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Capture–recapture sampling is used to estimate the total number of units in a population
of unknown size. It involves two samples selected independently in the target population.
The Petersen estimator for the population size depends on the frequencies of the units
appearing in the first, the second or both samples. This article considers a generalisation of
capture–recapture sampling to cases where the two samples are selected using indirect
sampling (Lavallée 2002; 2007). The sampling frames for the two samples differ from the
target population and the generalised weight share method has to be used to determine the
sampling weights of units selected in the population through this indirect method.
A generalisation of the Petersen estimator to such an indirect sampling scheme is proposed.
The sampling properties of this new estimator are investigated. Its application is illustrated
through simulations and by discussing two surveys where it could be used.
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1. Capture–Recapture Sampling

Capture-recapture sampling is used to estimate the total number of units in a population of

unknown size. An initial sample s1 of size n1 is obtained, and the units in the sample are

marked (or identified). A second sample s2 of size n2 is obtained independently, and the

number n1,2 of marked units in this sample is recorded. Seber (1982, p. 59) pointed out that

if the second sample is a simple random sample from the whole population, the proportion

of marked units in this second sample estimates the population proportion. Using this link

an estimate of the total number of units in the population is

N̂Pet ¼
n1n2

n1;2
ð1Þ

This estimator is often referred to as the Petersen (or Lincoln-Petersen) estimator. A

number of assumptions must be true for expression (1) to be an unbiased estimator of the

population size N (see Section 2).

One uses the Petersen estimator in cases where the target population is only partly

covered by a set of sampling frames. In practice, this problem occurs with administrative

files. If a population is partly covered by two administrative files containing N1 and N2
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persons, the Petersen estimator N̂Pet of the population’s size is given by the following

expression:

N̂Pet ¼
N1N2

N1;2
ð2Þ

where N1;2 is the number of members of the population present in both files. Clearly,

estimator (2) is valid only if the two files are independent.

It is interesting to note that the problem of estimating the size of a population with

incomplete administrative files is related to the problem of multiple frames. In this case,

the two administrative files constitute two sampling frames – A1 and A2, say – which are

used to measure the target population. This is illustrated by Figure 1 below.

As shown in Figure 1, the target population is only partly covered by frames A1 and A2,

since the union of the members of the two frames does not contain the entire target

population. The dots with a triangular shape are not included in either frame; the star dots

appear only in frame A1; the heart dots appear only in frame A2; and the regular round

dots are in both frames.

This article examines the case where frames A1 and A2 cannot be processed in their

entirety. Instead, samples are selected from the two administrative files. In other words, the

Petersen estimator (2) calculated with the entire populations is regarded as a “census

parameter,” which we attempt to estimate with two samples, one from each file. With

sample s1 from one file, we obtain an estimate N̂1 of N1 using the Horvitz-Thompson

estimator N̂1 ¼
P

k[s1
1=p1k, where p1k is the probability that unit k is selected in

sample s1. Similarly, s2 is used to produce estimate N̂2. With the units that appear in both

samples – which is equivalent to considering the marked units – we estimate N again

Sampling frames

Frame A1

Frame A2

Target
population

Fig. 1. Multiple frames where samples are represented by grey rectangles
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using the Horvitz-Thompson estimator N̂1;2 ¼
P

k[s1>s2
1=p1;2;k, where p1;2;k is the

probability that unit k is selected in both samples. In general, the two files are sampled

independently, and therefore p1;2;k ¼ p1k £ p2k. The final estimator N̂
ˆ
of N is obtained by

replacing the population characteristics in (2) with their estimators:

N̂
^
¼

N̂1N̂2

N̂1;2

ð3Þ

An alternative to estimator (3) is the classical Petersen estimator (1) calculated with the

frequencies of the units sampled from the two files, without accounting for the selection

probabilities. When the selection probabilities for the two files are constant, p1k ¼ p1 and

p2k ¼ p2 for all units, then the estimators are equal. In general, estimator (3) takes unequal

selection probabilities into account, thereby correcting for a potential heterogeneity due to

unequal capture probabilities in the two frames.

The problem of using administrative files can be generalised to include cases where the

files (or frames) do not represent the target population directly, but rather consist of

different populations that are related to the target population in some way. In other words,

we are attempting to estimate the size of a target population when we do not have a

sampling frame for that population, but we have different sampling frames which are

related to that population. This is referred to as indirect sampling (Lavallée 2002; 2007).

In Section 2 of this article, we take a more detailed look at the Petersen estimator.

Section 3 reviews indirect sampling and the generalised weight share method (GWSM).

Section 4 introduces capture–recapture sampling in the context of indirect sampling, and

describes the generalised capture–recapture estimator. We discuss the estimator’s

properties in Section 5 and present the results of simulations in Section 6. We follow that

with two examples of how the capture–recapture method can be applied to indirect

sampling. We will conclude the article by discussing direct application of the GWSM to

multiple frames without using the Petersen estimator.

2. Petersen Estimator

The first known use of the Petersen estimator was by Laplace in 1786. To estimate the size

of France’s population, he multiplied N1, the number of births for the entire country, by the

inverse of the ratio of the number of births to the total population in a number of parishes.

That estimation method is named after the Norwegian biologist C.G.J. Petersen, who

pioneered the technique to estimate the demographic characteristics of animal populations

using marked animals. For more details, see Le Cren (1965) and Otis et al. (1978).

Today, capture–recapture sampling is used in fields such as population biology and

epidemiology. A classical example is the estimation of the total number of fish in a lake.

The sample s1 is selected by throwing a net into the lake at random and marking the fish it

catches. The next day, s2 is selected using a second random throw of the net into the lake.

Epidemiological applications are concerned with hard to reach or hard to count

populations. In that case, s1 and s2 are two subsets of the population obtained from

different lists. In social statistics, this technique is used to estimate census coverage; the

initial sample is the census itself, and the second sample is an independent sample used in

a field survey to determine whether each respondent was enumerated in the census

Lavallée and Rivest: Capture–Recapture and Indirect Sampling 3



(marked) or not. In the context of incomplete sampling frames, such as administrative

files, a capture is defined as inclusion in one of the administrative files needed to construct

estimator (2).

The model generally used to study the Petersen estimator N̂Pet is the multinomial

distribution (see Thompson 2002). In capture–recapture sampling, the population can be

divided into four categories: C11 is the number of units that appear in both samples s1 and

s2; C10 is the number of units that appear in sample s1 only; C01 is the number of

units that appear in sample s2 only; and C00 is the number of units that appear in

neither s1 nor s2. When the two samples are drawn independently, the probabilities

associatedwith the four categories are p10 ¼ p1ð12 p2Þ; p01 ¼ ð12 p1Þp2; p11 ¼ p1p2 and

p00 ¼ ð12 p1Þð12 p2Þ, where p1 and p2 are the probabilities of being selected in samples

1 and 2 respectively. In other words, we have ðC10;C01;C11;C00Þ , Mult½N; p1ð12 p2Þ;

ð12 p1Þp2; p1p2; ð12 p1Þð12 p2Þ� with probability function

pðc10; c01; c11; c00Þ ¼
N!

c10!c01!c11!c00!
½p1ð12 p2Þ�

c10½ð12 p1Þp2�
c01 ½p1p2�

c11

½ð12 p1Þð12 p2Þ�
c00

ð4Þ

provided that c10 þ c01 þ c11 þ c00 ¼ N. In terms of the quantities N1, N2 and N1,2 in (2),

we have N1 ¼ C10 þ C11, N2 ¼ C01 þ C11 and N1;2 ¼ C11. Note that model (4) applies to

the administrative files problem because we do not know a priori how many people are in

each of the two lists (or files). Under Model (4), we can show that estimator (2) is

asymptotically unbiased; that is, EjðN̂PetÞ < N, where the subscript j indicates that the

expected value is calculated under (4). For more details, see Chapman (1951). The

estimator’s asymptotic variance is given by

VjðN̂PetÞ ¼ N
ð12 p1Þð12 p2Þ

p1p2

ð5Þ

see Sekar and Deming (1949) and Thompson (2002). In the case of capture–recapture

sampling where the sizes n1 and n2 of s1 and s2 are fixed, the frequencies Cij have a

hypergeometric distribution (see Seber 1982).

Seber (1982, p. 59) presents a set of conditions for estimator (1) to be unbiased. One

condition is that a unit selected in the first sample and a unit that is not selected must have

the same probability of being selected in the second sample. For example, a reaction to

the capture event that increases (or decreases) the probability of being recaptured causes (1)

to be biased, which makes it necessary to use an estimator that takes a behavioural effect

into account (see Seber 1982, p. 318). The estimator N̂Pet is sensitive to a heterogeneity that

gives some units a greater chance than others of being selected in both capture events (see

Seber 1970). In the case of the administrative files used to construct (2), people frommodest

socio-economic backgrounds, for example, may have lower coverage rates. Some

geographic areas may also be less well represented in the files than other areas. This

heterogeneity can be corrected for by splitting the population into groups that are relatively

homogeneous with respect to the heterogeneity variable, and applying the Petersen

estimator to each group separately. For epidemiological and biological examples of

application of this approach, see Hook and Regal (1993) and Rivest et al. (1995). Alho
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(1990) and Chen and Lloyd (2000) suggest methods to include the heterogeneity variable in

the model. The stratification described by Plante et al. (1998) provides an alternative way of

correcting for heterogeneity. Note that capture heterogeneity associated with unobserved

variables can also be dealt with by using capture-recapture estimators based on three or

more files.

3. Indirect Sampling and the Generalised Weight Share Method (GWSM)

Indirect sampling consists in selecting a sample from a frame U A for the purpose of

surveying a target population U B that is not the population represented by the frame, but is

related to that population. More formally, suppose a sample s A of n A units is selected from

a population U A of N A units using a particular sample design. Let p A
j be the selection

probability of unit j. We assume that p A
j . 0 for all j [ U A. We also assume that

the target population U B contains N B units. We are interested in estimating the total

Y B ¼
PN B

k¼1yk in population U B for the variable of interest y.

We assume that there is a link (or relationship) between the units j of population U A and

the units k of population U B. That link is identified by indicator variable lj,k, where lj,k ¼ 1

if there is a link between unit j [ U A and unit k [ U B, and 0 if not. Note that there may be

cases where there is no link between a unit j of population U A and the units k of target

population U B, that is, LA
j ¼

PN B

k¼1lj;k ¼ 0.

For each unit j selected in s A, we identify the units k of U B that have a nonzero link with

j, that is, lj;k ¼ 1. If LA
j ¼ 0 for a unit j of s A, there is simply no unit of U B identified with

that unit j; this affects the efficiency of sample s A but does not cause bias. For each unit k

identified, we measure a particular variable of interest yk and the number of links LB
k

between unit k of U B and population U A. Let s B be the set of n B units of U B identified by

units j [ sA.

For target population U B, we want to estimate the total Y B. Estimating that total is a

major challenge if the links between the units of the two populations are not one-to-one.

The problem is due primarily to the difficulty of associating a selection probability, or an

estimation weight, with the units of the target population that is surveyed. The GWSM, as

described in Lavallée (1995; 2002; 2007), assigns an estimation weightwk to each surveyed

unit k. The method relies on sample s A and the links between U A and U B to estimate the

total Y B. To estimate the total Y B for target population U B, we can use the estimator

ŶB ¼
k[s B

X
wkyk ð6Þ

The GWSM is an extension of the weight share method described by Ernst (1989) in the

context of longitudinal household surveys. It can be regarded as a generalisation of

network sampling and adaptive cluster sampling, see Thompson (2002) and Thompson

and Seber (1996).

In formal terms, the GWSM assigns a weight wk to each unit k in s B

wk ¼
1

LB
k

XN A

j¼1

lj;k
tj

pA
j

ð7Þ
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where tj ¼ 1 if j [ sA and 0 if not and LB
k ¼

PN A

j¼1lj;k. It is important to note that if unit j of

U A is not selected, we do not need to know its selection probability p A
j , a key point in the

GWSM. In addition, for the GWSM to be unbiased, we must have LB
k . 0; in other words,

each unit k of U B must have at least one link with U A. As shown in Lavallée (1995), ŶB

can also be written as

ŶB ¼
XN A

j¼1

tj

p A
j

XN B

k¼1

lj;k
yk

LB
k

¼
XN A

j¼1

tj

p A
j

Zj ð8Þ

Using the latter expression, we can easily show that the GWSM is design-unbiased. The

variance of ŶB is computed directly with

VpðŶ
BÞ ¼

XN A

j¼1

XN A

j 0¼1

p A
jj 0 2 p A

j p A
j 0

� �
p A

j p A
j 0

ZjZj 0 ð9Þ

where p A
jj 0 is the joint selection probability of units j and j 0, and p A

jj ¼ p A
j . Methods for

calculating the p A
jj 0 under various sample designs are given in Särndal, Swensson, and

Wretman (1992). Subscript p indicates that the variance is being calculated relative to the

sample design.

An unbiased estimate of the variance VpðŶ
BÞ is given by

V̂pðŶ
BÞ ¼

XN A

j¼1

XN A

j 0¼1

p A
jj 0 2 p A

j p A
j 0

� �
p A

jj 0p
A

j p A
j 0

tjZjtj 0Zj 0 ð10Þ

Another estimator of the variance VpðŶ
BÞ can be developed in the form proposed by

Yates and Grundy (1953).

It should be noted that the indirect sampling operation considered in this section

assumes complete response. That is, no nonresponse occurres during the collection

process. Although this is unrealistic in practice, adjusting for nonresponse is out of the

scope of this article. We can however mention that with indirect sampling, there are three

types of nonresponse: (i) nonresponse within s A; (ii) nonresponse within s B; (iii) errors in

the identification of the links lj,k. Nonresponse can be treated by adjusting the weights of

estimator (6) (or (8)) according to each of the three types of nonresponse. For more details,

see Lavallée (2002; 2007).

4. Generalised Capture–Recapture Estimator

An unbiased (or approximately unbiased) estimator of the size N B of the target population

U B can be developed using indirect sampling based on estimator (2). The two

administrative files A1 and A2 constitute populations U A1 and U A2, whose sizes are N A1

and N A2, respectively. The target population U B is different from the sampling frames

U A1 and U A2. In this general context, we suppose that, using particular sample designs,

samples s A1 of n A1 units and s A2 of n A2 units are selected from populations U A1 and U A2,

respectively. Let s B1 (s B2) be the units in U B with at least one link to a unit in s A1 (s A2). It

is useful to differentiate l A1
j;k , which takes a value of 1 when unit j of U A1 has a link with
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unit k of U B and 0 otherwise, from l A2
j;k , which describes a link between U A2 and U B. We

have
PN A1

j¼1 lA1
j;k ¼ LA1

k ,
PN A2

j¼1 lA2j;k ¼ LA2
k , where LA1

k and LA2
k represent the total number of

links that unit k of U B has with U A1 and U A2, respectively. Then three indirect sampling

operations are conducted: one from U A1 to U B; another from U A2 to U B; and a third from

U A1 and U A2 to U B. This last one involves only the units of sB1 > sB2 that have at least

one link with both samples s A1 and s A2.

Let UB
A1 ¼ {k [ U Bj’j [ U A1; lA1j;k – 0} be the subpopulation of U B whose units have

at least one link with a unit in U A1; the size of this population is NB
A1. Let UB

A2 ¼ {k [

U Bj’j [ U A2; lA2
j;k – 0} of size NB

A2. In addition, let UB
A1;A2 ¼ UB

A1 > UB
A2 be the

subpopulation of U B whose units have a link with both U A1 and U A2; the size of UB
A1;A2 is

NB
A1;A2. If we could conduct a census of U A1 and U A2, we could estimate N B with

NB
A1 £ NB

A2=NB
A1;A2.

Let p A1
j and p A2

j be the selection probabilities of unit j of U A1 and U A2. To develop an

estimator for NB
A1 £ NB

A2=NB
A1;A2, we first obtain estimators N̂

B

A1 and N̂
B

A2 from samples s A1

and s A2 using (6) (or (8)). Second, we estimate NB
A1;A2 using only those units of sB1 > sB2.

To do so, we need to alter the GWSM presented in Section 3. Each unit k identified by both

samples s A1 and s A2 is assigned the following weight w
A1;A2
k

w
A1;A2
k ¼ wA1

k wA2
k ¼

1

LA1
k

XN A1

j¼1

l A1
j;k

t A1
j

p A1
j

 !
�

1

LA2
k

XN A2

j¼1

l A2
j;k

t A2
j

p A2
j

 !
ð11Þ

Finally w
A1;A2
k ¼ 0 unless lA1

j;k ¼ 1 and lA2j 0;k ¼ 1 for some units j and j0 of s A1 and s A2,

respectively. Only the NB
A1;A2 units of UB

A1;A2 can be assigned a positive weight w
A1;A2
k in

this estimator. We therefore have the estimator

N̂
B

A1;A2 ¼
XNB

A1; A2

k¼1

1

LA1
k

XN A1

j¼1

l A1
j;k

t A1
j

pA1
j

 !
�

1

LA2
k

XN A2

j¼1

l A2
j;k

t A2
j

pA2
j

 !
ð12Þ

Lastly, on the basis of (2), we construct the generalised capture–recapture estimator

(in French, estimateur par capture–recapture généralisé, CReG) of N B

N̂
B

CReG ¼
N̂

B

A1N̂
B

A2

N̂
B

A1;A2

ð13Þ

It is important to note that an estimator similar to (13) can be developed in an even more

general context: the estimation of the total Y B for the variable of interest y. We may want

to estimate not only a population size such as N B, but also a total Y B.

As in the process used to construct (6), to estimate the total YB
A1 for the units of U B that

have a link with U A1 based on s A1, we use

Ŷ
B

A1 ¼
k[s B1

X
wA1

k yk ¼
XN B

k¼1

yk

1

LA1
k

XN A1

j¼1

lA1
j;k

t A1
j

pA1
j

ð14Þ

where wA1
k is the GWSM weight for unit k given by (7). The estimator of YB

A2, constructed

with s B2, has the same form.
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We now turn to YB
A1;A2, the sum of y for the NB

A1;A2 units of U B that have a link with both

U A1 and U A2. We estimate that total using only those units of U B that have a link with

both samples s A1 and s A2

Ŷ
B

A1;A2 ¼
XNB

A1;A2

k¼1

1

LA1
k

XN A1

j¼1

l A1
j;k

t A1
j

pA1
j

 !
�

1

LA2
k

XN A2

j¼1

l A2
j;k

tA2
j

pA2
j

 !
yk ð15Þ

Lastly, we construct the CReG estimator of the total Y B in U B

Ŷ
B

CReG ¼
Ŷ

B

A1Ŷ
B

A2

Ŷ
B

A1;A2

ð16Þ

Note that as in the case of estimator (3), if the selection probabilities are equal within

each frame U A1 and U A2 (that is, p A1
j ¼ f A1 and p A2

j ¼ f A2), we can cancel out pA1
j and

pA2
j in the numerator and denominator of (16).

In the presence of nonresponse, the CReG estimator can be adjusted for correcting:

(i) nonresponse within s A1 and s A2; (ii) nonresponse within s B1 and s B2; (iii) errors in the

identification of the links lj,k in both indirect sampling operations. In particular, estimators

(12) and (15) can be adjusted as the ones for the GWSM (see Lavallée 2002; 2007).

5. Properties of the CReG Estimator

5.1. Asymptotic Framework

In capture–recapture experiments, the limit properties of the estimators – convergence in

probability and convergence in distribution – are proved by having the population size N

tending to infinity. We say that N̂ is convergent if N̂=N tends to 1 in probability as N !1.

It can be shown that the limit distribution of
ffiffiffiffi
N

p
ðN̂=N 2 1Þ when N tends to infinity is

normal. Its variance determines the asymptotic variance of N̂.

To rigorously determine the properties of the estimator studied in this article, we need to

consider a sequence of populations UB
N : N $ N0

� �
in which the size of UB

N is N B. A value

of y, the variable of interest, is associated with each unit of UB
N . The creation of the two

frames from which UB
N is indirectly sampled must satisfy the assumptions below. Those

assumptions define the model j mentioned in Section 2.

Under model j, the frames used to sample UB
N indirectly are formed using the following

pseudo-sampling procedure:

1. From UB
N , we select SB

1N , a Bernoulli sample in which a unit’s selection probability is

p1. Let the size of the sample be NB
A1.

2. With each element k of SB
1N , we associate a set of LB

1;k links, where LB
1;k . 0, using a

particular process. (This process does not have to be formally defined since all the

properties (biases and variances) are calculated by conditioning on the links.) The

population UA1
N is formed from the union, for all elements of SB

1N , of those sets of

links. Note that there may be units j of UA1
N with lA1j;k ¼ 1 for more than one unit k of

UB
N , and therefore the size NA1 of UA1

N satisfies NA1 #
PNB

A1

k¼1LB
1;k.
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3. To form UA2
N , we follow the same procedure with a Bernoulli sample SB

2N of size NB
A2

and selection probability p2.

4. The selection probabilities in forming UA1
N and UA2

N are independent of y.

This procedure constructs sequences of populations UA1
N

� �
and UA2

N

� �
that can be used to

sample the elements of UB
N

� �
indirectly. The number of elements of UB

N that belong to

both SB
1N and SB

2N is NB
A1;A2. The joint distribution under model j of population sizes NB

A1,

NB
A2 and NB

A1;A2 satisfies

NB
A1 2 NB

A1;A2

� �
; NB

A2 2 NB
A1;A2

� �
;NB

A1;A2

h i
, Mult ðN B; p1ð12 p2Þ; p2ð12 p1Þ; p1p2Þ

This is the same as model (4) in Section 2. Under model j, we have the following

convergences in probability as N tends to infinity:

NB
A1;A2

N B

Pr

!p1p2;
NB

A1

N B

Pr

!p1 and
NB

A2

N B

Pr

!p2 ð17Þ

In the general framework, a value of the variable of interest y is associated with each

unit of UB
N . It is assumed that y is independent of the random variables associated with the

formation of the administrative files for indirect sampling.

5.2. Consistency

Let mB be the limit of Y
B

N , the mean of y for UB
N when N tends to infinity. Because UA1

N and

UA2
N are constructed by independent binomial sampling, the means Y

B

1;N , Y
B

2;N and Y
B

1;2;N of y

for the sets SB
1N , SB

2N and SB
1;2;N ¼ SB

1N > SB
2N all converge to mB when N tends to infinity.

Consider

Ŷ
B

CReG ¼
Ŷ

B

A1Ŷ
B

A2

Ŷ
B

A1;A2

¼
NB

A1NB
A2

NB
A1;A2

£

^
Y

B

A1

^
Y

B

A2

^
Y

B

A1;A2

ð18Þ

where
^
Y

B

A1 ¼ Ŷ
B

A1=NB
A1,

^
Y

B

A2 ¼ Ŷ
B

A2=NB
A2 and

^
Y

B

A1 ¼ Ŷ
B

A1;A2=NB
A1;A2. Expression (18) shows

that Ŷ
B

CReG=N B converges to mB when N tends to infinity. The means
^
Y

B

A1,
^
Y

B

A2 and
^
Y

B

A1;A2

all converge to mB because the GWSM yields unbiased estimates of the underlying totals,

YB
A1, YB

A2 and YB
A1;A2 (which are in fact equal to YB

1;N , YB
2;N and YB

1;2;N , for a given N).

Moreover, by virtue of (17),

NB
A1N

B
A2

NB
A1;A2N B

Pr

!1

Hence, estimator Ŷ
B

CReG=N B is consistent for the estimation of Y B ¼ Y B=N B.

5.3. Bias and Variance

In Appendix A, we show that estimator (15) is design-unbiased, i.e., Ep Ŷ
B

A1;A2

� �
¼ YB

A1;A2.

We can also show that estimator (16) is asymptotically unbiased, with respect to model j

and the design, for the estimation of Y B; in other words, EjEp Ŷ
B

CReG

� �
2 Y B < 0.

Lavallée and Rivest: Capture–Recapture and Indirect Sampling 9



With regard to calculating the variance of estimator (16), we can see that the proposed

model is similar to two-phase sampling. Phase 1 is the pseudo-sampling under model j,

and phase 2 is the indirect sampling of units associated with the two administrative files

“created” in phase 1. We begin with the identity

V Ŷ
B

CReG

� �
¼ EjVp Ŷ

B

CReG

� �
þ VjEp Ŷ

B

CReG

� �
ð19Þ

We will write dpŶ ¼ ðŶ 2 YÞ=Y . Using this notation, estimator (16) can be written as

Ŷ
B

CReG <
YB

A1Y
B
A2

YB
A1;A2

"
1þ dpŶ

B

A1 þ dpŶ
B

A2 þ dpŶ
B

A1dpŶ
B

A2 2 dpŶ
B

A1;A2

2dpŶ
B

A1dpŶ
B

A1;A2 2 dpŶ
B

A2dpŶ
B

A1;A2 þ d2pŶ
B

A1;A2

#
ð20Þ

From (20) we get

Vp Ŷ
B

CReG

� �
<

YB
A1YB

A2

YB
A1;A2

 !2 Vp Ŷ
B

A1

� �
Ŷ

B

A1

� �2 þ
Vp Ŷ

B

A2

� �
YB

A2

� �2 þ
Vp Ŷ

B

A1;A2

� �
YB

A1;A2

� �2
0
B@

22
Covp Ŷ

B

A1; Ŷ
B

A1;A2

� �
YB

A1Y
B
A1;A2

2 2
Covp Ŷ

B

A2; Ŷ
B

A1;A2

� �
YB

A2YB
A1;A2

1
A

ð21Þ

Taking the expected value of (20), we have

Ep Ŷ
B

CReG

� �
<

YB
A1YB

A2

YB
A1;A2

ð22Þ

Substituting (21) and (22) in (19), we obtain

V Ŷ
B

CReG

� �
<Ej

YB
A1Y

B
A2

YB
A1;A2

 !2 Vp Ŷ
B

A1

� �
YB

A1

� �2 þ
Vp Ŷ

B

A2

� �
YB

A2

� �2 þ
Vp Ŷ

B

A1;A2

� �
YB

A1;A2

� �2
0
B@

2
64

22
Covp Ŷ

B

A1; Ŷ
B

A1;A2

� �
YB

A1Y
B
A1;A2

2 2
Covp Ŷ

B

A2; Ŷ
B

A1;A2

� �
YB

A2Y
B
A1;A2

1
A
3
5þ Vj

YB
A1Y

B
A2

YB
A1;A2

 !ð23Þ

The variances Vp Ŷ
B

A1

� �
and Vp Ŷ

B

A2

� �
are given by (9), with the corresponding notation.

For the variance Vp Ŷ
B

A1;A2

� �
and the covariances Covp Ŷ

B

A1; Ŷ
B

A1;A2

� �
and Covp Ŷ

B

A2; Ŷ
B

A1;A2

� �
,

see Appendix B.

We have djY
B
A1 ¼ YB

A1 2 p1N
BmB

� �
=ð p1N

BmBÞ and similar expressions for djY
B
A2

and djY
B
A1A2 where m

B ¼ Ej Y
B

N

� �
is the limit of Y

B

1;N ; Y
B

2;N and Y
B

1;2;N . A derivation similar
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to that of (21) allows us to approximate the second term of (23) as follows

Vj

YB
A1Y

B
A2

YB
A1;A2

 !
<ðN BmÞ2

Vj YB
A1

� �
ð p1N BmÞ2

þ
Vj YB

A2

� �
ð p2N BmÞ2

þ
Vj YB

A1;A2

� �
ð p1p2N BmÞ2

0
@

22
Covj YB

A1;Y
B
A1;A2

� �
p2ð p1N BmÞ2

2 2
Covj YB

A2; YB
A1;A2

� �
p1ð p2N BmÞ2

1
A

ð24Þ

We can rewrite (24) as follows:

Vj

YB
A1Y

B
A2

YB
A1;A2

 !
<

Vj YB
A1

� �
p2
1

þ
Vj YB

A2

� �
p2
2

þ
Vj YB

A1;A2

� �
p2
1p2

2

0
@

22
Covj YB

A1;Y
B
A1;A2

� �
p2
1p2

2 2
Covj YB

A2; YB
A1;A2

� �
p1p

2
2

1
A

ð25Þ

Now, under model j in Section 5.1, the frames UA1
N and UA2

N used to sample UB
N

indirectly are formed with Bernoulli samples in which a unit’s selection probability is p1
and p2, respectively. Hence, we can write YB

A1=p1 ¼
P

k[UB
N

uA1
k yk=p1, where uA1

k ¼ 1 if

k [ SB
1;N , 0 if not. Since it is a Bernoulli sample, the variance Vj YB

A1=p1

� �
is simply

Vj YB
A1=p1

� �
¼

k[UB
N

X ð12 p1Þ

p1

y2k ð26Þ

(see Särndal, Swensson, and Wretman 1992). We proceed in the same way for Vj YB
A2

� �
¼P

k[UB
N
ð12 p2Þy

2
k=p2 and Vj YB

A1;A2

� �
¼
P

k[UB
N
ð12 p1p2Þy

2
k=ð p1p2Þ. In addition, we can

show that Covj YB
A1; YB

A1;A2

� �
= p2

1p2

� �
¼ Varj YB

A1=p1

� �
and Covj YB

A2; YB
A1;A2

� �
=�

p1p
2
2

�
¼ Varj YB

A2=p2

� �
. Combining these results, we get

Vj

YB
A1YB

A2

YB
A1;A2

 !
<

k[UB
N

X
y2k

ð12 p1Þð12 p2Þ

p1p2

ð27Þ

Note that if yk ¼ 1 for all units k of UB
N , the variance (27) is the variance of the Petersen

estimator given by (5).
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Lastly, the variance of Ŷ
B

CReG is asymptotically given by

VðŶ
B

CReGÞ <Ej

YB
A1YB

A2

YB
A1;A2

 !2 Vp Ŷ
B

A1

� �
YB

A1

� �2 þ
Vp Ŷ

B

A2

� �
YB

A2

� �2 þ
Vp Ŷ

B

A1;A2

� �
YB

A1;A2

� �2
0
B@

2
64

22
Covp Ŷ

B

A1; Ŷ
B

A1;A2

� �
YB

A1Y
B
A1;A2

2 2
Covp Ŷ

B

A2; Ŷ
B

A1;A2

� �
YB

A2Y
B
A1;A2

1
A
3
5

þ
k[UB

N

X
y2k

ð12 p1Þð12 p2Þ

p1p2

ð28Þ

Let fk ¼ y2kð12 p1Þð12 p2Þ=ð p1p2Þ. Since the variance Vj YB
A1YB

A2=YB
A1;A2

� �
<P

k[UB
N
fk ¼ FB

N and since it represents only an unknown total within the target

population UB
N , we can estimate that variance using the CReG estimator given by (16).

Thus we have

V̂j Ŷ
B

CReG

� �
¼

F̂
B

A1F̂
B

A2

F̂
B

A1;A2

ð29Þ

where

F̂
B

A1 ¼
k[s B1

X
wA1

k f̂k ð30Þ

F̂
B

A2 ¼
k[s B2

X
wA2

k f̂k ð31Þ

F̂
B

A1;A2 ¼
k[s B1>s B2

X 1

LA1
k

XN A1

j¼1

l1j;k
tA1
j

pA1
j

 !
�

1

LA2
k

XN A2

j¼1

l2j;k
tA2
j

pA2
j

 !
f̂k ð32Þ

and f̂k is a plug-in estimator for fk. On the basis of (28) and (29), an estimator of the

variance of Ŷ
B

CReG is given by

V̂ Ŷ
B

CReG

� �
<

Ŷ
B

A1Ŷ
B

A2

Ŷ
B

A1;A2

 !2 V̂p Ŷ
B

A1

� �
Ŷ

B

A1

� �2 þ
V̂p Ŷ

B

A2

� �
Ŷ

B

A2

� �2 þ
V̂p Ŷ

B

A1;A2

� �
Ŷ

B

A1;A2

� �2
0
B@

22
Ĉovp Ŷ

B

A1; Ŷ
B

A1;A2

� �
Ŷ

B

A1Ŷ
B

A1;A2

2 2
Ĉovp Ŷ

B

A2; Ŷ
B

A1;A2

� �
Ŷ

B

A2Ŷ
B

A1;A2

1
Aþ V̂j Ŷ

B

CReG

� �
ð33Þ

6. Simulations

In this section, we present a small simulation study of the empirical properties of

estimators (13) and (16). We consider the case in which the units in files A1 and A2 have a
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link with no more than one unit in file B. We therefore assume that LA1
j ¼

PN B

k¼1lA1j;k and

LA2
j ¼

PN B

k¼1lA2j;k are equal to 0 or 1 for all j [ U A1 and all j [ U A2. We also consider the

estimators obtained without using the sample designs for U A1 and U A2. They are the

Petersen estimator for N B and the generalised Petersen estimator for Y B

Ŷ
B

Pet ¼
k[s B1

X
yk

k[s B2

X
yk

k[s B1>s B2

X
yk

ð34Þ

In the simulations, LA1
k and LA2

k , the numbers of links that unit k of U B has with U A1 and

U A2 range between 0 and 4. The joint distribution of LA1
k ; LA2

k

� �
is determined by a 5 £ 5

matrix that gives the probabilities of the LA1
k ; LA2

k

� �
pairs. Tables 1 and 2 show two

matrices used in the simulations. For both matrices, the selection probabilities for

Bernoulli sampling of model j are p1 ¼ p2 ¼ 0.8. They satisfy the assumption of

independence between the two samples taken under model j; the 2 £ 2 tables generated

by lumping together the 1, 2, 3, and 4 values of LA1
k and LA2

k satisfy the assumption of

independence between the rows and columns. The matrixM1 yields a correlation of about

0.2 between LA1
k and LA2

k , and for M2, the correlation is 0.75. After LA1
k and LA2

k were

simulated, the value of yk was generated by a gamma distribution with a shape parameter

of 10 and a scale parameter proportional to LA1
k þ 1

� �
£ LA2

k þ 1
� �

.

In addition to the matrices in Tables 1 and 2, matrices M1 and M2 similar to the ones

presented above but with p1 ¼ p2 ¼ 0.95 were used to simulate populations. The relatively

high values of p1 and p2, 0.8 and 0.95, ensure that the variability associated with Model j is

negligible compared with the variability of the two sample designs. Only variability with

respect to the design is studied in the simulations. The actual values of N B and Y B are the

census parameters generated by applying formulas (13) and (16) to the subsets of U B

associated with U A1 and U A2, i.e., UB
A1 and UB

A2. For the simulations, we used simple

random sampling without replacement in U A1 and U A2 with a sampling fraction of 40%.

The selection probability of a unit k in U B through files A1 (A2) is proportional to LA1
k

(LA2
k ). If LA1

k and LA2
k are independent then the two indirect samples are independent. The

standard unweighted Petersen estimator (34) is, in this case, unbiased, and case weighting

should make the variance of Ŷ
B

CReG larger than that of the Petersen estimator. The

correlation between LA1
k and LA2

k induces heterogeneity in the capture probabilities. The

Petersen estimator is then negatively biased (Hook and Regal 1993) and the GWSM

corrects this bias. In Tables 1 and 2 the heterogeneity in the capture probabilities is

Table 1. Matrix M1 for simulating LA1
k ; LA2

k

� �
for a weak

correlation between LA1
k and LA2

k

LA1
k =LA2

k 0 1 2 3 4

0 0.040 0.040 0.040 0.040 0.040
1 0.040 0.100 0.020 0.020 0.020
2 0.040 0.020 0.100 0.020 0.020
3 0.040 0.020 0.020 0.100 0.020
4 0.040 0.020 0.020 0.020 0.100

Lavallée and Rivest: Capture–Recapture and Indirect Sampling 13



proportional to the correlation between LA1
k and LA2

k ; the simulations compare Ŷ
B

Pet and

Ŷ
B

CReG under scenarios with low (Table 1) and high (Table 2) heterogeneity.

The results of the simulations are reported in terms of relative bias (rb) and root of

relative mean squared error (rrmse)

rbðûÞ ¼

XT

i¼1
ûi=T 2 u

u
and rrmseðûÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

i¼1
ðûi 2 uÞ2=T

q
u

where T, the number of simulations, was set at 2,000. These two quantities are reported as

percentages in Table 3.

When the correlations between the links with U A1 and U A2 are weak, the estimators that

ignore the links are slightly more biased than the CReG estimators obtained with the

GWSM. However, their rrmse values are lower when the population sizes are small.

In fact, if the links with U A1 and U A2 are mutually independent, the Petersen estimators

are unbiased and more stable than the estimators obtained with the GWSM.

If the correlations between the links with U A1 and U A2 are strong, the Petersen

estimators, which ignore the two sample designs, are biased. In Table 3, the largest bias is

about 18%. For all practical purposes, their rrmse values are equal to the relative biases.

In every case, the estimate of total Y B is less biased and more stable than the estimate of

population size N B. That is due to the fact that the simulations associate the high values

of yk with high values of LA1
k and LA2

k ; as a result, those high values have a high probability

of being sampled. Both estimation methods – the CReG method and the Petersen method

– benefit from the fact that the high values of y are sampled with high probabilities.

7. Examples

7.1. Estimation of Census Undercount

The CReG estimator can be used in situations where the correspondence between the

sampling frames and the target population is not one-to-one. In that case, the units in the

two sampling frames are different from the units in the target population.

Capture–recapture sampling has to be used when the sampling frames provide only

partial coverage of the target population.

We will demonstrate here how the CReG estimator could be used in the Canadian

Census of Population. Even though the Census of Population is supposed to be a

comprehensive survey, we know that in practice that is not the case. There is no file

Table 2. Matrix M2 for simulating LA1
k ; LA2

k

� �
for a strong

correlation between LA1
k and LA2

k

LA1
k =LA2

k 0 1 2 3 4

0 0.040 0.120 0.040 0.000 0.000
1 0.120 0.136 0.008 0.008 0.008
2 0.040 0.008 0.136 0.008 0.008
3 0.000 0.008 0.008 0.136 0.008
4 0.000 0.008 0.008 0.008 0.136

Journal of Official Statistics14



Table 3. Relative bias and root of relative mean squared error for four estimators in twelve populations

Weak correlation (M1) Strong correlation (M2)

p1 ¼ p2 ¼ 0.8 p1 ¼ p2 ¼ 0.95 p1 ¼ p2 ¼ 0.8 p1 ¼ p2 ¼ 0.95

N B 100 500 2,000 100 500 2,000 100 500 2,000 100 500 2,000

N̂
B

CReG rb 1.0 0.2 0.1 1.1 0.1 0.0 1.7 0.2 0.0 0.9 0.3 0.0
rrmse 13.1 5.9 2.9 10 4.2 2.0 14.5 6.1 3.2 11.1 4.8 2.2

N̂
B

Pet rb 22.2 23.1 23.3 23.8 23.8 23.2 214.8 217.7 217.8 28.9 28.7 28.2
rrmse 7.7 4.7 3.7 6.5 4.4 3.4 16.2 17.9 17.9 10.5 9.0 8.2

Ŷ
B

CReG rb 0.7 0.1 0.1 0.8 0.0 0.0 1.2 0.1 0.0 0.8 0.2 0.0
rrmse 10.4 4.6 2.3 8.6 3.4 1.7 11.2 4.5 2.4 8.9 3.8 1.8

Ŷ
B

Pet rb 21.8 22.5 22.3 22.7 22.5 22.2 29.6 210.6 211.1 26.2 25.8 25.4
rrmse 6.4 3.7 2.7 5.4 3.1 2.5 11.0 10.7 11.2 7.8 6.1 5.5
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containing the entire Canadian population. Note that the coverage problem usually takes

the form of an undercount.

Suppose we want to estimate household undercoverage in Canada. Currently,

undercoverage is measured at the person level (Statistics Canada 2001). The person

undercount is estimated by comparing an outside source of information (a combination of

administrative files) with the census, which is a form of capture–recapture using

administrative files. The census is the initial sample of persons; the second sample is the

outside source of information about persons, which is then matched against the census.

The matching of the two sources yields the number of common units. The undercount of

persons is then estimated using estimator (2). In practice, a difference estimator is used for

the provinces, since administrative files provide excellent coverage. Estimator (2) is used

only for the three territories, see Théberge (2008). We will assume here that estimator (2)

is used for the whole of Canada.

When it comes to estimating the undercount of households, the problem is complicated

by the fact that the sampling units in the initial sample and the second sample are different

from the units in the target population. The initial sample and the second sample are sets of

persons, while the target population is a set of households. Note that we could attempt to

use files of households from the outset and estimate the undercount of households with

those files, but that would take a substantial amount of extra work, so we prefer to use the

available files of persons. Consequently, we need to use indirect sampling to produce

estimates at the household level.

First, we want to reach the target population U B of Canadian households through the

Census of Population. We then get a list U A1 of N A1 persons in which each person j

belongs to a household k. Unfortunately, that list derived from the census provides only

partial coverage; in other words, it does not contain all Canadian households. Its coverage

may be partial because some persons were not counted, or because entire households were

not counted. Since that frame is obtained though a census, pA1
j ¼ tA1

j ¼ 1.

To measure the coverage of the census, we want to reach the target population U B of

Canadian households using a sample of persons. We start with a list U A2 of N A2 persons;

as in the case of the census, that list provides only partial coverage of the Canadian

population. The list is in fact taken from the previous census and has been updated from

various administrative files. From list U A2, we select a sample s A2 of n A2 persons using a

particular sample design. Let pA2
j be the probability of selecting person j, where pA2

j . 0.

The sample s A2 is matched with the list U A1 from the census. The n A1,A2 persons,

present in both s A2 and U A1, are assigned to a household from the census. The households

of the nA2 2 nA1;A2 persons who were not matched are determined using a field survey. At

the end of this process, we have a household identifier for all persons in U A1 and s A2. Then

the CReG estimator can be used to estimate the total number N B of households in Canada.

Starting from (13), we have

N̂
B

CReG ¼
NB

A1N̂
B

A2

N̂
B

A1;A2

ð35Þ

where NB
A1 is the number of U B households from the census of U A1. The quantity N̂

B

A2 is

determined with the GWSM weights given by (7). We can simplify the calculations by
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noting that a person j belongs to only one household k. Thus, (8) reduces to

N̂
B

A2 ¼
j[s A2

X 1

pA2
j

1

LA2
j

ð36Þ

where LA2
j is the number of persons in the household containing person j.

Lastly, we calculate N̂
B

A1;A2, considering only the households in s B that are linked to

persons in U A1 and s A2. We must therefore eliminate the persons, who were not counted in

the census, from (36). We get

N̂
B

A1;A2 ¼
j[s A2

X 1

pA2
j

dA1
j

LA2
j

ð37Þ

where dA1
j 0 ¼ 1 if the person j [ sA2 was counted in U A1, 0 if not. By combining (36) and

(37), we obtain the following CReG estimator

N̂
B

CReG ¼ NB
A1

j[s A1

X 1

pA2
j

1

LA2
j

j[s A1

X 1

pA2
j

dA1
j

LA2
j

ð38Þ

The sampling frames involved in the construction of this estimator are represented in

Figure 2.

Using estimator (38), we are able to estimate the total number N B of Canadian

households, despite the undercoverage in the Census of Population. This estimator is

asymptotically unbiased as long as the assumption of independence underlying the

Persons

UA1

UA2

UB

Households

Fig. 2. Census where samples are represented by grey rectangles
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Petersen estimator is met; enumeration of a household by the census has to be independent

of the coverage of the household by the population U A2.

It should be noted that the indirect sampling operation considered in this section

assumed complete response for both the census and administrative files. That is, no

nonresponse occurred during the census collection process. For the administrative files,

this means that all available records are usable, for instance they all pass edits rules. In

practice, adjustments for nonresponse are performed, which mainly consist in adjusting

the sampling weights entering in estimator (38).

7.2. Statistics for Tea Vendors

The CReG estimator can be used in a number of situations where, as in the classical case,

there is no sampling frame for the target population, and where the available frames are

different from the target population and provide only partial coverage. This is often the

case in measuring underground economies or economies consisting of micro-businesses

(e.g., shoe shiners, itinerant vendors).

Wewill present a potential application of the CReG estimator with the following example.

(This example is inspired by the situation of young tea vendors in the Gaza Strip, which was

the subject of a television news story.) Suppose we want to estimate the income of tea

vendors in a developing country. Many tea vendors are children, and they make a significant

contribution to family income by selling tea to workers and professionals in various parts of

the city. They leave home in the morning with a thermos of hot tea and try to sell the tea to

people in selected locations: doctors in hospitals, workers on job sites, and so on. They

generally keep to the same locations, and customers expect to see their young tea vendor

there each day. Of course, the business is viewed as illegal not only because it is a source of

unreported income but also because it “employs” children, who should be in school.

We want to estimate the number N B of child tea vendors and their total daily income

Y B. Obviously, there is no sampling frame for the target population U B of child tea

vendors. We must therefore use indirect sampling.

We can attempt to reach target population U B by surveying dwellings inhabited by the

general population. We can use either a list of addresses or an area frame with a multi-

stage sample design, in which dwellings are the final sampling units. For the sake of

simplicity, we will assume here that we have an incomplete list U A1 of N A1 dwellings; in

other words, the list does not contain all the dwellings in the city. To survey the target

population U B, we decide to take a stratified sample of dwellings from the list U A1. We

stratify into H strata, and stratum h contains NA1
h dwellings; we select nA1

h dwellings in

each stratum h by simple random sampling (SRS). In each dwelling j selected from

stratum h, we count the set UA1
hj of MA1

hj tea vendors and measure the daily income yk of

each tea vendor k, k ¼ 1 : : : ;MA1
hj . Note that because the population of tea vendors is

small, using a stratified SRS design might be considered inefficient. It is quite possible to

have MA1
hj ¼ 0, for example. In practice, however, the survey of tea vendors can be part of

a much larger survey, such as a labour force survey. Tea vendors are identified through the

larger survey, and the actual survey of tea vendors is simply a by-product of the larger

survey. This approach is similar to the “1-2-3” surveys described by Bagayogo et al.

(2007).
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We can also attempt to reach the target population U B of child tea vendors through their

customers. We prepare a list of locations (hospitals, job sites, etc.) that are potential points

of sale so that we can survey the child tea vendors’ customers from a sample of locations.

That gives us a list U A2 of N A2 locations, but it seems very likely that this list provides

only partial coverage of the locations where the vendors do business. Because there is a

better chance of finding tea vendors in locations frequented by many people, we may

decide to sample the locations proportional to their size. Let xj be the number of people

working in location j of U A2. We then define pA2
j ¼ nA2xj=X A2, where n A2 is the sample

size, X A2 ¼
PN A2

j¼1 xj and it is assumed that pA2
j # 1 for all locations j. We decide to select

the sample s A2 using a Poisson design with probabilities pA2
j . In each location j selected,

we count the set UA2
j of MA2

j tea vendors and measure the daily income yk of each tea

vendor k, k ¼ 1 : : : ;MA2
j at location j. Again, it is quite possible to have MA2

j ¼ 0.

When we survey the tea vendors identified in the sample of dwellings, we make sure to

ask them in which public locations they work. We do the same with the tea vendors

identified through the sample of public locations. This serves to determine the links lj,k and

the total number of links LB
k needed for the GWSM.

The sampling frames for taking an indirect sample of tea vendors are illustrated in

Figure 3.

To estimate Y B, we use the CReG estimator given by (16). In this case, the component

Ŷ
B

A1 of the estimator becomes

Ŷ
B

A1 ¼
k[s B1

X
wA1

k yk ¼
XH

h¼1

NA1
h

nA1
h k[sB1

h

X
ZA1

hj ð39Þ

Tea vendors

UB

UA1

UA2

Dwellings

Public
locations

Fig. 3. Tea vendors where samples are represented by grey rectangles
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where ZA1
hj ¼

P
k[UA1

hj
yk, and s B1 denotes the sample of tea vendors obtained from the

dwelling frame and sB1
h the sample obtained in stratum h. Note that since a child tea vendor

is likely to reside in only one dwelling, we have LA1
k ¼ 1 for all k [ UB

A1.

The component Ŷ
B

A2 of estimator (16) here becomes

Ŷ
B

A2 ¼
k[s B2

X
wA2

k yk ¼
j[s A2

X ZA2
j

pA2
j

ð40Þ

where ZA2
j ¼

P
k[UA2

j
yk=LA2

k , with LA2
k representing the number of public locations worked

by vendor k.

As for the Ŷ
B

A1;A2 component, we have

Ŷ
B

A1;A2 ¼
k[s B1>s B2

X 1

LA1
k

XN A1

j¼1

l A1
j;k

tA1
j

pA1
j

 !
�

1

LA2
k

XN A2

j 0¼1

lA2j; k

tA2
j 0

pA1
j 0

 !
yk

¼
XN A1

j¼1

tA1
j

pA1
j

XN A2

j 0¼1

tA2
j 0

pA2
j 0

XnB
A1;A2

k¼1

lA1j; klA2
j 0;k

yk

LA2
k

¼
XH

h¼1

NA1
h

nA1
h

XnA1
h

j¼1

X~n A2

j 0¼1

Z
A1;A2
j; j 0

pA2
j 0

ð41Þ

where Z
A1;A2
j; j 0 ¼

P
k[U

A1;A2

j;j 0
yk=LA2

k and U
A1;A2
j;j 0 is the set of M

A1;A2
j;j 0 tea vendors who live in

dwelling j of U A1 and sell tea at public location j0 of U A2.

Using CReG estimator (16) with components (39), (40) and (41), we can estimate the

total income Y B of child tea vendors (and their number by setting yk ¼ 1), even if the

size N B of the target population is unknown at the outset. This will work as long as

the coverage of the tea vendors by the two frames, the households and the public locations

are independent.

8. Development of An Estimator by Direct Application of the GWSM

In Section 1 we mentioned that capture–recapture sampling can be associated with the

context of sampling with multiple frames. Indirect sampling and the GWSM can also be

used in such a context. Examples of such applications of the GWSM are provided in

Ardilly and Le Blanc (1999) and Deville and Maumy-Bertrand (2006). Mecatti (2007)

proposed a solution similar to the GWSM with a method based on multiplicity, that is, the

number of times a unit appears in the various sampling frames.

In the context of multiple frames, population U A from which the sample is taken is

actually constructed from populations U A1, U A2, : : : , U AQ, which are not necessarily

exclusive. We have<Q
q¼1U Aq ¼ U A, but

PQ
q¼1N

Aq $ N A. Assuming that Q ¼ 2, we have

two samples s A1 and s A2 of n A1 and n A2 units selected from the populations U A1 and U A2,

respectively and sA ¼ sA1 < sA2. To estimate the total Y B for population U B, we use

estimator (6). To estimate the total Y B for population U B, we use estimator (6), using a

weight wk assigned to each unit k in ŶB

wk ¼
1

LB
k

XN A1

j¼1

l A1
j;k

t A1
j

p A1
j

þ
XN A2

j¼1

l A2
j;k

t A2
j

p A2
j

" #
ð42Þ
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where LB
k ¼

PN A1

j¼1 l A1
j;k þ

PN A2

j¼1 l A2
j;k ; tA1

j ¼ 1 if j [ sA1 and 0 if not, and similarly for tA2
j .

Since capture–recapture sampling is associated with the context of multiple frames, we

might have considered applying the GWSM directly in the same way as in Section 3.1.

What follows shows that the solution obtained in that case is problematic.

First, we consider the simple case in which population U A1, population U A2 and target

population U B are identical. This is the most common case in the application of

capture–recapture sampling. We begin by selecting an initial sample s A1 of size n A1 from

population U A1 of size N B (unknown). The second sample s A2 of n A2 units is selected

from population U A2, which in this case is identical to population U A1. We want to

estimate the size N B of target population U B, which is again identical to population U A1.

This indirect sampling process is illustrated schematically in Figure 4 below.

Applying the GWSM directly, we obtain the following result

N̂B ¼
k[s A

X
wk ð43Þ

where weight wk is given by (42). Since there are exactly two links for each unit k of U B,

we have LB
k ¼ 2 and

wk ¼
1

2

t A1
j

p A1
j

þ
t A2

j 0

p A2
j 0

 !
;

UA1

UA2

UB

Fig. 4. Capture–recapture sampling with U A1, U A2 and U B identical where samples are represented by grey

rectangles
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where j [ U A1 and j0 [ U A2 both have links with k. Note that because U A1 ¼ U A2 ¼ U B,

indexes k, j and j0 are interchangeable, and we can write

N̂B ¼
1

2
k[s A

X tA1
k

pA1
k

þ
tA2
k

pA2
k

� 	
ð44Þ

This is an estimator for the size of the target population U B.

Unfortunately, there is a serious problem with estimator (44). Since both samples s A1

and s A2 are from the same frame, which is also the same as the target population, we have

U A1 ¼ U A2 ¼ U B and N A1 ¼ N A2 ¼ N B. The selection probabilities pA1
k and pA2

k are

generally associated with the size of their respective population (or a quantity related to

that population) and therefore depend on N A1, N A2, and N B. For example, with simple

random sampling, we have p A1
k ¼ nA1=N A1, and consequently in this case pA1

k ¼ nA1=N B.

However, it is precisely N B that we are trying to estimate, so we do not have the

selection probabilities p A1
k and p A2

k needed to use estimator (44)! In this context, estimator

(44) is not very useful. For it to be usable in practice, the selection probabilities pA1
k and

pA2
k should not be directly involved in the estimator; that is the case with estimators (13)

and (16) when the selection probabilities are equal within each sampling frame U A1

and U A2.

The same problem arises for the administrative files, though in a different way. As

previously mentioned, in this context, the target population U B is only partially covered by

a set of sampling frames (or administrative files) U A1 and U A2. We are interested in the

case where a census of U A1 and U A2 is impossible. We therefore use two samples s A1 and

s A1 drawn from administrative files U A2 and U A2, respectively. With sample s A1 from the

first file, we can produce an unbiased estimate N̂A1 of N A1 using the Horvitz-Thompson

estimator N̂A1 ¼
P

k[s A1 1=pA1
k . With s A2, we can similarly obtain an unbiased estimate

N̂A2 of N A2. Unfortunately, since each file provides only a partial coverage of the target

population, neither of the estimates N̂A1 and N̂A2 provides an unbiased estimate of the size

N B of the target population U B.

Another potential solution to the administrative files problem is to estimate N B using

the GWSMwith the weights given by (42) with selection probabilities p A1
k and p A2

k . Thus,

we have

N̂B ¼
XN B

k¼1

1

LB
k

XN A1

j¼1

lA1
j;k

tA1
j

pA1
j

þ
XN A2

j¼1

lA2
j;k

tA2
j

pA2
j

" #

¼
XN A1

j¼1

tA1
j

pA1
j

XN B

k¼1

lA1j;k

LB
k

þ
XN A2

j¼1

tA2
j

pA2
j

XN B

k¼1

lA2
j;k

LB
k

ð45Þ

As previously discussed, for the GWSM to be unbiased, we must have LB
k . 0; in

other words, each unit k of U B must have at least one link with a unit j of U A1 or U A2.

Because the target population U B is only partially covered by the administrative files U A1

and U A2, there are some units k of U B for which LB
k ¼ 0. In fact, estimator (45) is unbiased
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for the estimation of NB
A1þA2, the size of the population UB

A1þA2 ¼

k [ U Bj’j [ U A1 < U A2; lA1
j;k or lA2

j;k – 0
n o

, i.e., the subpopulation of U B whose units

have at least one link with U A1 or U A2. We conclude from this that for administrative files,

estimator (45) based on the GWSM cannot provide unbiased estimates of N B.

The CReG estimator was constructed to address the problems encountered in direct

application of the GWSM. It provides a solution to the bias issues highlighted in this

section.

Appendix A

We want to show that (15) is unbiased for the estimation of YB
A1;A2. Thus, we have

Ŷ
B

A1;A2 ¼
XNB

A1;A2

k¼1

1

LA1
k

XN A1

j¼1

lA1
j;k

tA1
j

pA1
j

 !
�

1

LA2
k

XN A2

j 0¼1

lA2
j 0;k

tA2
j 0

pA2
j 0

 !
yk

Since the samples from U A1 and U A2 are independent, the expected value is

Ep Ŷ
B

A1;A2

� �
¼
XNB

A1;A2

k¼1

1

LA1
k

XN A1

j¼1

lA1j;k

Ep tA1
j

� �
pA1

j

0
@

1
A�

1

LA2
k

XN A2

j 0¼1

lA2j 0;k

Ep tA2
j 0

� �
pA2

j 0

0
@

1
Ayk

¼
XNB

A1;A2

k¼1

1

LA1
k

XN A1

j¼1

lA1
j;k

 !
�

1

LA2
k

XN A2

j 0¼1

lA2j 0;k

 !
yk ¼

XNB
A1;A2

k¼1

ð1Þ�ð1Þ yk ¼ YB
A1;A2

We therefore have Ep Ŷ
B

A1;A2

� �
¼ YB

A1;A2.

Appendix B

Calculation of the variance Vp Ŷ
B

A1;A2

� �
:

Vp Ŷ
B

A1;A2

� �
¼ Ep Ŷ

B

A1;A2 £ Ŷ
B

A1;A2
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� �2
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¼Ep
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j00

� �
¼ pA1

jj00 ¼ Pð j [ sA1; j00 [ sA1Þ and Ep tA2
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Calculation of covariances Covp Ŷ
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techniques sur l’échantillonnage et le calcul de pondérations individuelles – Une
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