Journal of Official Statistics
Vol 4. No. 4, 1988, pp. 333-348
© Statistics Sweden

CATI Instrument Logical Structures: An
Analysis With Applications

Matthew Futterman’

Abstract: This paper identifies and examines
the logical relationships commonly found in
computer-assisted telephone interviewing
(CATI) instruments and describes a method
of programming a computer to recognize these
relationships as logical structures. CATI sys-
tems can use instrument logic databases to
generate instrument flow charts, display in-
strument logic at interviewing stations, and
augment or replace keyboard-based inter-
view movement commands with mouse-based

0. Introduction

At a conference on computer-assisted tele-
phone interviewing (CATI) a few years ago,
one of the participants asked if it was possible
to display “you-are-here” diagrams to CATI
interviewers as a way of guiding them
through complex interviews. I thought this
was an intriguing idea. We use flow charts,
after all, to help us design computer pro-
grams, why not use similar diagrams to help
us run them?

The idea became a springboard for other
ideas. If we are able to show interviewers a

! Head of CATI system development for the Institute
for Social Science Research at the University of Cali-
fornia, Los Angeles, CA 90024, U.S.A.

commands. The paper includes a discussion
of how the properties of logical structures can
be applied to give the instrument designer
more control over the instrument’s content
and function.

Key words: CATI; computer-assisted tele-
phone interviewing; CATI instrument; logical
structure; adjacency matrix; one-entry/one-
exit structure; database.

diagram of an instrument, can we also have
them use the diagram to “navigate” their way
through complex logic? And can this diagram
have built into it some way of checking to see
that they are navigating correctly? Perhaps
we can have the computer create printouts of
these diagrams for us to use as diagnostic
tools during the instrument design cycle. Or
maybe we can have the computer scan a printed
diagram in order to record the logic it repre-
sents.

This paper proposes a way for CATI sys-
tems to accomplish these kinds of tasks. I
begin by analyzing CATI instrument struc-
ture. What logical relationships do we find in
CATI instruments? How can these relation-
ships be graphically represented? Next, I at-

334

tempt to show how a computer can be pro-
grammed to recognize logical structures and
transform them into data. Then I suggest ways
CATI systems can use the data to perform
diagnostic and run-time functions. The paper
concludes with a discussion of how the prop-
erties of logical structures can be applied to
give the instrument designer more control
over instrument function and content.

1. Visually Representing CATI Instru-
ments — Some Benefits

Computer scientists tell us that we should
plan our design of programs so that they con-
sist of small (on the order of one page), highly
functional subprograms, since small pro-
grams are easier to understand than large
ones (McGowan and Kelly (1976)). This is
the underlying philosophy of modular design.

Interestingly, CATI instruments fit well
with the modular design model, since the in-
strument item is the ideal module; it is small
and contains highly specific, highly functional
logic. When represented on the printed page,
the purpose and function of an item is readily
apparent. We can list all the items in an in-
strument, examine each one individually,
and assure ourselves that we pretty much
know what each of the items is supposed to
do.

Problems arise when we try to synthesize
these individual functions in order to deter-
mine their effects upon, and interactions
with, one another. So throughout the instru-
ment design phase we draw diagrams and
charts that represent the manner in which we
want the instrument to behave. Can a com-
puter be programmed to draw these diagrams
for us?

In order to draw a diagram of a CATI in-
strument, or, for that matter, any computer
program, we (humans or computers) must
have a detailed understanding of the logical
relationships among its components. It is
convenient to think of such a diagram as an

Journal of Official Statistics

illustrated cross-reference. Computer pro-
grams that are used as tools by programmers,
such as linkers and compilers, have tradition-
ally created cross-references. What should a
CATI compiler attempt to cross-reference
for us, and how should this information be
represented diagrammatically?

Computer scientists have identified three
“canonical” structures that form the basis for
all structured programs (Fig. 1). If we were to
draw, then, a diagram of a structured pro-
gram, a good starting point would be to iden-
tify its component canonical structures and
draw them, in order, from beginning to end.
By including all the interconnections among
the structures as well as a unique name for each,
we would then have what might reasonably
be considered a good visual representation of
the structure of the program.

We can accomplish the same thing for a
CATI instrument — that is, the graphical rep-
resentation of its logic — by identifying the
component structures of instruments in gen-
eral, and by programming the CATI compi-
ler to both recognize these general relation-
ships and to identify the structural relation-
ships in individual instruments. Armed with
such a tool, we could then have the computer
graphically represent the logical structure of
our instrument at any time during the design
phase in the same way we now have it create
conventional listings. Jabine (1985) and
House (1985) have both discussed ways in
which structural diagrams can be beneficial
during the instrument design cycle.

There would be other benefits as well. A
CATI compiler programmed to recognize
and cross-reference instrument structural in-
formation has the potential of relieving the
CATI instrument designer of much of the
burden of defensive programming, that is,
programming to protect instrument logic
from random alterations during an interview.

We would also have the ability to show in-
terviewers where they are in an inferview,

Futterman: CATI Instrument Logical Structures 335
Fig. 1. The three canonical structures adapted from McGowan and Kelly (1975)
TRUE FALSE FALSE
FIRST-PART
Y
Y THEN-PART ELSE—PART
TRUE

SECOND—PART '

THE SEQUENCE STRUCTURE

how they got there, and where they are likely
to go next. We would even be able to use a
mouse instead of a keyboard to move to dif-
ferent parts of an instrument.

2. The Logical Structure of CATI Instruments
2.1.
What does a CATI instrument look like?

The basic components

Perhaps the way most of us envision a CATI
instrument logical structure is as a flow chart.
Flow charts have traditionally been used to
represent the logical flow of computer pro-
grams and they are useful tools for develop-
ing and understanding survey questionnaires,
including CATT instruments (Jabine (1985)).

Graphs are another way to represent logical
structures. Directed graphs (digraphs),
routing graphs and subgraphs are examples

L

THE IF-THEN—ELSE STRUCTURE

DO—-PART

" THE DO-WHILE STRUCTURE

of types of graphs that may be familiar to some
readers. Gondran and Minoux (1984) and
Knuth (1973) are good sources of general
graph theory. Willenborg (1987) places
graph theory in the specific context of CATI
instrument design, particularly with regard
to the issues of complexity and balance.

This paper describes logical structures in a
manner that is similar to the way they are
described by flow charts and graph theory.
An attempt has been made to define terms so
that they are familiar to those who design
CATI instruments. Readers familiar with
graph theory may wish to consult Table 1 for
an informal cross reference of the different
terminologies. All readers should refer to
Fig. 2, which shows the symbols that are used
here to represent the basic structural compo-
nents. -

336

Journal of Official Statistics

Table 1. Terms used in this paper versus terms used in graph theory

Terms used in this paper Corresponding terms used in graph theory
complete path full-length path

initial node source, initial endpoint, initial vertex
mandatory point cut-point

path edge, oriented path, arc, path

point vertex, node, point

section sub-digraph, subgraph

supersection directed graph, digraph, routing graph
terminal node sink, final vertex, terminal endpoint

Source: Gondran and Minoux (1984); Knuth (1973); Willenborg (1987).

Fig. 2. Basic components of logical structures

INITIAL TERMINAL POINT
NODE NODE
o ®
JUNCTION PRIMARY
NODE NODE

How, then, shall we represent CATI instru-
ment logic? '

Let us start with how we wish to represent an
item. We define an ITEM as having a unique
name with respect to all other instrument
items, and a branching specification, that is,
an instruction to the computer that tells it
which item to process next. Items may have
other attributes as well, but we shall consider
these to be optional. We will use a POINT
and a label to represent an item and its name,
respectively, as in Fig. 3.

\ ® o

PATH NODE JUNCTION
O (o)
PRIMARY PRIMARY
JUNCTION JUNCTION
NODE

We shall represent branching instructions
as lines that connect the items according to

" their logical relationships, with the implied

logical flow proceeding from top to bottom.
For example, to indicate that the computer is
to process Q2 immediately after processing
Q1, we draw a line from Q1 to Q2, with Q1
placed above Q2 in the diagram, as we have
in Fig. 3. We shall refer to this line and the
logical relationship it represents as a PATH.

Next, let us represent a very simple instru-
ment consisting of Q1, Q2, a point of entry
into the instrument labelled BEGINs and a

Futterman: CATI Instrument Logical Structures

Fig. 3. A supersection

<— INITIAL NODE

POINTS

e s @
N -

<— TERMINAL NODE

point of exit out of the instrument labelled
END. The point of entry is the INITIAL
NODE, the point of exit the TERMINAL
NODE. We shall define as a SUPERSEC-
TION an instrument that has an initial node,
a terminal node and any number of points in
between.

More complex branching instructions,
specifically branching instructions that are
conditional rather than unconditional, are
represented by drawing a path for each con-
dition. Thus if Q2 is an item that branches
conditionally to either Q3, Q4, or QS5, we
draw a path from Q2 to each of these items,
as in Fig. 4. An item such as Q2 can be
thought of as a switch; it selects which path to
follow next. We shall call an item that func-
tions as a switch a NODE. Only one path can
be selected by a node each time it is executed
by the computer, and that path then becomes
part of the ACTIVE PATH. A node can be
executed again at a later time under different
conditions that cause a new path to be select-
ed, thus altering the active path. By contrast,
a point that is not a node can never alter the
active path.

337

Fig. 4. A supersection with a node and a
junction

<— NODE

Q3 Q5

ap
P<— suncrion

Now assume Q3, Q4, and QS5 all branch
unconditionally to Q6. Observe two things
about this configuration, shown in Fig. 4.
First, there are three paths leading to Q6, the
paths from Q3, Q4, and Q5. A point where
two or more paths converge, as they do at
Q6, is called a JUNCTION. Second, there
are no paths interconnecting Q3, Q4, and
Q5. Thus if the computer is executing Q3, for
instance, there is nothing in the instrument’s
logic that will cause the computer to execute
Q4 or Q5; only the occurrence of an external
event, such as an interviewer command, can
cause Q4 or QS to be executed.

Before we get involved in a discussion of
more complex structures, let us observe some
of the important properties of our example
supersection. Notice that we can trace three
distinct paths that lead from the initial node
to the terminal node. These are each COM-
PLETE PATHs. Only one of these paths will
actually have been taken, however, when we
finally reach the terminal node (as when an
interviewer completes an interview) because
of the switching properties of nodes. The
complete path that is actually taken is called

338

Fig. 5. A complete path

BEGIN

Journal of Official Statistics

Fig. 6. Mandatory paths

END

Z COMPLETE PATH

e MANDATORY PATH

&<— MANDATORY PATH

END

Fig. 7. A supersection with primary nodes and primary junctions

Q1 4
Q@ h— PRIMARY NODE
Q3 Q4 Q5

Q8 W<—— orimary yuncion
Q7 ¢

£— PRIMARY NODE
<— NODE

Q3

Q10 Q1

<— JUNCTION
2
<——— PRIMARY JUNCTION

END

Futterman: CATI Instrument Logical Structures

the ACTIVE COMPLETE PATH (Fig. 5).
Knowing which points lie on the active com-
plete path is important, since it tells us not
only which items were executed, but also
which item responses are applicable. A stored
response is applicable only if the item that
stored it is on the active path.

Another important thing to note is that
some points are common to all complete
paths. These points, called MANDATORY
POINTs, tell us which items will always
be executed. Similarly, MANDATORY
PATHs, paths which are common to all
complete paths, identify sequences of items
that are always executed. See, for example,
Fig. 6. Keep in mind, however, that it is pos-
sible to construct an instrument that has only
two mandatory points, the initial and termi-
nal nodes.

2.2. Decomposing large structures into
smaller structures

Now that we have identified some of the key
properties of a supersection, let us look at an
example that is more complex and see how it
can be decomposed into smaller structures.
To start, let us add some additional items,
Q7 through Q13, to our sample instrument,
shown in Fig. 7, in order to increase its com-
plexity, and make a list of all the nodes, junc-
tions and mandatory points in the supersec-
tion. Are any of the items in more than one
category? Items BEGIN, Q2, Q8, and END
are nodes that are also mandatory points. We
shall classify them as PRIMARY NODE:s.
Similarly, items Q6 and Q13 are junctions
that are also mandatory points, and we will
refer to them as PRIMARY JUNCTION:S. It
is also possible for JUNCTION NODEs and
PRIMARY JUNCTION NODE:s to exist,
though there are none in this example.
Recall that nodes have a switching function
that allows them to select portions of the active
path. Primary nodes always select portions of

339

the active complete path, which suggests that
they play an important part in the makeup of
an instrument’s structure. In fact, identifying
the primary nodes allows us to decompose a
complex supersection into smaller structures
called SECTIONSs, which we shall define as
consisting of all the points bounded by and
including adjacent primary nodes. See Fig. 8
for an example.

Sections have interesting parallels to super-
sections. For instance, the primary node that
begins a section, which we shall refer to as a
PRIMARY CONTROL NODE, is similar
to the supersection’s initial node; each
SECTION PATH begins with the primary
control node. Similarly, the primary node
that ends the section, which we call the
PRIMARY LINK NODE, is similar to the
supersection’s terminal node, since all section
paths terminate there. The one section path
that is selected as we proceed from the primary
control node to the primary link node is called
the ACTIVE SECTION PATH. Ifit extends
all the way to the primary link node then it is
the ACTIVE COMPLETE SECTION
PATH. The portion of the mandatory path
that passes through a section is called the
MANDATORY SECTION PATH.

Because of the similarities to supersec-
tions, sections provide us with a way of com-
prehending smaller portions of the logic of a
complicated instrument. And, like items,
sections can be viewed as instrument building
blocks, building blocks that are larger and
more comprehensive than items. Let us take
a closer look at sections and identify their
properties and component structures.

Every section has exactly one primary
junction, that is, one point where all section
paths converge. If the last point of a section —
its primary link node —is a junction, then itis
a primary junction. Otherwise, the junction
immediately preceding it is a primary junc-
tion. Why are primary junctions important?

-

340

Journal of Official Statistics

Fig. 8. Decomposing a supersection into sections

PRIMARY CONTROL.NODE—> | BEGIN

PRIMARY CONTROL NODE —>

PRIMARY LINK NODE ——>

A SECTION

" PRIMARY. (INK NODE=—>

They help us to determine portions of the
mandatory path. It happens that every point
between a primary junction and a primary
link node is a mandatory point. Also, there
are never any mandatory points between a
section’s primary control node (its first point),
and its primary junction. Thus a section that
has a primary junction link node has only two
mandatory points, the primary control node
and the primary link node.’

2.3. Strﬁctural complexity and path analysis

Thus far we have discussed points that lie on
the mandatory path, particularly primary
nodes and junctions. What significance do
the secondary nodes and junctions have?

2 The one exception is the special case of a section that
begins with an initial node that is not a logical node,
that is, an initial node that does not branch condition-
ally.

. PRIMARY LINK NODE_ "~)

PRINARY CONTROL NODE

. . " secTION 1
PRIMARY LINK NOBE |

"SECTION 2.

A SUPERSECTION WITH 3 SECTIONS

We can think of the primary nodes as shap-
ing the structural outline of a supersection,
whereas secondary nodes fill in the details by
combining to form smaller structures. These
smaller structures, which we shall now ex-
amine, include branches and logical units
(Fig. 9).

The portion of a path between two adjacent
nodes is called a BRANCH. The top node is
the CONTROL NODE, the bottom node is
the LINK NODE. There can be any number
of points between the two nodes. Each point
on the branch is called a MEMBER of the
branch. The set of branches emanating from
a particular control node is called a FAMILY
of branches; the set of all the members of a
family is a LOGICAL UNIT. Each time a
control node is executed, it can select from its
family exactly one branch, which then be-
comes the ACTIVE BRANCH. -

Futterman: CATI Instrument Logical Structures

341

Fig. 9. Simple and complex structures

-+ CONTROL NODE

MEMBERS

<--+ LINK NODE

A BRANCH

<-+- CONTROL NODE

V.

" UNK NODES -+ >

A FAMILY OF BRANCHES
(LOGICAL UNIT)

TWO SIMPLE
BRANCHES

CONTROL NODE---->

SIMPLE
JUNCTION

>

%, INTERSECTION

TWO COMPLEX BRANCHES
ONE SIMPLE LOGICAL UNIT

Junctions contribute to the complexity of a
logical structure. For example, a SIMPLE
BRANCH is a branch whose members, ex-
cluding the control and link nodes, are not
members of any other branch. A COMPLEX
BRANCH, on the other hand, has at least
one non-node member that is also a member
of another branch. The set of members that
are common to another branch is called an
INTERSECTION. The top-most member of
an intersection is always a junction.

Similarly, a logical unit is a SIMPLE
LOGICAL UNIT if none of its non-node

CONTROL NODES

/

COMPLEX ----3
JUNCTION

} INTERSECTION

TWO COMPLEX BRANCHES
TWO COMPLEX LOGICAL UNITS

members are members of any other logical
units, whereas a COMPLEX LOGICAL
UNIT has at least one non-node member that
is also a member of another logical unit, with
a junction as the point of intersection.

Why make this distinction between simple
and complex structures? Consider the situa-
tion where the computer is executing a non-
node member of a simple branch. Once we
determine which item is the control node for
the current item, we can identify, with cer-
taintly, a portion of the active path. In this
case, that is the path between and including

342

the control node and the current item. Note
that there is no need to test the logic at the
control node to make this determination.

But what if there is a junction between the
current item and the control node? Now we
are dealing with a complex branch. The con-
trol node must be tested in order to determine
which path was taken to the junction.

The situation gets more complicated if the
junction is a member of two or more logical
units (a COMPLEX JUNCTION), since
now there are at least two control nodes that
share responsibility for choosing a common
portion of the path (intersection). Which
control node do we test in order to determine
the path? It is not possible to answer that ques-
tion without knowing which control node is
on the active path. How far back up the struc-
ture will we have to go in order to make that
determination? Until we find a node that is
on the active path.

There is another way to approach the prob-
lem, however. We know, for instance, that
primary nodes are on the mandatory path.
We can deduce that if a particular primary
node has been executed, then it is on the active
path. Furthermore, since every point is part
of a section, if a particular point is being ex-
ecuted, then there is a primary control node
on the active path preceding that point. The
active path can then be traced by testing the
primary control node, which will then lead to
the next active node, which is then tested,
and so on, until we arrive at the current point.
In other words, in order to locate any currently
executing point, we merely need to trace the
active section path.

Similarly, in order to determine whether a
nonexecuting point is on the active path, first
determine which section it belongs to and
then check whether its primary control node
is on the active path. If it is not, then neither is
the point in question. If it is, then trace the
active section path. If the primary link node

Journal of Official Statistics

is reached without having passed through the
point in question, then it is not on the active
path.

2.4. One-entry/one-exit structures

Here we have seen some examples of how a
section can be used to focus on part of a larger
structure, thus giving us some valuable in-
sight into the details of smaller structures.
What is it about sections that makes them so
useful?

Perhaps the most important property of a
section is that there is a single point of entry
to, and a single point of exit from, the struc-
ture. This type of structure is called a ONE-
ENTRY/ONE-EXIT structure and is impor-
tant to the concept of structured program-
ming. Large, complex logical structures —
CATI instruments or computer programs in
general — are easier to design, modify, docu-
ment, and maintain if they are composed en-
tirely of smaller, one-entry/one-exit structures
(McGowan and Kelly (1976) and House
(1985)). In fact, the three canonical structures
that form the basis of structured programming
are each structures of this type.

So far we have discussed several one-entry/
one-exit structures including supersections,
sections, and simple branches. There is an-
other one —a “section within a section” —called
a SUBSECTION. A structure is a subsection
if it meets both of the following conditions:
(1) —all paths that emanate from a secondary
control node i converge at a secondary link
node j; (2) —all paths that converge at a second-
ary link node j emanate from a secondary
control node i. The two nodes that begin and
end a subsection are called a SUBSECTION
CONTROL NODE and a SUBSECTION
LINK NODE, respectively.

There are many similarities between sec-
tions and subsections, primarily because they
are both one-entry/one-exit structures. This
makes the internal logic of subsections, like

-

Futterman: CATI Instrument Logical Structures

that of sections, relatively easy to compre-
hend. For instance, if we know that a subsec-
tion control node is on the active path, we can
readily trace the ACTIVE SUBSECTION
PATH. We know also that all subsection
paths converge at the subsection link node.
Thus far we have assumed that all branching
proceeds from top to bottom, that is, in the
direction of the terminal node. This is consis-
tent with good structured programming tech-
niques. However, structured programming
allows for one exception, that of conditional
iteration, which is the ability to execute some
portion of a program repeatedly until a con-
dition goes false. To allow for this capability,
we will define a structure called a ONE-
ENTRY/ONE-EXIT LOOP, which has
exactly one point of entry into the loop and
exactly one point of exit out of the loop. Con-
fining conditional iteration to a one-entry/
one-exit structure permits us to retain our
assumptions about the other logical structures.

2.5. Pseudonodes

Our discussion has focused thus far on LOG-
ICALLY BOUNDED structures, structures
that begin and end with nodes and junctions.
A computer can be programmed to recognize
logically bounded structures without needing
to know anything other than structural logic,
since logical entities — nodes and junctions —

343

determine where one structure ends and
another one begins. (See Table 2.) What if
we want to define structures that are not
strictly determined by logic, but instead are
based more on content or function?

In order for a computer to recognize such
structures we have to give it some informa-
tion in addition to logic. One way to do this is
to create a type of item called a PSEUDO-
NODE. A pseudonode is simply an item that
we declare to be a node in the same way we
declare a storage location to be an integer;
we give a computer an instruction to treat an
object as a particular type of object. Declaring
items as pseudonodes gives us more control
over structure, since any item we declare.as a
pseudonode will be considered as a structural
boundary just as if it were a node.

Consider two examples from Figure 7.
First, by declaring mandatory point-Q1 as a
pseudonode, we form a new section bounded
by Q1 and Q2. Note that Q1 is now a primary
node since it is a (pseudo)node and a manda-
tory point. Second, by declaring junction
Q12 as a pseudonode, we form a subsection
bounded by Q9 and Q12. Q12 is now a junc-
tion (pseudo)node.

In the discussion that follows, we discuss
how a computer can be programmed to rec-
ognize structures and how the structures can
be used in applications and instrument design.

Table 2. Entrances to and exits from logically bounded one-entry/one-exit structures

Structure type Entrance Exit
Supersection Initial node Terminal node
Section Primary control node Primary link node
Subsection Control node Link node
Simple branch Control node Link node
Mandatory path Primary junction Primary node
Loop Junction Node

344

3. A Database of Logical Structures: Some
Applications

3.1. Constructing a database

We have now identified several types of
structural components — nodes, junctions,
branches, to name a few. How might we pro-
gram a computer to recognize them?

Graph theory gives us an important tool
called an adjacency matrix, which describes
logical relationships in tabular form. Assume
we have a supersection with » items numbered
top to bottom from 1 to n and that, except for
the case of a one-entry/one-exit loop, anitem
always branches to an item or items with a
higher number. We then construct an n by n
table. For each item i that has a path to an

Journal of Official Statistics

item j we place a 1 in cell ij, otherwise cell ij
has a 0. We can use the table to determine
whether there is a path between any two
items i and j by examining the value in cell ij.
Further, if row i has two or more 1’s, then item
i is a node; If column j has two or more 1’s,
item j is a junction. If row i hasa 1in a cell jj
that is in the lower left triangle of the matrix,
then item i loops (branches backwards) to
item j; If column j has a 1 in a cell jj that is in
the lower left triangle of the matrix, then
item j is a loop (backward branch) target of
item i. Fig. 10 shows a supersection and its
corresponding adjacency matrix. Note that
the loop from Q8 to Q7 produces the only 1 in
the lower left triangle of the adjacency matrix.

Fig. 10. Using an adjacency matrix to describe the logic of a supersection

()

Q1 ¢
Q2
Q3

Q4 ¢ Q5

Q6
Q7 (
Q8

Q9

SUPERSECTION

.| Q0| Q1] Q2] Q3| Q4| Q5[Q6| Q7| Q8| Q9
|| 1]oflojojololo|o]o
Q1| o xo\ 1{ojlojojo|0|O0]|O
@|ofofo|t1|1|1]|ololo]|oO
as{olofolajofoli|o]o]fo
Q4| 0| o|ofoj0jo|1]|0o|0|O
es|ojojolofo|o|1]|0o]0]0
6| ojofofojofolali1]|o]0
Q7| ol ojo|oflojojoloel1]0
es| oflofojolojofo|1]n]1
alololololololololol™

ADJACENCY MATRIX

Futterman: CATI Instrument Logical Structures

345

Fig. 11. A database of logical structures
SUPERSECTION TABLE
SECTION A | SECTION B SECTION n

4 L.

L

SECTION A TABLE

SECTION B TASLE

SECTION n TABLE

SECTION A LOGIC

SECTION B LOGIC

SECTION n LOGIC

ITEM At | TEM A2 TEM An EM B1 | MEM B2 MEM Bn MTEM n1 [TEM n2 TEM nn
L\L N _\L ,

TEM A1 TEM A2 TEM An TEM B1 TEM B2 TEM Bn TEM n1 TEM n2 MEM nn

TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE

A computer can readily be programmed to
construct an adjacency matrix by examining
the branching instructions of each item and
recording the results in a table. By devising
the appropriate algorithms, the computer
can also be programmed to identify the more
complex logical relationships such as logical
units and sections. It is beyond the scope of
this article to discuss these algorithms in de-
tail. However, a key step would be to identify
each of the primary nodes (including primary
pseudonodes), since this quickly yields each
of the sections and their boundaries.

Once the computer is programmed to rec-
ognize logical structures, the next step would
be to construct a hierarchical database in
order to record and cross-reference the rela-
tionships. How would we want to organize
such a database? We have seen that sections
describe discrete portions of the logic of super-
sections and are in turn composed of smaller
portions, including items. A hypothetical
database then might consist of a supersection
table that has references to section tables,

one for each of its component sections. The
section tables, in turn, would contain refer-
ences to each of its component items, as well
as information that summarizes the logical
relationships among the items, including log-
ical units, subsections, branches, nodes,
junctions, and so on. At the lowest level, each
item table, in addition to the usual informa-
tion such as branching instructions and text,
would contain a reference to its section. Fig.
11 illustrates this database organization.

3.2. New tools for CATI

The computer can use a database of logical
structures in various situations in order to
perform different types of functions. For ex-
ample, a CATI compiler can use the database
to create conventional and graphical cross-
references to aid the CATI instrument de-
signer during the development and testing of
an instrument. A CATI run-time module -
the program that administers the on-line CATI
instrument — can use the database to ensure

>3

346

that nonstandard instrument movement re-
quests (interviewer jump commands) are al-
lowed only if consistent with the instrument’s
internal logic given the responses stored for a
particular interview.

The run-time capabilities extend even fur-
ther, however, because the structural repre-
sentation of the instrument can be displayed
at the user’s (interviewers, supervisors, pro-
ject managers) screen. The ability to display
an instrument to interviewers in this manner
during the training stage and during actual in-
terviews can be beneficial (Jabine (1985)).

If we combine the ability to have the com-
puter ensure nonstandard movement cor-
rectness with the ability to display instrument
logical structure, the next step would be to
have interviewers use a mouse to “navigate”
their way through an instrument. This would
free interviewers from concerns about which
interview movement commands to use and
when to use them. Concerns about proper
command syntax would be a thing of the past
as well.

Yet another application would be to enter
an instrument’s logical structure into the
computer by using a scanning device to digi-
tize a structural diagram. This amounts to
reversing the process we have described
above; instead of first using the CATI com-
piler to program an instrument and then have
it draw us a diagram of the resulting logical
structure, we would first provide the compil-
er with a finished structural diagram in order
to have it create a computerized template of
the corresponding instrument logic. The ben-
efits of doing this could be quite substantial.

For example, the CATI systems of today
have many instances of incompatibility with
one another, including different instrument
programming languages, differences in com-
piler (or interpreter or translater) design, dif-
ferent database formats, different file for-
mats and so on. The list is quite large. It may
not be realistic to expect widespread standard-

Journal of Official Statistics

ization in all of these areas at this late date.
However, it is not too late to consider stan-
dardizing the way we wish to graphically rep-
resent instrument logical structure. Doing so
would allow instrument logic to be seamless-
ly transported among otherwise dissimilar
CATI systems using a standardized graphical
medium and having the ability to recognize
logical structures.

3.3. Managing instrument content

So far this discussion has focused strictly on
logical structure. We have made no attempt
to relate instrument logic to instrument con-
tent. Is there a relationship, and if so, how
can principles of logical structure be applied
to content structure?

An instrument can be designed so that two
distinct topics — let us say respondent medical
history and respondent demographics — are
presented in sequential fashion, for instance,
all of the items that ask about medical history
precede all of the items that ask about demo-
graphics. At the other extreme, the two topics
can be highly interleaved. Each arrangement
will have its own distinct logical structure.
Yet can we infer from a diagram of either of
these logical structures anything about its
content?

The answer is no. Any association that we
wish to establish between an instrument’s logic
and its content must be carefully planned dur-
ing the instrument design process. Thus if we
want the computer to recognize the medical
history items as being distinct from the demo-
graphic items, we must place the two types of
items in separate logical structures. One so-
lution is to design an instrument that has a
supersection with two (logical) sections, one
for the medical history items, the other for
the demographic items. With this scheme, we
can use the logical structure database to access
and manage the instrument content structure.

For example, an interviewer using a mouse’
could move to contextually distinct-portions

Futterman: CATI Instrument Logical Structures

of an interview by clicking on a descriptively
labelled part of a logical structure. Selections
would be among informatively labelled topics
such as “medical history,” “tobacco use,”
and “household information,” rather than
among terse, less informative item names like
“MO0,” “T21,” and “HCNT.”

As another example, we could include in
the section table database such attributes as
OPTIONAL and MANDATORY. A sec-
tion with the MANDATORY attribute
would require that the section have a complete
section path in order for an interview to be
considered complete (the default case). A
section with the OPTIONAL attribute would
not have this requirement. Thus, we could
design a hypothetical instrument in which we
include a mandatory “household informa-
tion” section and an optional “tobacco use”
section.

By designing instruments that have one-to-
one correspondences among logical struc-
tures and content structures, we should find
it possible to manage instrument content in
other ways as well.

3.4. Managing instrument functions

CATI instruments, in addition to their con-
tent, also consist of items that perform identi-
fiable functions such as “calculate respon-
dent’s net income,” “display interview break-
off sequence,” and “obtain next call appoint-
ment time.” Like content structures, func-
tional structures must be associated with log-
ical structures during the instrument design
process in order for us to use logical structures
to control their access and execution. How
effectively we control access and execution is
an important aspect of instrument design.
Often, for example, a group of items com-
bine to perform a single function. For instance,
in order to calculate a respondent’s net in-
come, one item might be responsible for ini-
tializing the storage locations that are to be
used as part of the calculation, another item

347

or group of items might be used to ask the re-
spondent his or her gross income, others to
obtain the amount of taxable income, and
still others to perform the calculations. It is
essential that each of these items be executed
in the correct sequence in order to perform
the “calculate respondent’s net income”
function correctly. How can we guarantee
that they are?

Nicholls and House (1987) have proposed
the concept of a VIRTUAL ITEM, a structure
which may include one or more items “but
which functions collectively like a single
item.” The key requirement of a virtual item
is that it must be accessible only through its
first component item.> Thus a virtual item is a
one-entry (though not necessarily a one-exit)
functional structure and is similar to several
of the logical structures we have discussed,
including sections and subsections. By allowing
access to the structure only through its first
item, we can guarantee that the component
items will always be executed in their proper
order. How can we restrict access to a struc-
ture in this way?

The key to controlling access to a functional
structure is to clearly establish its relationship
to a corresponding logical structure during
the instrument design process — the same
strategy described above to manage content
structures. Then we can utilize the properties
of one-entry/one-exit structures such as sec-
tions and subsections to control access to and
execution of a functional structure.

For instance, we can include in the section
table database the attributes PROTECTED
and UNPROTECTED. A section marked as

3 Nicholls and House suggest one other restriction:
that only the first item of a virtual item be a displayed
item (an item with displayable text). This precludes in-
terviewers from accessing subsequent items by using
interview movement commands. The implementation
of the virtual item concept as described here avoids
this restriction. -

348

UNPROTECTED allows access to any item
in the section as long as it is on the active
path; a section marked PROTECTED denies
access to any item in the section except the
primary control node.

Let us see how this can be useful. Suppose
we wish to implement the “calculate respon-
dent’s net income” function described above.
By including all of the items associated with
this function — a virtual item —in a section, we
could then declare the section to be PRO-
TECTED. During an interview, all inter-
viewer requests to jump to items within the
section — except for requests to jump to the
primary control node — are denied, either by
rejecting the request completely or by routing
the request to the primary control node. In
this way we can quarantee that the items that
comprise the function are always executed in
the correct sequence. Further, if we declare
the section to be MANDATORY, we can
guarantee that the function will have to be
fully executed in order to obtain a complete
interview.

I have suggested only some of the ways to
manage instrument structures. The section
table database can be extended to include
other types of control attributes and status
indicators. Subsections have the potential of
giving us intricate control of CATI instru-
ment functions and content. Subsections, as
well as other one-entry/one-exit structures,
can be implemented as subroutines. Others
may wish to explore these possibilities more
fully.

Journal of Official Statistics

4. References

Gondran, M. and Minoux, M. (1984): Graphs
and Algorithms. John Wiley and Sons,
New York.

House, C.C. (1985): Questionnaire Design
With Computer-Assisted Telephone Inter-
viewing. Journal of Official Statistics, 1,
(2), pp- 209-219.

, Jabine, T.B. (1985): Flow Charts: A Tool for
Developing and Understanding Survey
Questionnaires. Journal of Official Statis-
tics, 1, (2), pp- 189-207.

Knuth, D.E. (1973): The Art of Computer
Programming — Vol. 1, Fundamental Algo-
rithms, Addison-Wesley, Reading, MA,
pp- 362-406.

McGowan, C.L. and Kelly, J.R. (1976): Top-
Down Structured Programming Techniques.
Petrocelli/Charter, New York.

Nicholls, W.L., II, and House, C.C. (1987):
Designing Questionnaires for Computer-
Assisted Interviewing: A Focus on Pro-
gram Correctness. Proceedings of the Third
Annual Research Conference, U.S. Bureau
of the Census, pp. 95-111.

Willenborg, L.C.R.J. (1987): The Routing
Structure of Questionnaires. In CBS Select
4-Automation and Survey Processing,
Centraal Bureau Voor de Statistiek, Voor-
burg, Netherlands, pp. 97-106.

Received December 1987
Revised January 1989

