.74 4.51 1.60 1.59 2.83 2.18 2.54 4.10
spline10s 1.61 1.63 2.90 2.33 2.74 4.49 1.60 1.59 2.81 2.18 2.54 4.08
spline10rs 1.61 1.62 2.89 2.33 2.74 4.48 1.60 1.58 2.80 2.18 2.54 4.07
spline12s 1.61 1.62 2.88 2.33 2.74 4.48 1.60 1.58 2.79 2.18 2.54 4.07
spline12rs 1.61 1.62 2.88 2.33 2.74 4.47 1.60 1.58 2.78 2.18 2.54 4.06
spline14s 1.61 1.62 2.87 2.33 2.74 4.47 1.60 1.58 2.78 2.18 2.54 4.06
spline14rs 1.61 1.62 2.87 2.33 2.74 4.46 1.60 1.58 2.77 2.18 2.54 4.05
spline16s 1.61 1.62 2.86 2.33 2.74 4.46 1.60 1.58 2.77 2.18 2.54 4.05
spline16rs 1.61 1.62 2.86 2.33 2.75 4.46 1.60 1.58 2.76 2.18 2.54 4.05
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Table 4. % Coefficient of variation for all estimators and survey variables. Response probabilities type LOG2 and GAU, n ¼ 500

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

exp 10.78 1.98 7.20 10.87 2.77 7.56 2.21 2.97 8.66 2.71 3.61 9.17
pwa 1.44 2.74 4.76 2.33 3.78 5.98 0.90 3.59 4.62 1.80 4.12 5.69
ra 8.38 22.85 29.58 8.57 22.92 29.57 1.49 5.04 9.64 2.13 5.52 10.13
reg 0.62 2.48 7.15 1.92 3.50 7.90 0.55 2.86 8.45 1.63 3.49 8.96
reg2 0.65 2.71 2.56 1.98 3.70 4.63 0.56 2.06 2.25 1.66 2.92 3.97
reg3 0.65 2.27 2.53 1.98 3.36 4.67 0.56 1.77 2.20 1.66 2.72 3.97
sepra 1.10 4.45 6.46 2.16 5.24 7.45 1.55 3.19 3.47 2.27 3.83 4.78
sepreg 0.65 1.29 2.32 1.98 2.87 4.61 0.57 1.19 2.04 1.67 2.45 3.88
spline3 0.63 2.46 4.08 1.94 3.50 5.47 0.55 2.05 4.09 1.64 2.87 5.20
spline3r 0.64 2.41 3.37 1.95 3.47 5.02 0.55 1.94 3.40 1.64 2.79 4.70
spline4 0.64 2.19 2.67 1.97 3.32 4.66 0.56 1.64 2.37 1.65 2.61 4.05
spline4r 0.64 1.98 2.50 1.97 3.19 4.60 0.56 1.51 2.22 1.65 2.54 3.97
spline6 0.65 1.35 2.32 1.98 2.83 4.56 0.56 1.06 2.01 1.66 2.31 3.88
spline6r 0.65 1.14 2.26 1.98 2.74 4.54 0.56 0.95 1.95 1.66 2.27 3.85
spline8 0.65 0.98 2.15 1.98 2.68 4.50 0.56 0.82 1.84 1.66 2.23 3.80
spline8r 0.66 0.92 2.06 1.99 2.66 4.47 0.56 0.78 1.78 1.67 2.22 3.77
spline10 0.66 0.89 2.00 1.99 2.66 4.45 0.56 0.76 1.73 1.67 2.22 3.74
spline10r 0.66 0.86 1.93 2.00 2.65 4.43 0.56 0.75 1.68 1.67 2.22 3.72
spline12 0.66 0.86 1.90 2.00 2.65 4.43 0.57 0.75 1.65 1.67 2.22 3.71
spline12r 0.66 0.85 1.84 2.00 2.66 4.41 0.57 0.75 1.61 1.68 2.23 3.69
spline14 0.66 0.85 1.84 2.00 2.66 4.41 0.57 0.75 1.60 1.68 2.23 3.69
spline14r 0.67 0.85 1.80 2.01 2.66 4.41 0.57 0.75 1.57 1.68 2.23 3.68
spline16 0.67 0.85 1.80 2.01 2.66 4.41 0.57 0.75 1.57 1.68 2.23 3.68
spline10r 0.67 0.85 1.76 2.02 2.67 4.41 0.57 0.75 1.54 1.69 2.24 3.68
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Table 4. Continued

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

wc 2.01 2.79 4.96 2.71 3.80 6.13 1.72 3.60 4.81 2.31 4.15 5.80
ras 8.30 22.44 29.22 8.48 22.51 29.20 1.57 3.90 9.18 2.17 4.42 9.67
regs 1.63 2.48 7.10 2.42 3.51 7.87 1.59 2.89 8.51 2.20 3.54 9.03
reg2s 1.64 2.72 3.18 2.46 3.72 4.95 1.59 2.10 2.96 2.21 2.95 4.32
reg3s 1.64 2.40 3.20 2.46 3.46 5.02 1.59 1.99 2.94 2.21 2.86 4.32
sepras 1.74 4.09 6.45 2.53 4.90 7.41 1.91 2.49 3.43 2.51 3.24 4.68
sepregs 1.64 1.82 3.09 2.46 3.11 5.00 1.59 1.75 2.90 2.21 2.71 4.28
spline3s 1.63 2.50 4.42 2.44 3.53 5.71 1.59 2.16 4.42 2.20 2.96 5.42
spline3rs 1.63 2.47 3.86 2.44 3.52 5.33 1.59 2.08 3.84 2.20 2.90 4.97
spline4s 1.63 2.34 3.33 2.45 3.43 5.02 1.59 1.92 3.06 2.21 2.79 4.39
spline4rs 1.64 2.21 3.22 2.45 3.34 4.98 1.59 1.86 2.97 2.21 2.76 4.33
spline6s 1.64 1.86 3.13 2.46 3.11 4.96 1.59 1.70 2.89 2.21 2.64 4.27
spline6rs 1.64 1.77 3.10 2.46 3.05 4.96 1.59 1.67 2.87 2.21 2.62 4.26
spline8s 1.64 1.71 3.06 2.46 3.01 4.94 1.59 1.63 2.85 2.21 2.60 4.23
spline8rs 1.64 1.68 3.03 2.46 3.00 4.93 1.59 1.62 2.83 2.21 2.60 4.22
spline10s 1.64 1.67 3.00 2.46 3.00 4.92 1.59 1.61 2.82 2.21 2.60 4.20
spline10rs 1.64 1.67 2.97 2.47 3.00 4.91 1.59 1.61 2.81 2.21 2.60 4.19
spline12s 1.64 1.67 2.96 2.47 3.00 4.91 1.59 1.61 2.81 2.21 2.60 4.19
spline12rs 1.64 1.66 2.94 2.47 3.00 4.90 1.59 1.61 2.80 2.21 2.60 4.18
spline14s 1.64 1.66 2.94 2.47 3.00 4.90 1.59 1.61 2.79 2.21 2.60 4.18
spline14rs 1.64 1.66 2.93 2.47 3.00 4.90 1.59 1.61 2.79 2.21 2.61 4.17
spline16s 1.64 1.66 2.93 2.47 3.00 4.90 1.59 1.61 2.79 2.21 2.61 4.17
spline16rs 1.64 1.67 2.92 2.47 3.00 4.91 1.59 1.61 2.78 2.21 2.61 4.17
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Table 5. Coverage rate for 95% confidence intervals for all p-splines based estimators and survey variables. Response probabilities type LIN and LOGþ , n ¼ 500

u LIN u LOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

spline3 94.6 93.8 95.3 95.4 94.0 95.6 95.3 96.1 62.9 94.7 95.1 85.6
spline3r 94.6 93.9 95.0 95.4 93.8 95.6 95.1 95.4 74.6 94.5 94.6 90.1
spline4 94.6 94.6 94.8 95.1 93.9 95.5 94.8 94.2 89.7 94.3 93.8 93.6
spline4r 94.4 94.6 95.0 95.1 94.1 95.5 94.8 92.7 92.9 94.3 93.6 95.0
spline6 94.0 95.3 95.1 94.5 94.4 95.3 94.9 93.2 94.9 94.3 93.4 95.0
spline6r 93.9 95.2 95.1 94.4 94.3 95.1 94.8 94.7 94.5 94.3 93.5 95.2
spline8 93.9 95.5 94.0 94.0 94.1 95.1 94.5 95.3 94.9 94.3 93.4 95.2
spline8r 94.0 95.1 93.6 94.0 94.1 94.7 94.3 95.1 94.6 94.2 94.1 95.1
spline10 94.0 94.8 93.7 93.8 94.0 94.3 94.3 94.9 94.7 94.2 94.0 95.4
spline10r 93.5 95.1 93.9 93.6 93.9 94.3 94.2 95.0 94.5 94.2 93.8 95.8
spline12 93.4 94.6 93.7 93.6 93.6 94.4 94.2 95.1 94.5 94.2 93.9 95.7
spline12r 93.5 94.5 93.1 93.3 93.7 94.1 94.0 95.0 94.7 93.9 93.8 95.7
spline14 93.4 94.4 92.8 93.3 93.6 94.1 94.0 94.8 94.7 93.8 93.8 95.7
spline14r 93.3 93.8 92.4 93.0 93.6 94.1 93.6 95.0 94.8 93.4 93.6 95.5
spline16 93.3 93.8 92.4 93.0 93.6 94.1 93.7 95.0 94.8 93.4 93.6 95.5
spline16r 93.4 93.4 92.2 92.9 93.4 94. lj 93.5 94.6 94.2 93.4 93.1 95.2
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Table 5. Continued

u LIN u LOGþ

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

spline3s 94.9 94.8 95.4 94.6 94.3 95.5 94.8 96.1 70.8 94.0 95.1 86.6
spline3rs 95.0 95.2 95.3 94.6 94.3 95.6 95.0 95.8 81.4 93.8 94.7 91.0
spline4s 95.0 94.6 95.2 94.6 94.2 95.5 95.2 94.9 90.8 94.0 94.4 94.2
spline4rs 95.0 94.5 94.8 94.6 93.9 95.4 95.4 94.7 92.9 94.0 94.3 95.4
spline6s 95.0 94.7 94.7 94.7 94.1 95.7 95.4 94.8 94.7 94.1 94.5 95.7
spline6rs 95.0 94.7 94.7 94.8 94.3 95.7 95.4 95.1 94.9 94.1 94.8 95.8
spline8s 95.0 95.0 94.2 94.8 94.3 95.6 95.3 95.4 94.8 94.1 94.5 95.7
spline8rs 95.0 95.3 94.3 94.8 94.3 95.4 95.4 95.1 94.6 94.0 94.9 95.9
spline10s 95.0 95.1 94.5 94.8 94.2 95.2 95.4 94.9 94.6 94.0 94.8 95.9
spline10rs 95.0 95.2 94.7 94.7 94.3 94.8 95.5 94.9 94.6 94.0 95.0 96.0
spline12s 95.0 95.2 94.6 94.7 94.4 94.9 95.5 94.9 94.8 94.0 95.0 96.2
spline12rs 94.9 95.3 94.6 94.7 94.5 94.7 95.5 95.0 94.7 94.1 95.2 96.3
spline14s 94.9 95.4 94.7 94.7 94.5 94.8 95.5 95.0 94.8 94.2 95.2 96.3
spline14rs 94.9 95.5 94.7 94.7 94.5 94.8 95.5 95.0 94.8 94.0 95.3 96.4
spline16s 94.9 95.5 94.7 94.7 94.4 94.8 95.5 95.0 94.8 94.0 95.3 96.4
spline16rs 94.9 95.5 95.1 94.6 94.5 94.7 95.6 95.2 94.9 94.1 95.1 96.4
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Table 6. Coverage rate for 95% confidence intervals for all p-splines based estimators and survey variables. Response probabilities type LOG2 and GAU; n ¼ 500

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

spline3 94.0 92.5 86.6 94.5 93.7 91.8 94.5 91.2 71.8 94.2 93.1 87.3
spline3r 94.0 92.2 90.3 94.4 93.5 93.5 94.5 92.3 81.9 94.1 94.0 90.8
spline4 93.8 92.2 93.4 94.3 93.8 94.9 94.4 94.4 93.2 94.1 94.1 95.0
spline4r 93.9 92.9 94.0 94.2 93.7 94.8 94.3 95.7 94.7 94.2 94.0 95.5
spline6 93.3 94.1 94.4 94.2 93.2 94.9 93.9 94.9 94.7 93.9 94.0 96.1
spline6r 93.3 94.9 94.4 94.2 93.5 94.7 93.9 94.5 94.6 94.0 94.4 96.3
spline8 93.2 94.4 94.2 93.9 93.5 94.5 94.0 93.8 94.3 93.9 94.3 95.9
spline8r 93.0 94.4 94.5 93.8 93.7 94.4 93.9 93.7 93.9 93.8 94.4 95.7
spline10 92.6 94.0 94.9 93.8 93.9 94.5 93.9 92.7 93.7 93.8 94.3 95.5
spline10r 92.8 94.3 94.5 93.7 94.0 94.7 93.7 92.7 93.2 93.8 94.1 95.3
spline12 92.6 94.2 94.2 93.2 93.9 94.6 93.5 92.8 93.3 93.8 94.0 95.4
spline12r 92.1 93.9 94.0 92.8 93.6 94.3 93.2 92.9 93.4 93.8 93.8 95.5
spline14 92.1 93.9 93.8 92.8 93.6 94.3 93.1 92.9 93.6 93.9 93.6 95.5
spline14r 91.8 93.7 93.5 92.6 93.0 94.2 93.0 92.7 94.0 93.7 93.3 95.4
spline16 91.9 93.7 93.6 92.6 93.0 94.2 93.0 92.5 94.0 93.7 93.3 95.4
spline16r 91.5 93.8 93.1 92.6 92.4 93.8 92.7 92.5 93.9 93.5 93.4 95.7
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Table 6. Continued

u LOG2 u GAU

s ¼ 0.15 s ¼ 0.50 s ¼ 0.15 s ¼ 0.50

LIN SIN DIS LIN SIN DIS LIN SIN DIS LIN SIN DIS

spline3s 94.9 93.0 87.4 95.3 93.7 91.6 95.8 92.2 82.4 96.0 93.3 89.5
spline3rs 95.1 93.0 91.9 95.3 93.3 94.1 95.8 93.2 88.0 96.0 93.9 91.9
spline4s 95.3 93.1 94.3 95.2 93.3 95.6 95.5 94.2 95.1 95.8 94.5 95.1
spline4rs 95.3 93.3 94.3 95.4 93.6 95.3 95.4 94.2 95.5 95.7 94.5 95.6
spline6s 95.5 94.7 94.3 95.4 94.1 95.4 95.2 94.7 95.3 95.9 95.2 95.9
spline6rs 95.5 95.3 94.4 95.3 94.3 95.4 95.1 94.8 95.2 95.9 95.0 95.9
spline8s 95.4 95.2 94.3 95.2 94.5 95.5 95.1 94.8 95.0 95.9 95.2 96.1
spline8rs 95.3 95.1 94.6 95.0 94.7 95.3 95.1 94.9 94.9 95.8 95.2 96.1
spline10s 95.3 94.9 94.8 95.0 95.0 95.3 95.1 95.0 94.6 95.8 95.1 96.2
spline10rs 95.3 94.6 94.7 95.0 95.0 95.1 95.1 95.2 94.4 95.7 95.0 96.3
spline12s 95.3 94.6 94.6 94.9 95.0 95.2 95.1 95.2 94.4 95.7 94.9 96.2
spline12rs 95.4 94.6 94.9 94.9 94.9 94.9 95.1 95.2 94.5 95.7 95.0 96.3
spline14s 95.4 94.6 94.8 94.9 94.9 94.9 95.2 95.2 94.5 95.7 95.1 96.2
spline14rs 95.4 94.6 95.1 94.8 94.8 94.7 95.2 95.2 94.2 95.7 95.1 96.1
spline16s 95.4 94.6 95.1 94.8 94.8 94.7 95.2 95.2 94.2 95.7 95.1 96.1
spline16rs 95.4 94.6 95.1 94.9 94.6 94.6 95.1 95.2 94.3 95.7 94.9 96.2
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Coverage rates are satisfactory, with almost all rates between 93% and 96%. Serious

undercoverage is displayed essentially only for the spline3 estimators when a large relative

bias was also recorded, that is, in those cases in which 3 degrees of freedom are far too few

to estimate complicated structures such as the GAU or the LOGþ response models in

combination with the DIS or the SIN populations.

5. Conclusions

It is well known that nonresponse can harm the quality of the estimates from a survey by

introducing bias. Put simply, this can happen in two ways: either the response probabilities

depend on the variable of interest – direct effect – or on other variables that, in turn,

influence the variable of interest – mediated effect. In both cases, it is possible to reduce

the bias only if we have some auxiliary information that is able to describe either the

variable of interest or the nonresponse probabilities, either at the level of the original

sample (info-s) or for the whole population (info-U).

In this article we propose to use such auxiliary information to build a calibration type

estimator following in the footsteps of those studied in Särndal and Lundström (2005).

These latter estimators can reduce bias as long as the auxiliary information used in the

calibration procedure provides a good proxy for the values of the variable of interest or,

alternatively, for the inverse of the response probabilities. In classical calibration, such

proxy values are constructed as linear combinations of the auxiliary information

introduced in the calibration procedure. The estimator proposed here tries to bring such

proxy values closer to the values of the variable of interest in a larger class of situations by

using the results from model-assisted estimation based on nonparametric regression

models. In particular, here we look at the penalized splines regression estimator proposed

by Breidt et al. (2005) in the case of full response, since it has a close relationship with

calibration.

The p-splines calibration estimator proposed here allows us to account for situation in

which the effect of some auxiliary variables on the variable(s) of interest is more

complicated than a linear function. In addition, it allows also for handling auxiliary

information in the form of geographical coordinates and complicated spatial structures.

Such flexibility grants a better description of the variable of interest for both respondents

and nonrespondents and, therefore, more chances to reduce nonresponse bias. This comes

at the price of extra auxiliary information required in the info-U setting, while it can be

computed without extra auxiliary information in the info-s setting.

The asymptotic properties of the proposed estimator have been studied, conditions for

consistency discussed and variance estimation proposed. The finite sample behavior has

been explored via a limited simulation study on simulated data. Results show that the

proposed estimator allows the reduction of bias, is not any less efficient than competing

estimators that use the same auxiliary variables, and may be more efficient for complex

survey variables. Of course, estimators that use auxiliary information at info-U level are

more efficient than the corresponding estimators that use the info-s level. However, if bias

is the main concern, then estimators that use info-s can provide the same reduction in bias

as the info-U ones.
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Like all nonparametric regression-based estimators, the performance of the proposed

estimator depends on the selection of a smoothing parameter that governs its

approximation ability. However, note that in the survey context, trying to find the

optimal parameter is not as relevant as in the standard context: the estimator is not

constructed for a single variable, but for a large set of variables collected during the

survey. A penalty that is optimal for one variable may well not be adequate for another, but

using different sets of weights would not be feasible for coherence issues. We have

therefore considered a single fixed value for it and given some guidelines to selecting its

value. In this regard, Särndal and Lundström (2008) have proposed an indicator that allows

the ranking of different auxiliary vectors for their potential to reduce the bias for the

calibration estimator. It will be interesting to investigate how this indicator can be

modified to encompass penalized calibration (and hence p-splines) by comparing the use

of a continuous auxiliary variable as it stands (linear), with dividing it into different groups

or poststrata (piecewise linear), and with p-splines (nonparametrical).

A. Proofs

Proof of Theorem 3.1. First note that for info-U Ŷp;r ¼
P

U zTk b̂r, with

b̂r ¼
r

X
dkzkz

T
k þLN

 !21

r

X
dkzkyk; ðA:1Þ

because
r

P
dk yk 2 zTk b̂r

� �
¼ 0 for the properties of GLS estimators and noting that the first

element of b̂r remains unpenalized. Therefore, Ŷp;r 2 Y ¼
P

U zTk ðb̂r 2 gUÞ2
P

U ek,

where ek ¼ yk 2 zTkgU . For info-s Ŷp;r ¼
P

s dkz
T
k b̂r and

Ŷp;r 2 Y ¼
U

X
zTk ðb̂r 2 gUÞ þ
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This implies that
U

P
ukzkek ¼ LNgU . Now,

b̂r 2 gU ¼
r

X
dkzkz

T
k þLN

 !21

r

X
dkzkyk 2 gU

¼
r

X
dkzkz

T
k þLN

 !21

r
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T
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" #

¼
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kgU 2LNgU

" #
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X
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 !21"
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The conditional expectation of the components of b̂r in (A.1) is given by

E
r

X
dkzkz

T
k jFN

( )
¼

U

X
ukzkz

T
k and E

r

X
dkzkykjFN

( )
¼

U

X
ukzkyk

Then, by Assumption A2 it follows that b̂r 2 gU ¼ Op n
21=2
N

� �
because

N21
P

r dkzkz
T
k þLN

� �
is bounded by bounding arguments on z and Assumptions A3

and A4. In addition, given that
P

U ukzkek ¼ LNgU by the first part of assumption A5,

for which there exists a vector d such that zTk d ¼ ~zTk d1 þ z*T
k d2 ¼ u21

k , with ~zk ¼ ð1; zkÞ
T

and z*
k ¼ ððzk 2 k1Þþ; : : : ; ðzk 2 kLÞþÞ

T , then we can write
P

U ek ¼ dTLNgU ¼

0; 0; lNd
T
2

� �
gU ¼ O Nn21

N

� �
The last equality follows from the second part of

Assumption A5.

To obtain representation (11) we follow Fuller (2009, Ch. 5). Assume, without loss of

generality, that the first element of z is u21
k . In fact, because of A5, u21

k is in the space

spanned by the columns of Z r and we can transform the matrix of values of zk so that the

first element is the inverse of uk. In particular, consider the following transformation of the

vector z by zk ¼ Q̂zk with

z1k ¼ u21
k

zlk ¼ zlk þ z1kq̂1l

where

q̂1l ¼ 2
r

X
dkz

2
1k

 !21

r

X
dkz1kzlk;

for l ¼ 2; 3; : : : ; Lþ 2 and Q̂ ¼ diag{1; q̂1l}l¼2; : : : ;Lþ2. Now, for info-U,

Ŷp;r 2 Y ¼
P

U zTk ðb̂r 2 gUÞ þ
P

U ek ¼
P

U zTk Q̂
21ðb̂r 2 gUÞ þ O Nn21

N

� �
. Note that

X
U

zTk ¼
U

X
z1k; 0; : : : ; 0

0
@

1
Aþ Op Nn

21=2
N
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because of A1, A2 and A4. Now

Q̂21ðb̂r 2 gUÞ ¼
r

X
dkzkz

T
k þ Q̂LNQ̂Þ

21

 !
r

X
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;

so that (11) is obtained. Finally, (12) can be obtained for info-s from (A.2). The ek (and the

zTkgU for info-s) have bounded fourth moments by the moment assumptions so that, by

assumption A2, N21 ffiffiffiffiffiffi
nN

p
ðŶp;r 2 YÞjFN has a normal distribution in the limit. The form of

the variance in (14) follows from (11), while (15) can be obtained from

V
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X ek
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2
s

X ek

pk

þ
s

X yk

pk

jFN

 !
¼ VpðsÞ E

r

X ek

p2k

2
s

X ek

pk

þ
s

X yk

pk

js

 !" #

þ EpðsÞ V
s

X ek

p2k

js

 !" #
¼ VpðsÞ

s

X yk

pk

" #
þ EpðsÞ

s

X e2
k

p2
2k

ukð1 2 ukÞ

" #
; ðA:3Þ

where subscript p(s) denotes expectation and variance taken with respect to the sampling

design. B

Proof of Theorem 3.2. First note that by using conditional arguments as in (A.3),

variances in (14) and in (15) can be rewritten as

V1ðŶp;rÞ ¼ VpðsÞ
s

X ek

pk

" #
þ EpðsÞ V

r

X ek

p2k

js

 !" #
; for info–U

V1ðŶp;rÞ ¼ VpðsÞ
s

X yk

pk

" #
þ EpðsÞ V

r

X ek

p2k

js

 !" #
; for info–s:

The expectation of the following Horvitz-Thompson variance estimator for
P

r wkek is
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given by

E
r

X
r
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ukw

2
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2
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U

X
U
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ðpkj 2 pkpkjÞukujwkekwjej

2
U

X
pkuk 2 p2

ku
2
k

� �
w2
ke

2
k

¼
U

X
U

X
ðp2kj 2 p2kp2jÞwkekwjej 2

U

X
ðpk 2 p2kÞp2kw

2
ke

2
k :

By A7 and given that br 2 gU ¼ Op n
21=2
N

� �
the variance estimator constructed using êk

is asymptotically equivalent to the one that uses ek, and the result is proven. B
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