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For data summarized and released as a contingency table, considerable attention has been
accorded to cell bounds given marginal totals. Here, we consider bounds on cell counts for
k-way tables when observed conditional probabilities and total sample size are released.
If this information implies narrow bounds, a disclosure risk may result. We compute sharp
integer bounds using integer programming and demonstrate that, in some cases, they can be
unacceptably narrow. We also derive closed-form solutions for linear relaxation bounds, and
show that they can be improved via a method that can also account for rounding uncertainty.
The gaps between the sharp bounds and those of their linear relaxations are often large, which
implies the utility of the latter is limited, especially if the sharp bounds can be computed
quickly. Our formulations can solve small tables with small sample sizes quite quickly,
but large instances can take on the order of hours.
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1. Introduction

Data privacy has become an important problem of the modern society with both

government and nongovernment agencies collecting, archiving and releasing a growing

amount of personal and sensitive data. The statistical disclosure limitation (SDL) literature

is rooted in official statistics and is concerned with increasing public data access and utility

while maintaining data confidentiality. Data stewards wish to release data so meaningful

statistical inference can be performed, but haphazard data releases are inappropriate

because of confidentiality guarantees.

The goal of SDL is to develop methods and tools for evaluating the trade-off

between privacy and the release of useful data. We consider the problem of establishing

bounds on contingency table cells given tabular sample size and observed conditional

probabilities (i.e., rates) derived from underlying contingency table of counts.

These bounds, called feasibility intervals (Willenborg and de Waal 1996), are one of

many ways to measure disclosure risk, which may result when cells have small counts
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with narrow bounds. Indeed, cell counts can even be directly disclosed when the upper

and lower bounds are the same. Many tabular data releases are in the form of marginal

tables (sums of rows and/or columns), but data stewards may publish observed

conditional probabilities as an alternative way of releasing summary statistics,

representing proportions of individuals who fall into a certain category given particular

characteristics.

Feasibility intervals also have application beyond a direct measurement of disclosure

risk. For instance, Chen et al. (2006) have used sequential importance sampling to

simulate draws from the distribution of associated contingency tables, given marginal

totals. This procedure may be used as a tool for inference for tabular data and requires

bounds to be calculated. Slavković and Lee (2010) have recently proposed an MCMC

approach to simulate draws from a distribution of contingency tables that

preserveconditional probabilities, which would require priors that might be informed

by these bounds.

Much of the recent work in SDL combines elements from multiple disciplines,

including statistics and operations research (see a review in Salazar-Gonzalez 2008).

In this article, we add to this confluence by considering integer programs which can

be solved to produce sharp cell bounds given unrounded conditional probabilities and

sample size. In addition, we assume throughout that no external sources of

information are available. We find that these exact bounds can uniquely identify cell

counts in certain situations and, even when unique identification does not occur, often

produce lower bounds that are identical to the underlying count. However, when the

released conditionals are rounded, the exact bounds often cannot be computed,

possibly giving additional disclosure protection. We also derive closed-form

expressions for the bounds in the case that the integer requirement for cells is

relaxed. These results are extensions of Smucker and Slavković (2008), relying on the

fact that a k-way table can be represented as a two-way table. As in Smucker and

Slavković (2008), we use a mathematical programming formulation that allows for

sampling zeros and satisfies the definition of conditional probability. Beyond that, we

present an easily computable result which improves the linear relaxation bounds in

two ways. First, if rounding uncertainty is ignored, the bounds will be tighter. Second,

these bounds can account for the uncertainty introduced by rounding. Despite these

improvements, we show empirically that the difference between the sharp integer

bounds and those based on linear relaxations is most often dramatic. We also consider

the situation in which partial conditional probabilities (defined later) are released

instead of full conditionals.

Though data releasers have traditionally been large national agencies, smaller data

owners may wish to share their collected data as well. Thus, it is important to understand

the effects of these types of releases for small-scale, as well as large-scale, data.

Consequently, we explore both small and large tables in this article, and the associated

bounds given conditional probabilities and total sample size.

In Section 2, we give some background on optimization and review the literature as it

pertains to contingency table cell bound calculation. In Section 3, we present the

mathematical programming formulations and closed-form results for the linear

relaxations, for both full and partial conditional frequencies, as well as improved bounds
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that can account for rounding. We demonstrate their application with two examples in

Section 4, and give a general discussion in Section 5.

2. Optimization and Cell Bound Calculation

An integer program (IP) consists of a linear objective function, optimized subject to linear

constraints, with the additional constraint that all decision variables are integral. (We point

out that in the optimization literature, decision variables are variables within a particular

optimization structure whose values are to be manipulated in the course of the

optimization; contrastingly, a random variable is a variable whose value is determined by

some random process.) IPs are solved using methods like Branch-and-Bound and Branch-

and-Cut (see Nemhauser and Wolsey 1988). In this work, the commercial solver CPLEX

(2009) was used to solve the integer programs.

Calculating cell bounds for two-way tables given marginal totals is an old problem

dating back to Bonferroni (1936), Fréchet (1940), and Hoeffding (1940). The extension to

k-way tables has proven challenging (Cox 2002). Fienberg (1999) provides

generalizations of the two-way bounds, and others have studied special cases (Dobra

and Fienberg 2001; Cox 2002; 2007). Buzzigoli and Gusti (1998) introduced the “shuttle

algorithm” which computes bounds––not necessarily sharp––for k-way tables given an

arbitrary set of marginals. Dobra and Fienberg (2003; 2010) generalize this procedure, the

latter in particular producing exact bounds.

Less work has been done for bounds given observed conditional probabilities. Using

both mathematical programming and tools from algebraic statistics, Slavković and

Fienberg (2004) and Fienberg and Slavkovic (2005) first examined these bounds (see

also Dobra et al. 2008). Later, Smucker and Slavković (2008) presented an alternative

(see Section 3) to this original optimization formulation, but only considered two-way

tables. Slavković and Lee (2010) have utilized these bounds in conjunction with

algebraic tools for creating synthetic two-way contingency tables, and for assessing

both disclosure risk and data utility associated with such synthetic data releases. In this

article, we make the extension to k-way tables, considering calculations given both full

and partial conditional rates.

To calculate sharp bounds we use IP, as mentioned above, but this is often

computationally expensive for large tables (see the end of Section 4.2). Thus we attempt to

use linear relaxation bounds as a cheap approximation. Given the marginals, the maximal

gap between an IP and its linear relaxation has been studied and theoretically has been

shown to be exponentially large (Sullivant 2005; Hosten and Sturmfels 2003), and Onn

(2006) shows that there could be arbitrary gaps within these bounds. For the marginal case,

then, it could be misleading to assess disclosure risk by using the linear relaxation as an

approximation to the integer bounds. In this article, we demonstrate that the same is true in

the case of given conditional probabilities, and that for k-way tables is perhaps even more

pronounced than in the two-way case.

3. Bounds for Cells In k-way Tables Given Conditional Probabilities

In this section we formulate the integer program used to compute sharp cell bounds, and

also give easily computed expressions for linear relaxations of the bounds. We note here
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that our concern is simply with the information available given a table of conditional

probabilities and sample size. How the data are collected––for instance, whether zeros in

the table are structural or arise via the chance of sampling––is beyond the scope of this

work. We do note, however, that the formulations which follow can easily account

for observed or structural zeros in the data, by simply setting those cells to zero and

ignoring them.

3.1. Setting and Notation

Let X ¼ {X1; : : : ;Xk} be a vector of categorical random variables and let

{i1; i2; : : : ; ik} be the index sets corresponding to each of the random variables,

where i1 ¼ 1; : : : ; I1 (I1 is the number of categories in the first random variable),

i2 ¼ 1; : : : ; I2, all the way up to ik ¼ 1; : : : ; Ik. Define fX(x) as the joint density of

these variables and define mutually disjoint sets of indices I, J, and K, such that

I; J;K , {i1; : : : ; ik} and I < J < K ¼ {i1; : : : ; ik}. Also let XI be the vector of

random variables corresponding to those represented in I, XJ those represented in J, and

XK those represented in K. XI corresponds to those variables upon which we are

conditioning, XJ corresponds to the response variables, and XK are those variables that

are not being considered at all.

For instance, in a four-way table there are four random variables––X1, X2, X3, and

X4––with indices i1, i2, i3, and i4, where the last variable, X4 corresponds to the response

variable. In that case, we might condition upon the first three variables (corresponding to

X1, X2, and X3 indices) so that XI ¼ {X1;X2;X3}, XJ ¼ {X4}, and XK ¼ Y. Alternatively,

we might have that XI ¼ {X1;X2}, XJ ¼ {X4}, and XK ¼ {X3} so that the given table is

aggregated over X3.

Using this notation we define full and partial conditional probabilities.

Definition 3.1 Let XK ¼ Y and O ¼ {oIJ} be the observed count for cell IJ. The

observed full conditional probabilities are defined as

d̂IJ : ¼
oIJ

oI :
¼

oIJX
J

0

oIJ
0

which is an estimate of the actual conditional probability PðXJ ¼ xJjXI ¼ xIÞ where xI and

xJ are realizations of the associated random variables.

If XK is nonempty, we collapse over the variables in XK to get to a two-way table (see

Section 4 for examples of this).

Definition 3.2 The observed partial conditional probabilities, estimating PðXJjXIÞ, are

defined as

d̂IJ : ¼

X
K 0

oIJK 0X
J 0

X
K 0

oIJ 0K 0

ð1Þ
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3.2. Cell Bounds Based on Mathematical Programs

To calculate integer bounds given full conditionals and table sample size, the following

integer program is constructed:

Min nAB ð2Þ

s:t:
I 0

X
J 0

X
nI 0J 0 ¼ N ð3Þ

oIJ

J 0–J

X
nIJ 0 þ oIJ 2

J 0

X
oIJ 0

0
@

1
AnIJ ¼ 0; ; I; J ¼ 1; : : : ; IJ 2 1 ð4Þ

J 0

X
nIJ 0 $ 1 ; I ð5Þ

nIJ $ 0 ;I; J ð6Þ

nIJ integer;I; J ð7Þ

where AB represents a particular cell to be minimized, and in (4) IJ is the total number of

categories in the response variable(s). To calculate the lower bound for cell AB, the above

IP is solved; the upper bound is found by maximizing it. This process is repeated for each

cell to obtain its bounds, which are known as sharp, or exact, because they are integer-

constrained.

The first constraint, (3), is to enforce the sample size. We ensure positive marginal sums

by (5), nonnegative cell entries by (6), and integer entries by (7). For (4), we use

d̂IJ ¼
oIJX
J

0 oIJ
0

¼
nIJX
J

0 nIJ
0

where oIJ is the observed count and nIJ is the decision variable for cell IJ used in the

optimization program. To derive (4),

0 ¼
oIJX
J 0

oIJ 0

2
nIJX
J 0

nIJ 0

¼ oIJ

J 0

X
nIJ 0 2 nIJ

J 0

X
oIJ 0

¼ oIJ

J 0–J

X
nIJ 0 þ oIJnIJ 2 nIJ

J 0

X
oIJ 0 ¼ oIJ

J 0–J

X
nIJ 0 þ nIJ oIJ 2

J 0

X
oIJ 0

0
@

1
A

Note that (4), as formulated here, requires that oIJ, the actual counts, be given. We are, of

course, trying to bound the cells even as we assume that we know them. This is necessary,

though, to calculate the sharp integer bounds for most datasets, because the released

conditional probabilities, d̂IJ , are rounded and thus preclude a feasible optimal integer

solution if used directly. Therefore, in most realistic cases intruders would be unable to

calculate the bounds based on the above IP. Integer programming formulations which

account for rounding may or may not provide similar bounds, but are beyond the scope of

this article. The present formulation, however, can be used by data agencies to assess true

disclosure risk.
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We follow Smucker and Slavković (2008) and do not require a count of at least one in

each cell for which a positive conditional probability is released (as done in Slavković

and Fienberg 2004), instead requiring only that each row has a count of at least one (if

rows are fully composed of zeros, they are skipped in the optimization). This results in

wider bounds than those in Slavković and Fienberg (2004), but in Section 3.3 we offer

improved, closed-form linear relaxation bounds that are similar to the tighter bounds of

Slavković and Fienberg (2004) while accounting for rounding uncertainty.

As in Smucker and Slavković (2008), a closed-form expression can be developed for

the linear relaxation to the integer program in (2)–(7). The case of k-way tables is much

the same as that of two-way tables because by considering full conditional probabilities

we have essentially collapsed the problem from a k-way table to a two-way table with

dimensions I1�I2�: : :�Ik21 £ Ik (this assumes the kth random variable is the response;

if there is more than one response variable, the dimensions of the table will be II £ IJ ,

where II is the total number of categories in the variables upon which we are conditioning,

and IJ is the total number of categories in the response variables). Thus, the proof is

very similar to that in Smucker and Slavković (2008) and is omitted here. We define R to

be the number of nonzero marginals (i.e., the number of rows with nonzero sums) in the

two-way table that are constructed from the k-way table. If there are no nonzero

marginals, R ¼ II .

Theorem 3.3 Assume we have a k-way contingency table. Based on the full conditional

probabilities, d̂IJ and the sample size, N, we can construct a linear program of the form

(2) – (6). This linear program is minimized at nAB ¼ d̂AB and maximized at

ðN 2 ðR 2 1ÞÞd̂AB. That is,

d̂AB # nAB # ðN 2 ðR 2 1ÞÞd̂AB ð8Þ

If partial conditionals are given instead of full conditionals, the contingency table of

interest will be of lower dimension, but otherwise it will have the same character. The

table of partial conditionals can be flattened to a two-way table, and the IP (2)–(7) or

its linear relaxation can be applied (see Section 4.1.2 and Section 4.2.2 for examples).

This will result in bounds on the cells of the table of partial conditionals, not the

underlying cells of the full table. However, once the bounds on the partial table are

known, the bounds on the cells in the underlying full table follow immediately,

because of two observations. First, given a table of partial conditional probabilities

(i.e., a table with variables I and J, summed over K), the lower bound on each cell of

the underlying table (i.e., the original table with all variables I, J, and K) is 0. Second,

the upper bound for a cell in the partial table is the same as the upper bound for all

corresponding cells in the underlying table. Consequently, the cell bounds on the

underlying cells of the original contingency table (i.e., the cells defined by the

variables in I, J, and K) can be completely specified by finding the upper bounds on

the table defined by the partial conditional probabilities (i.e., the variables in I and J).

We formalize this as follows.

Theorem 3.4 Assume that K is nonempty, and let n*
AB be an upper bound on cell AB in

the table of partial conditionals.
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(a) The lower bound for any cell ABC is 0.

(b) The upper bound for any cell ABC is equal to n*
AB.

Proof. First, write the partial table––defined by summing across the variables K––as a

2-way table with the J variables defining the columns and the I variables defining the rows.

Thus, using (2)–(7), nonzero lower and upper bounds can be calculated for each cell in the

partial table.

To show (a), notice that each cell in the partial table represents a sum over the categories

defined by K. Thus, the lower bound on a cell AB in the partial table is a bound onP
K 0 nABK 0 . Since there are only nonnegativity and integer constraints on individual cells

nIJK, the lower bound on this sum can be distributed to each element in an arbitrary way.

Thus, set nABC ¼ 0 and distribute the lower bound among the other elements of the sum.

For (b), a similar argument shows that the upper bound for cell AB can be distributed

arbitrarily to the underlying cells. Thus, cell ABC is maximized when n*
AB is dedicated

solely to ABC, and the rest of the underlying cells are 0. A

These results apply both to the sharp bounds as well as the linear relaxation bounds.

In both cases, bounds can be found for the cells in the table of partial conditionals, and

bounds on the cells of the underlying full table follow from Theorem 3.4.

3.3. Tightened Cell Bounds

The linear program defined by (2)–(6) requires only that each marginal total is positive,

instead of stipulating that each nonzero cell is positive. This produces wider bounds than

necessary because it fails to account for each cell with positive conditional probability.

Therefore, we now present a procedure which incorporates this information and can

quickly find tightened linear relaxation bounds. Furthermore, we also account for the

uncertainty introduced by the rounding which is inevitable when conditional probabilities

are released in the form of a contingency table. We denote these as LP* bounds.

Theorem 3.5 Assume we have a k-way contingency table for which is released the full

conditional probabilities d̂IJ . 0, and the sample size, N. Let n2
AB and nþ

AB be guaranteed

lower and upper bounds for cell AB. Also, let lI be the smallest positive number in row I,

and r be a specified, positive rounding constant. Then,

n2
AB ¼

d̂AB 2 r

lB þ r

& ’
ð9Þ

and

nþ
AB ¼ N 2

I 0–A

X
J 0

X
n2

I 0J 0

0
@

1
Aðd̂AB þ rÞ

6664
7775 ð10Þ

where d�e and b�c are the ceiling and floor operator, respectively.

Proof. Suppose d̂AJ 0 ¼ lA so that d̂AJ 0 , lA þ r. Since d̂AJ 0 . 0, nAJ 0 $ 1. Now,

nA: ¼
nAJ 0

d̂AJ 0

$
1

d̂AJ 0

.
1

lA þ r
ð11Þ
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where the first inequality comes from nAJ 0 $ 1 and the second from d̂AJ 0 , lA þ r. Thus,

nAB ¼ d̂AB�nA� $ ðd̂AB 2 rÞ�nA� $
d̂AB 2 r

lA þ r
ð12Þ

where the final inequality follows from (11). Since nAB is integer,

n2
AB ¼

d̂AB 2 r

lA þ r

& ’

For the upper bound, we know that

d̂AB ¼
nAB

nA�

¼
nAB

N 2
X

I 0–A
nI 0

ð13Þ

so

nAB ¼

�
N 2

I 0–A

X
nI 0

�
d̂AB #

�
N 2

I 0–A

X
n2

I 0:

�
d̂AB ð14Þ

#

�
N 2

I 0–A

X
n2

I 0:

�
ðd̂AB þ rÞ ð15Þ

where n2
I 0: ¼

P
J 0 n2

I 0J 0 .

Since nAB is integer, nþ
AB ¼ N 2

P
I 0–I

P
j 0 n2

I
0
J

0

� �
ðd̂AB þ rÞ

j k
.

Remark. The constant r accounts for the uncertainty introduced by rounding. For

instance, if d̂AB is rounded to the third decimal place, r ¼ 0:0005. This means that for a

given d̂AB, the true value is actually in the interval ½d̂AB 2 r; d̂AB þ rÞ; e.g., if we are given

in a two-way table that d̂11 ¼ :403, the true value of d̂11 is somewhere in the interval

[.4025, .4035).

Remark. If a cell AB is such that r . d̂AB . 0, the table entry will be rounded to zero. In

this case, we would assume nAB ¼ 0 and so the procedure breaks down. However, in the

case of rounding to three decimal places so that r ¼ 0:0005, any table with a sample size

less than 1=:0005 ¼ 2; 000 is guaranteed that any positive count will not be rounded to

zero. Similarly, for two decimal places, the sample size must be less than 200. But even if

these sample size restrictions are not met, as long as no individual row has a count greater

than 1/r, the result will hold. The data agency can easily check this.

Remark. Although this result gives integer bounds, they do not constitute “exact”

bounds because we are not enforcing integer entries on the cells except at the end,

artificially, by the floor or ceiling function.

For these LP* bounds when partial conditionals are given, the same arguments made in

the previous section apply here. The LP* bounds can be calculated for the table of partial

conditionals, and Theorem 3.4 can be invoked to give bounds on the cells of the underlying

full table.
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4. Illustrative Examples

In this section we calculate bounds for two examples, a four-way and an eight-way table,

given full conditional probabilities and table sample size. We also find bounds given

partial conditional probabilities.

4.1. Example 1: Four-way Table

This 2 £ 2 £ 2 £ 3 dataset, with N ¼ 193, is due to Koch et al. (1983) and shows the

number of patients who recover in a clinical trial for an analgesic drug. These patients are

given one of two treatments, have one of two possible statuses, and are treated in one of

two centers. There are small counts in this dataset, and even some sampling zeros, as can

be seen in Table 1. This example has been used previously to demonstrate an alternative

mathematical programming formulation (see Section 3.2) in Slavković (2004), and we will

make a comparison to those results.

Let X1 ¼ Center ði1 ¼ 1; 2Þ, X2 ¼ Status ði2 ¼ 1; 2Þ, X3 ¼ Treatment ði3 ¼ 1; 2Þ, and

X4 ¼ Recovery ði4 ¼ 1; 2; 3Þ, and let oi1i2i3i4 be the observed value in the appropriate cell.

Thus, I ¼ {i1; i2; i3} and J ¼ {i4}. Then, the observed full conditionals are

d̂IJ ¼ P̂ðRecoveryjCenter; Status; TreatmentÞ. For instance,

d̂1111 ¼ P̂ðR ¼ PoorjC ¼ 1; S ¼ 1;T ¼ 1Þ ¼
3

3 þ 20 þ 5
¼ 0:107

and

d̂2213 ¼ P̂ðR ¼ ExcellentjC ¼ 2; S ¼ 2; T ¼ 1Þ ¼
4

3 þ 9 þ 4
¼ 0:25

4.1.1. Full Conditionals

To calculate the sharp integer bounds for cells in Table 1, we use the integer program

defined in (2)–(7). Because of the rounding issue discussed in Section 3.2, the only way to

calculate these integer bounds is to use the original tabular counts. We give sharp IP

bounds, as well as LP and LP* relaxation bounds, in Table 2.

Table 1. Clinical Trial Data and Full Conditional Probabilities (in parentheses)

Recovery

Center Status Treatment Poor Modest Excellent

1 1 1 3 (0.107) 20 (0.714) 5 (0.179)
2 11 (0.333) 14 (0.424) 8 (0.243)

2 1 3 (0.103) 14 (0.483) 12 (0.414)
2 6 (0.25) 13 (0.542) 5 (0.208)

2 1 1 12 (0.5) 12 (0.5) 0 (0)
2 11 (0.524) 10 (0.476) 0 (0)

2 1 3 (0.188) 9 (0.562) 4 (0.25)
2 6 (0.333) 9 (0.5) 3 (0.167)
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In this table, there are three cells with a count of three. The sharp bounds uniquely

identify one of those cells, and while the other cells are more protected the intervals are

still fairly narrow. However, keep in mind that these sharp bounds would not be directly

available to intruders because no uncertainty due to rounding is assumed. In contrast, even

the tightened LP* bounds are much less informative and it is doubtful that they pose a

significant disclosure risk, assuming no external information is available.

To demonstrate the computation of the LP bounds, based on Theorem 3.3, we first recall

that R is the number of nonzero marginals in the two-way table which is constructed from

the k-way table. In this example (Tables 1 and 2), there are no zero marginals, so

R ¼ 23 ¼ 8 since each of the three variables upon which we are conditioning have two

categories. Then, each linear relaxation upper bound can be calculated by

ðN 2 ðR 2 1ÞÞd̂AB ¼ ð193 2 7Þd̂AB ¼ 186d̂AB

The LP* bounds are not much more difficult to calculate. For instance the smallest entry

in the first row of Table 1 is l1 ¼ 0:107. Based on (9), the lower bound for cell 1112 is

n2
1112 ¼

:714 2 :0005

:107 þ :0005

� �
¼ 7 ð16Þ

Table 2. IP, LP*, and LP bounds for Clinical Trial data given full conditionals and sample size

Center Status Treatment Poor Modest Excellent

1 1 1 [3, 6],
[1, 16],
[0.11, 19.93]

[20, 40],
[7, 110],
[0.71, 132.86]

[5, 10],
[2, 27],
[0.18, 33.21]

2 [11, 11],
[2, 50],
[0.33, 62]

[14, 14],
[2, 63],
[0.42, 78.91]

[8, 8],
[1, 36],
[0.24, 45.09]

2 1 [3, 3],
[1, 16],
[0.10, 19.24]

[14, 14],
[5, 74],
[0.48, 89.79]

[12, 12],
[4, 64],
[0.41, 76.97]

2 [6, 12],
[2, 37],
[0.25, 46.5]

[13, 26],
[3, 81],
[0.54, 100.75]

[5, 10],
[1, 31],
[0.21, 38.75]

2 1 1 [1, 18],
[1, 73],
[0.5, 93]

[1, 18],
[1, 73],
[0.5, 93]

0

2 [11, 11],
[2, 77],
[0.52, 97.43]

[10, 10],
[1, 70],
[0.48, 88.57]

0

2 1 [3, 9],
[1, 28],
[0.19, 34.88]

[9, 27],
[3, 84],
[0.56, 104.63]

[4, 12],
[2, 37],
[0.25, 46.5]

2 [2, 12],
[2, 50],
[0.33, 62]

[3, 18],
[3, 75],
[0.5, 93]

[1, 6],
[1, 25],
[0.17, 31]
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To calculate the upper bound on this cell, we must aggregate the lower bounds for

all cells not in row 111. In this case that sum is

I 0–111

X
J 0

X
n2

I 0J 0 ¼ 38 ð17Þ

so that

nþ
1112 ¼ bð193 2 38Þð:714 þ :0005Þc ¼ 110 ð18Þ

Notice also that since N ¼ 193 . 1=:0005, there is no chance that a positive conditional

probability was rounded to 0.

Comparing these relaxation bounds to those calculated using the formulation of

Slavković (2004), we find that the LP bounds are wider, but the LP* bounds are

generally narrower. For instance, in the first cell the LP bounds are [0.11, 19.93] and

the LP* bounds are [1, 16], while those in Slavković (2004 p. 145) are [1, 17.03]. In the

second cell the LP bounds are [0.71, 132.86], the LP* bounds are [7, 110] while those

in Slavković (2004) are [6.67, 113.55]. For this example, the only cell for which

the bounds of Slavković (2004) are tighter than the LP* bounds is 2112 ([1, 72.26]

versus [1, 73], respectively).

Looking more closely at the integer bounds, we notice that even if the original counts

are not uniquely identified, many of the cells have lower bounds that are equal to the

actual cell count. Further, in the cases in which the lower bound is less than the actual

cell count, the actual cell count is a multiple of the lower bound. In fact, the lower bound

is reduced by the greatest common divisor (gcd) of its row. This is most easily seen via

an example.

Consider the last row in the four-way example in Tables 1 and 2, which corresponds to a

patient with Status 2 who had received Treatment 2 at Center 2. From Table 1, we see that

there were 6 patients with a poor recovery, 9 with a modest recovery, and 3 with an

excellent recovery. Thus, the conditional probabilities can be calculated as d̂2221 ¼ 6=18,

d̂2222 ¼ 9=18, and d̂2223 ¼ 3=18. Now, the greatest factor by which each of these fractions

can be reduced is 3, to 2/6, 3/6, and 1/6, respectively, and as can be seen in Table 2 the

lower integer bounds for these three cells are 2, 3, and 1. In the fifth row, the gcd is 12,

so that the lower bound is 1 for cells 2111 and 2112. In all the other rows the gcd is 1 and so

the lower bound is equal to the actual cell count.

Also, the sharp upper bounds calculated via the integer programs seem to be an

integer multiple of the lower bound and this multiple seems to be constant among

rows. So for instance, the multiple for the last row is 6, but for the first row is 2

(see Table 2).

4.1.2. Partial Conditionals

In addition to examining the cell bounds produced given the full conditionals, PðRjCSTÞ,

we also look at conditionals involving subsets of the data. Using these “small

conditionals” we formulate a linear or integer program using (2)–(7).
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Suppose the data owner releases the small conditional, P̂ðTreatmentjCenter; StatusÞ.

Estimates of these conditional probabilities are calculated from the original data by:

d̂i1i2i3 : ¼

X
i4

oi1i2i3i4X
i3

X
i4

oi1i2i3i4

Using the notation in Section 3.1, I ¼ {i1; i2}, J ¼ {i3}, and K ¼ {i4}.

These partial conditionals are calculated and shown in Table 3, along with the actual

counts for each of these cells. The bounds on this table of partial conditionals are in

Table 4.

Interestingly, this table of partial conditionals is completely disclosed. Though there

are no very small counts, it demonstrates that small tables are often at risk of disclosure.

We can appeal to Theorem 3.4 to determine the bounds for the cells in the full table.

Thus, the lower bounds for all underlying cells are 0 and the upper bounds are the

same as the counts for the associated cell in the partial table. For instance, for the cell

ðCenter; Status; Treatment;ResponseÞ ¼ ð1; 1; 1; 1Þ, the lower bound is 0 and the upper

Table 3. Treatmentjcenter; status counts and con-

ditional probabilities for clinical trial data

Treatment

Center Status 1 2

1 1 28 (0.459) 33 (0.541)
2 29 (0.547) 24 (0.453)

2 1 24 (0.533) 21 (0.467)
2 16 (0.471) 18 (0.529)

Table 4. IP, LP* and LP bounds for clinical trial data, given TjCS conditional probabilities and original

data

Treatment

Center Status 1 2

1 1 [28, 28],
[1, 84],
[0.46, 87.21]

[33, 33],
[2, 99],
[0.54, 102.79]

2 [29, 29],
[2, 100],
[0.55, 103.96]

[24, 24],
[1, 83],
[0.45, 86.04]

2 1 [24, 24],
[2, 98],
[0.53, 101.33]

[21, 21],
[1, 86],
[0.47, 88.67]

2 [16, 16],
[1, 86],
[0. 47, 89.41]

[18, 18],
[2, 97],
[0.53, 100.59]
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bound is 28, which is the upper bound for the cell ðCenter; Status; TreatmentÞ ¼ ð1; 1; 1Þ

in Table 4. Notice that the information concerning the two zero cells in the full table

(Table 1) is lost.

4.2. Example 2: Eight-way Example

This dataset comes from the U.S. 1993 Current Population Survey (CPS), which is a

survey conducted by the U.S. Census Bureau on behalf of the U.S. Bureau of Labor

Statistics. It is a collection of data that, according to the U.S. Bureau of Labor Statistics

website, is a “monthly survey of households: : : [providing] a comprehensive body of data

on the labor force, employment, unemployment, persons not in the labor force, hours of

work, earnings, and other demographic and labor force characteristics.” This particular

dataset includes eight variables and a sample size N ¼ 48; 842. Table 5 gives the variables,

the names we use to represent them, the numbers of levels, the levels themselves, and the

index for each variable.

We take Salary to be the response variable, and so the full conditionals will be

PðHjA;B;C;D;E;F;GÞ ð19Þ

Table 5. CPS variables and number of levels

Variable Name
Num.
of levels Levels Index

Age A 3 ,25, 25–55, . 55 i1
Employment B 4 Government, private,

self-employed, other
i2

Education C 5 ,HS, HS, college, bachelor,
bachelor þ

i3

Marital status D 2 Married, unmarried i4
Race E 2 Non-White, White i5
Sex F 2 Female, male i6
Hours worked G 3 ,40, 40, .40 i7
Salary H 2 ,50, 50 þ i8

Table 6. Select data for CPS example

A B C D E F G H ,50 50 þ

.55 Gov’t HS Married Non-White Male ,40 1 1
.40 0 1

40 7 3
White Female ,40 5 2

.40 2 0
40 0 3

Male ,40 22 3
.40 10 4

40 56 24
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4.2.1. Full Conditionals

In the full conditionals for this dataset, we have many margins which are zero. This

presents the question of how to treat these rows, since most relevant inferential procedures

proceed under the assumption that the margins are greater than zero. One possibility is to

collapse certain variables to fewer categories, while another option is to treat those

variables as identical to zero.

From the perspective of the agency releasing the data, conditionals with zero marginals

are undefined, and would be of little inferential use. Thus, collapsing the table in such a

way that no margins are zero is probably the best solution. However, for this dataset,

significantly collapsing those variables with four and five categories still does not result in

exclusively nonzero margins. Also, there seems to be no guidance in the Statistical Policy

Working Paper 22 by the Federal Committee on Statistical Methodology that covers this.

Thus, we assume that any “conditional probability” from a row with a margin of zero is

zero itself. In fact, we do not even optimize it, setting nIJ ¼ 0 if
P

J oIJ ¼ 0. Besides this,

the structure of the integer program is as (2)–(7), with I ¼ {i1; i2; i3; i4; i5; i6; i7} and

J ¼ {i8}.

The results are too numerous to give in their entirety. Instead, we present an interesting

subset of the results in Table 7. For convenience, we present the corresponding original

data in Table 6. For instance, in the third row of the displayed results, the actual counts for

the two cells are 7 and 3, and the sharp IP bounds are [7, 11,942] and [3, 5,118] the LP

bounds are [0.7, 33,393.5] and [0.3, 14,311.5], and the LP* bounds are [3, 28,081] and

[1, 12,046].

These results are consistent with those from the other example. Overall, the IP results

are often significantly narrower than the bounds from the linear relaxation but, as can be

seen, even for cells with counts of 1 there are no narrow bounds which in and of

themselves would cause a disclosure risk. However, the IP lower bounds are often the

same as the original counts. Because of this, care should be taken before releasing the full

conditional probabilities. On the other hand, for this example as with the previous, exact

bounds can only be calculated using the original counts (because of inexactness due to

rounding the released rates; see Section 3.2) and so would not be computable to data

snoopers. As in the four-way table, the lower bound for a cell is different than the actual

counts when its row has a greatest common divisor other than 1.

Table 7. IP/LP*/LP results for CPS data given in Table 6

IP Bounds LP* Bounds LP Bounds

H ,50 50 þ ,50 50 þ ,50 50 þ

[1, 8,528] [1, 8,528] [1, 20,063] [1, 20,063] [0.50, 23,852.50] [0.50, 23,852.50]
0 [1, 17,056] 0 [1, 40,105] 0 [1, 47,705]
[7, 11,942] [3, 5,118] [3, 28,081] [1, 12,046] [0.70, 33,393.50] [0.30, 14,311.50]
[5, 12,185] [2, 4,874] [3, 28,642] [1, 11,485] [0.71, 34,075.00] [0.29, 13,630.00]
[1, 17,056] 0 [1, 40,105] 0 [1, 47,705] 0
0 [1, 17,056] 0 [1, 40,105] 0 [1, 47,705]
[22, 15,026] [3, 2,049] [8, 35,301] [1, 4,831] [0.88, 41,980.40] [0.12, 5,724.60]
[5, 12,185] [2, 4,874] [3, 28,642] [1, 11,485] [0.71, 34,075.00] [0.29, 13,630.00]
[7, 11,942] [3, 5,118] [3, 28,081] [1, 12,046] [0.70, 33,393.50] [0.30, 14,311.50]
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Because thousands of integer programs have to be solved to compute all of the exact

bounds, and because each of the IPs is fairly large (more than 1,000 constraints and

decision variables), considerable time was required for Cplex to solve them. In all, using

an API interface between Matlab and CPLEX V12.1, it took more than five hours to

compute all bounds via a compute node on Miami University’s Redhawk cluster. Such a

node has dual Quad-core 2.26 GHz Intel E5520 processors with Intel64 technology, and

24 GB of memory and 160 GB of local disk space. (Note: We found that the large table

revealed some memory management issues in this Matlab/CPLEX interface; it could not

solve all of the cells consecutively; however, when broken into smaller subgroups of cells

and run as separate jobs, each IP was solved.)

4.2.2. Partial Conditionals

It is quite possible with such a large dataset, that only a portion may be released. For

instance, suppose a researcher was interested in only a subset of the eight variables.

Table 8. The first six and last six rows for table of partial conditional probabilities PðHjA;C;D;E;F;GÞ

A C D E F G H ,50 50 þ

,25 ,HS Married Non-White Female ,40 6 0
40 1 0

.40 5 0
Male ,40 1 0

40 1 0
.40 2 0

: : : : : : : : : : : : : : : : : : : : : : : :
25–55 HS Unmarried White Female ,40 542 12

40 311 19
.40 1,022 12

Male ,40 263 3
40 647 55

.40 1,169 46

Table 9. Table of partial conditional probabilities

PðHjD;F;GÞ

D F G H ,50 50 þ

Married Female ,40 689 369
40 233 257

.40 748 513
Male ,40 1,740 570

40 3,767 4,579
.40 5,811 3,768

Unmarried Female ,40 5,041 90
40 1,827 311

.40 5,885 229
Male ,40 3,122 66

40 2,783 595
.40 5,509 340
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Alternatively, perhaps the data agency decides to release a smaller table that consists of a

subset of the original variables, to ensure cell counts are sufficiently large for privacy

purposes. In these cases, as with the first example, there is interest in determining bounds

on the released partial conditional probabilities. As before, there are two sorts of bounds:

Bounds on the cells in the underlying full contingency table cells, and bounds on the cells

of the table of partial conditionals.

We will consider two tables of partial conditional probabilities based on the CPS data.

The first sums over the second variable, employment, so that the probabilities of interest

are PðHjA;C;D;E;F;GÞ. A portion of this data is given in Table 8. The second,

PðHjD;F;GÞ, collapses significantly further and results in a 12 £ 2 table in which all cells

are not only nonzero but in the hundreds and thousands. These data are shown in Table 9.

The IP, LP*, and LP bounds for the cells in Table 9 are given in Table 10. Since Table 9

has been collapsed from the full table to the extent that all cells have large counts, there is

no significant risk of disclosure from a small count. Note, however, that the cell counts in

the fifth and twelfth rows, while not small, are fully disclosed.

In terms of the underlying cells in the full 8-way table, we can appeal to Theorem 3.4 to

conclude that the lower bounds for all the cells in the full table are 0, and the upper bounds

are the same as the associated upper bounds in Table 10. For instance, if the upper bound

for cell ðD;F;G;HÞ ¼ ðUnmarried; Female; 40; 50þÞ is 933, then the upper bounds for

all cells in the full table with ðD;F;G;HÞ ¼ ðUnmarried; Female; 40; 50þÞ are the same.

We also include the LP* (assuming the partial conditional probabilities given with three

decimal places) and LP bounds in Table 10, and they are quite wide. Note that in several

cases, the LP* bounds are actually wider than the LP bounds (for instance, in Row 7, in the

50 þ category). This is because the LP* bounds account for rounding uncertainty.

If rounding considerations were eliminated, the LP* bounds would be tighter. Also, there

are two rows in this table that sum to more than 2,000. Thus, if either of them included a

count of 1, its conditional probability might be rounded to 0. In this case, all of the cell

counts in these rows were much higher than 1.

For the other set of conditional probabilities, PðHjA;C;D;E;F;GÞ (Table 8), the

original table is collapsed only over variable B, employment, which has four categories.

Table 10. IP, LP*, and LP bounds for the cells in Table 9, given partial conditional probabilities PðHjD;F;GÞ

and total sample size

IP Bounds LP* Bounds LP Bounds

H ,50 50 þ ,50 50 þ ,50 50 þ

[689, 5,512] [369, 2,952] [2, 31,705] [1, 17,008] [0.65, 31,800.15] [0.35, 17,030.85]
[233, 2,563] [257, 2,827] [1, 23,188] [2, 25,524] [0.48, 23,219.64] [0.52, 25,611.36]
[748, 5,984] [513, 4,104] [2, 28,882] [1, 19,830] [0.59, 28,965.57] [0.41, 19,865.43]
[174, 4,060] [57, 1,330] [4, 36,670] [1, 12,045] [0.75, 36,781.79] [0.25, 12,049.21]
[3,767, 3,767] [4,579, 4,579] [1, 21,972] [2, 26,741] [0.45, 22,040.06] [0.55, 26,790.94]
[1,937, 5,811] [1,256, 3,768] [2, 29,563] [1, 19,149] [0.61, 29,622.81] [0.39, 19,208.19]
[5,041, 10,082] [90, 180] [54, 47,864] [1, 901] [0.98, 47,974.48] [0.02, 856.52]
[1,827, 5,481] [311, 933] [6, 41,636] [1, 7,081] [0.85, 41,727.89] [0.15, 7,103.11]
[5,885, 11,770] [229, 458] [26, 46,911] [1, 1,825] [0.96, 47,002.03] [0.04, 1,828.97]
[1,561, 7,805] [33, 165] [46, 47,710] [1, 1,047] [0.98, 47,820.07] [0.02, 1,010.93]
[2,783, 5,566] [595, 1,190] [5, 40,126] [1, 8,589] [0.82, 40,229.92] [0.18, 8,601.08]
[5,509, 5,509] [340, 340] [17, 45,880] [1, 2,847] [0.94, 45,992.47] [0.06, 2,838.53]
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This results in a flattened table that is 360 £ 2, and still contains many cells with zero

counts, as well as rows with zero counts. Compared to the smaller table of partial

conditional probabilities in Table 9, the exact bounds are much wider, because the rows

with small sums give much more flexibility for the bounds. In fact, excluding the zero cells,

the narrowest set of bounds is in the row which corresponds to (A, C, D, E, F, G) ¼ (,25,

College, Unmarried, White, Female, ,40), for the 50 þ salary, with bounds [1, 18].

The next narrowest bounds are 44. The associated LP and LP* bounds are much wider even

than the exact bounds. Again, for the underlying cells in the full table, the lower bounds are

0 and the upper bounds are the same as the associated upper bounds in the partial table.

For instance, in the underlying table there would be four cells corresponding

to ðA;C;D;E;F;GÞ ¼ ð, 25;College;Unmarried; White; Female; , 40Þ, and those

four cells would have the same values of ðA;C;D;E;F;GÞ and each of the values of

variable B (employment).

5. Discussion

To date statistical disclosure limitation methodologies for tables of counts have been

heavily focused on the release of unaltered marginal totals from such tables, and in part on

inferences that are possible by an intruder from such releases. Many statistical agencies

also release other forms of summary data from tables, such as tables of rates or observed

conditional frequencies. These are predominantly released as two-way and three-way

tables, with conditioning on a single variable.

In this article, we have extended Smucker and Slavković (2008) to k-way contingency

tables, using the same basic IP formulation. We also give closed-form procedures for

linear relaxation bounds which extend those given in Smucker and Slavković (2008). We

then develop improved linear relaxation bounds which also account for the uncertainty due

to the rounding of the conditional probabilities in the released data.

The bounds calculated in this article (see Tables 2, 4, 7, 10, and 11) show that generally

the linear relaxation bounds are significantly wider than the sharp integer bounds, and that

Table 11. IP, LP*, and LP bounds for the counts in Table 8, given partial conditional probabilities

PðHjA;C;D;E;F;GÞ and total sample size

IP Bounds LP* Bounds LP Bounds

H ,50 50 þ ,50 50 þ ,50 50 þ

[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
[1, 16,334] 0 [1, 42,829] 0 [1.00, 48,496.00] 0
: : : : : : : : : : : : : : : : : :
[271, 15,989] [6, 354] [44, 41,930] [1, 964] [0.98, 47,445.55] [0.02, 1,050.45]
[311, 15,550] [19, 950] [17, 40,362] [1, 2,505] [0.94, 45,703.81] [0.06, 2,792.19]
[511, 16,352] [6, 192] [79, 42,393] [1, 536] [0.99, 47,933.18] [0.01, 562.82]
[263, 16,306] [3, 186] [86, 42,443] [1, 493] [0.99, 47,949.05] [0.01, 546.95]
[647, 15,528] [55, 1,320] [12, 39,501] [1, 3,361] [0.92, 44,696.46] [0.08, 3,799.54]
[1,169, 16,366] [46, 644] [25, 41,226] [1, 1,649] [0.96, 46,659.94] [0.04, 1,836.06]
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the relaxation bounds in particular are not narrow enough to pose significant disclosure

risk. The IP bounds, for the smaller example as well as the small partial conditional table

for the larger example, resulted in some narrow bounds and some cell counts that were

uniquely identified. Additionally, as noted in Section 4, the sharp lower bounds for cells

are often the same as the actual count, and when they are not it is because the greatest

common divisor in the cell’s row is larger than 1. Further, the upper bounds seem to

be an integer multiple of the lower bound and this multiple seems to be constant

among rows.

As given here, the computational requirements of calculating integer bounds for a table

do not necessarily increase linearly in the number of cells. The sparsity of large tables

appears to make the individual optimizations easier. For instance, the full eight-way table

of Section 4.2.1 has over a thousands cells which took CPLEX a total computation time of

about 5 hours; the much smaller partial table of Section 4.2.2 has only 24 cells, but took

0.834 hours to solve. There may be other factors influencing this sublinear (in the number

of cells) relationship, but we note that a different, noncommercial Matlab/CPLEX

interface solved the full table in less than 2 hours, but took over 12 hours for the small

partial table. Overall, it appears that sparsity, as much as or more than the number of cells,

plays an important role in the computational difficulty.

In summary, the IP bounds may provide a substantial amount of information and should

be examined by data agencies before rates are released. On the other hand, linear

relaxation bounds are quite wide and seem to offer little insight into disclosure risk for

particular cells. From a data snooper’s perspective, the IP’s are generally infeasible unless

the original data is given. However, it remains to be seen whether introducing rounding

uncertainty to the IP formulation will be a reasonable obfuscatory mechanism. This is also

the source of ongoing work.

We address only bounds based on full and partial conditional probabilities in this article.

Alternatively, an agency might release a combination of partial conditionals and marginal

totals (see Slavković et al. 2012). The mathematical programs presented here might be

adapted to this situation, and it is possible that closed-form linear relaxation bounds,

similar to those in this article, could also be derived.

We note also that in addition to the gaps between exact bounds and their linear

relaxation, there also are gaps within established integer bounds. In other words, given a

set of released conditional probabilities, feasible tables may not exist allowing a cell to

take on certain counts within the computed sharp bounds. An algebraic approach, rather

than the mathematical programming approach of this article, may be better equipped to

explore such gaps (see Dobra et al. 2008; Slavković 2010).
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Slavković, A.B. (2004). Statistical Disclosure Limitation Beyond the Margins:

Characterization of Joint Distributions for Contingency Tables. PhD thesis, Carnegie

Mellon University.
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