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Chi-Squared Tests with Categorical Data from

Complex Surveys:

Part I — Simple Goodness-of-Fit,
Homogeneity and Independence in a Two-Way Table with
Applications to the Canada Health Survey (1978-1979)

M.A. Hidiroglou and J.N.K. Rao'

Abstract: This is the first of a two-paper
series presenting a user’s guide to the field of
chi-squared tests under complex survey
designs. The basic chi-squared tests that take
account of the survey design are presented
and their use illustrated on data from the
Canada Health Survey (1978-1979). The

1. Introduction

Sample surveys are generally designed to
produce reliable estimates of simple descrip-
tive parameters such as population totals,
means and proportions. Because of cost and
operational constraints in designing and im-
plementing a survey, the sample design that
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commonly used simple goodness-of-fit test
and homogeneity and independence tests in
two-way tables are studied in Part 1.
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best meets desired objectives is often com-
plex and highly clustered.

In recent years, the growing trend has been
to use survey data for statistical analysis
beyond the estimation of simple descriptive
parameters. Such analyses often ignore the
sample design and apply standard statistical
methods appropriate for data collected
through simple random sampling. The avail-
ability of computer packages (for standard
analyses) and wealth of survey data pub-
lished in tabular form have contributed to this
trend. Itis unfortunate that software offering
traditional statistical methods are so readily
used on published data. For this reason, it is
important to investigate the effect of sample
design on standard statistical methods and
suggest, if needed, adjustments that make
the methods valid.
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In this two-paper series, we focus on
methods for the analysis of categorical data
summarized in the form of cross-classified
tables of estimated counts, commonly re-
ferred to as contingency tables. Our main
aim is to give a user’s guide to the field of chi-
squared tests for categorical data arising
from complex sample surveys. We present
the basic chi-squared tests that take account
of the sample design and illustrate their use
on data from the Canada Health Survey
(1978-1979), a typical complex survey based
on a multi-stage design involving stratifica-
tion and cluster sampling. Computational
methods and hints are also provided. Essen-
tially no mathematical derivations are given,
but relevant references (for derivations) are

provided.

Standard test statistics for categorical data
include the Pearson chi-squared test, X>.
These statistics, however, are not asymptoti-
cally distributed as x> random variables
under stratification and clustering. Rao and
Scott (1979, 1981, 1984) have, in fact, shown
that X? is asymptotically distributed as a
weighted sum, 2;W;, of independent 3 ran-
dom variables W,, where the weights §; are
related to the familiar design effects (deffs)
used by survey samplers. They also developed
an adjustment to X2, based on the Satterth-
waite (1946) approximation to a weighted
sum of independent x2 variables, that requires
knowledge of the full estimated covariance
matrix of cell estimates. Fay (1979, 1985)
developed a jackknife X? also taking the
design into account, but requiring cell esti-
mates at the psu (primary sampling unit)
level. The jackknife X2, however, is not
investigated in this paper. Koch et al.
{(1975), Nathan (1975) and others proposed
asymptotically valid tests, based on the Wald
statistic, that require access to the full esti-
mated covariance matrix of cell estimates. If
the degrees of freedom (d.f.) for the esti-
mated covariance matrix is not large relative
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to the d.f. for X2, the Wald statistic is often
unreliable due to instability in the estimated
inverse covariance matrix (Fay (1985)).
Monte Carlo results (Thomas and Rao
(1984)) also indicate that the Wald statistic,
although asymptotically valid, does not
control the type I error rate satisfactorily in
the above situation, unlike the Satterthwaite-
adjusted X2 or the jackknife X2

Rao and Scott (1979, 1981, 1982, 1984),
Scott and Rao (1981), Gross (1984) and
Bedrick (1983) have provided first order cor-
rections to X? requiring only knowledge of
cell deffs (or cell variance estimates) and the
deffs of marginal totals in the contingency
table. These corrections are particularly use-
ful for performing secondary analyses from
published tables, for which the researcher
may not have access to the detailed informa-
tion needed for implementing the Satterth-
waite-adjusted X? or the jackknife X? or the
Wald statistic.

The plan for the first of this two-paper
series is as follows. In Section 2 we briefly
describe the Canada Health Survey (1978-
1979) and the procedures used for estimating
cell counts, proportions, variances, and
covariances. The procedures should have
wide applicability since the design of the
Canada Health Survey is similar to the design
of many large-scale surveys. The commonly
used simple goodness-of-fit, homogeneity,
and independent tests in two-way tables are
investigated in Sections 3, 4, and 5 respec-
tively. Each of these sections gives a sum-
mary of relevant theoretical results and com-
putational aspects followed by an example
from the Canada Health Survey. Convenient
formulae are provided to implement the tests
and to carry out residual analysis to detect
model deviations. In the second paper, the
commonly used tests of independence in a
three-way table are investigated in accor-
dance with the work presented in the first
paper. It may be pointed out that the pub-
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lished tables from the Canada Health Survey
(see The Health of Canadians (1981)) are
mostly three-way tables either at the region
level (five regions in Canada) or at the nation-
al level.

Experimental software for the above
methods has been developed at Statistics
Canada by modifying the MINI CARP pro-
gram (Hidiroglou et al. (1980)). These pro-
grams are available but they have not been
fully documented for general use.

2. Canada Health Survey (1978-1979)

A brief description of the Canada Health,

Survey (1978 — 1979) and the procedures
used for estimating cell counts, proportions,
their estimated variances, and covariances
are given in this section. The reader is re-
ferred to the Health of Canadians (1981) for
further details and for the various cross-clas-
sified tables of estimated counts.

2.1.

The broad objectives of the Canada Health
Survey (1978 — 1979) were to provide reliable
statistics on the current health status of the
Canadian population and the antecedents
(risk factors) to and consequences of the
health status, including changes over time at
the national and provincial levels. The data
were collected from monthly samples, but
the survey was terminated after the first year
because of budget cuts. The tables published
in The Health of Canadians (1981) are based
on the data pooled over the nine-month
period July 1978 to March 1979.

The information collected was made up of
two main components. The first, referred to
as the interview component, used two types
of questionnaires. The first questionnaire
covered items which usually require inter-
viewer probing, but could also be obtained
for the entire household from a suitable

Description of the Survey
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member. These items included accidents and
injuries, chronic conditions, disability days,
and utilization of health services. The second
questionnaire covered items which could be
sensitive and could only be reliably answered
by the person sampled. Due to its content
and the need for respondent completion, it
was limited to persons 15 years and over. The
items covered included alcohol use, tobacco
use, health related activities, and emotional
health. Part-time interviewers collected the
data for the interview component.

The second component, referred to as the
physical measures component, was divided
into two parts. The first part included physical
measurements of blood pressure, cardio-
respiratory fitness, weight and skinfold on
persons age two years and over. The second
part involved the taking of blood samples
from persons three years and over to deter-
mine immune status as well as biochemical
and trace metal levels. Part-time nurses col-
lected the physical measures data.

The Canada Health Survey used a multi-
stage, stratified cluster sampling design. An
aim of the design was to achieve an annual
sample of 12 000 households in the interview
component from 100 sample geographical
clusters in monthly samples of 10 households
per cluster. A subsample of 4 200 households
was selected for the physical measures com-
ponent in 50 of the 100 interview sample
clusters at the rate of seven out of the ten
interview households per cluster per month.
Initially the 100 sample clusters were allocat-
ed to the provinces proportional to the
square root of their 1971 census populations.
Three major strata (major cities, other urban
areas, and rural areas) were formed within
each province and the sample clusters were
allocated to these strata proportional to their
1971 census population counts, with the
requirement that the minimum allocation to

a stratum be two clusters.
In each of the major cities, a minimum of
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two clusters were selected by simple system-
atic sampling. From the other urban areas
stratum, a systematic sample of cities was
selected within each province with prob-
ability proportional to their 1971 population.
Each selected city was allocated one cluster.
For both major cities and other urban areas,
a cluster was defined as a group of city
blocks, and a simple systematic sample of
households was selected within each sample
cluster. For the rural areas stratum, each pro-
vince was sampled using a three-stage design
with systematic sampling at each stage (see
The Health of Canadians (1981), Appendix
Il for details). The response rates were
86% and 89% for the two parts of the inter-
view component, and 72% and 80% for the
two parts of the physical measures compo-
nent, respectively.

2.2.  Estimation of total counts and propor-
tions

To provide estimates of total counts of cate-
gorical variables at the provincial level, some
preliminary notation is required. We define
the variable .y« for the k-th sample ele-
ment in the ¢-th sample first-stage unit of the
h-th stratum as one if the element belongs to
the i-th category and the a-th age-sex group
and zero otherwise (i=1, ..., [+1;a=1, ..., A;
h=1, ..., L;t=1, ..., r; k=1, ..., my,). Simi-
larly the indicator variable ,x,, is defined as
one if the (htk)-th sample element belongs to
the a-th age-sex group and zero otherwise.
The basic sampling weight attached to the
(htk)-th element, denoted by w,,, is taken as
the inverse of the probability of inclusion of
the element in the sample (i.e., the estimate
of a total is the usual Horvitz-Thompson esti-
mate), but adjusted for nonresponse (see
The Health of Canadians (1981) page 18 for
details on the nonresponse adjustment). The
estimates of total counts were also adjusted
for post-stratification using the projected
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census age-sex distribution at the provincial
level. The adjusted estimate of total count in
the i-th category at the provincial level is thus
given by

N, = SN/ NN, i=1, ..., I+1,  (2.1)

where

Ni = ZpZ {24 Wi aYi(htk) }=ZE aBi(ht)’
say

N =22 Whi Xk ) = 220 Bio say

and N is the projected census population of
the province in the a-th age-sex group at the
time of the survey. The estimate 1\7,» should be
more efficient than the unadjusted Horvitz-
Thompson estimate N7 = X, ,,1\7,- =
ZhZZWha Yiouky for characteristics closely
related to age and sex, where y;,, takes the
value one if the (htk)-th element belongs to
the i-th category and zero otherwise.

If 1\7,-(1), s Ni(m) denote the estimates
(2.1) for the m provinces in a region (or in
Canada), then the aggregate estimate is N;=
I\Ali(l) + ...+ Ni(m). The estimate of the pro-
portion, p;, in the i-th category is given by the
combined ratio estimate

A A

pi = N;/N, (2.2)
where N = 2 Ni. The unadjusted estimate of
p;is p* = N*/N*, where N7 = N¥(1) + ... +
N*(m) and N* = 3; N*%.

2.3. Estimated variances and covariances

We calculated estimates of variances and
covariances by assuming that the first-stage
units within a stratum have been selected
with replacement. This assumption leads to
some overestimation of sampling variances,
but these estimates include response vari-
ance. The estimated covariance of 1\7,- and 1\7,
is given by (see the Appendix on page 132):



Hidiroglou & Rao: Chi-Squared Tests, Categorical Data, Complex Surveys — Part |

estcov (]\A/i, 1\7,) =

Lo
2 77 2 Gwczw) GwcZw),  (2.3)
h=1 "h t=1

where

Zipg = Bi(hr) = Z4(oNi/aN) B,
and
Bitny = Z4 oBitwys Zin = Z; Zind -

The estimated variance of 1(/,- is obtained from
(2.3) by setting I=i.

Noting that p,, given by (2.2), is a com-
bined ratio estimate, the covariance of p; and
P;is estimated as

estcov (p;, p)) = N2 Eléﬂ 0. 2.9

Here 6;(f), for a province, is given by (2.3)
with z,, replaced by (see the Appendix):

[Bi(hr) ‘ﬁi B(ht)] - 2a(tht/a]V)(a]Vi —ﬁi aN)7
where
B(ht) = Zi Bi(hl) and aN = Zi aNi'

The estimated covariance of the unadjusted
_estimates p* and p7j of p; and p, is calculated
as

m
esteov (p%, p1) = N*2 £ 0%, (), (2.5)
f=1

where 0%, (f), for a province, is given by (2.3)
with z;, replaced py Bty =P By-

The estimates N, and p; and the associated
variances and covariances provide the basic
building blocks for constructing both the
Wald test statistic and the adjustments to
chi-squared tests.
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3. Simple Goodness-of-Fit

3.1. Concepts, theoretical results, and com-
putational aspects

The goodness-of-fit problem involves testing
the hypothesis that the population distribu-
tion of a characteristic in a specified domain
is the same as a known distribution. For
example, one might wish to test the agree-
ment of the age distribution among smokers
with the projected census age distribution.

Let g; = N(1); /N be the proportion in a
specified domain D, belonging to i-th catego-
ry, where N, is the population count in D;
belonging to i-th category and N(;, = Z; Ny,
is the domain size (¢; > 0, i=1, ..., I+1; %, q;
=1). It is convenient here to denote g =
(g1 --- gp)'. The null hypothesis H, is then
given by

H,:q=q,, (3.1

where g = (qo1 --- qo1)' is the known distribu-
tion (q0‘1+1 = 1'(]01-...-q0,). USing (21) and
(2.2) with ”i” changed to “(1)i,” the esti-
mate of g is obtained as § = (g ... 4;)’, where

qizN(l)i/N(l)’ l=1, ..,I+1 (32)
and X, g; = 1. The unadjusted estimate of g, is
given by qT = N’;l)i /N?])

The estimated covariance of §; and ¢, is

given by

A _ N2
oil_N(l)

m
= 6il(f)a
f=1

(3.3)

where 6; (f), for a province, is given by (2.3)
with z;, replaced by

[Byicny—di Baiynl

- Za(thl /aN) [aN(l)i _Cii aN(!)L
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where By, = Z; Bayigy and ;N = Z; Nayi
(i=1, ..., I+1). Note that §; is computation-
ally simple since it depends only on the first-
stage unit totals By, and ,B;,, where By
= ZWhik Ynyicuky a0 Y(iyiuy = 1 if (htk)-th
unit belongs to D, and the i-th category, zero
otherwise. Similarly, the estimated covari-
ance of g% and g7 is given by

m
ot =Nt ol (N, (3.4
f=1

where o%, (f), for a province, is given by (2.3)
with z, replaced by By — §; Bayw- For-
mula (3.4) should be used if post-stratifica-
tion adjustment cannot be implemented.

The customary Pearson chi-squared statis-
tic for testing H,, is given by

I+1
X(Z.?(P) = n(l) ‘21(41_ qoi)z/qois (35)
i=

where n is the total number of sampled ulti-
mate units in domain D,. The statistic Xz(P)
is asymptotically distributed as a weighted
sum, 8,W, + ... + 8,W,, of independent x}
variables W;, under H,, where the weights 9,
are the eigenvalues of the ”design effects
matrix” D (Rao and Scott (1981)). Under
multinominal sampling, all the ; are equal to
1 and =8, W, reduces to 3, a y° variable with 1
d.f. The estimated weights 81 are the eigen-
values of I? = ng) o5 i, where Q,, = diag (qo)
- g, q, and = = (8,) is the estimated covari-
ance matrix of §.

A first order correction to X%(P), requir-
ing only the estimated cell design effects d, is
given by

X2(8.) = X¥P) /5., (3.6)
where

. . I+l g

15 =261= 2 - (l_qu)dn (37)
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and

d; = 6,/ [4; 1-g)Ini}) . (3.8)

Another first order correction is given by

X2(d.) = X:(P)ld., (3.9)
(Fellegi (1980)), where d. = =d;/ (I+1) is the
average cell deff. Both X%(5.) and X2(d.)
are treated as y3, under H,.

A second order correction to X%, based on
the Satterthwaite approximation to Zd;W;, is
obtained by treating

. Xz,
X&(S) = as Xy V = ——, (3.10)

5.(1+C?) 1+C

where 6’6 is the estimated coefficient of varia-
tion of the J;:

” I . ”
C? =2 8%(Id%)-1,
1
and
I,
21 5% = n%l) )

The second order correction takes account
of the variability in the J;, unlike the first
order corrections (3.6) and (3.9). Note also
that both §. and éa can be calculated without
evaluating the individual eigenvalues 5. If
the post-stratification adjustment is not
made, then the adjusted test statistics are
obtained from the above formulae by simply
replacing &;; with o%, given by (3.4) and by
changing g; to ¢* and d; to d* =
oti/lqi(1-q%) iyl

It is convenient to use the critical point
¥i(a), the customary upper a-point of xj,
rather than %2 (o), in which case XZ(S)
should be modified to

X&(S,a) = X&(S) i(a)xi(e)].  (3.11)
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The null hypothesis is rejected at the a-level
if X2(S,a) exceeds }(c). Assuming that the
Satterthwaite approximation is accurate,
i.e., Pr[X&(S,a) > xj(a) | Hy] = a, , the type
I error rates of customary X? and the first order
correction X2(8.) are estimated as Pry2 =
i (@) / (5.(1+CP )] and Prx} =
3 (o) / (1+C2)] respectively, for nominal
level a. Similarly, the type I error rate of
Fellegi’s correction Xé(fi.) i§ estimated as
Pri={d. o} (@) } /(5. 1+CD) } 1.

A test which is asymptotically a %2 under
H, is given by the Wald statistic

X% (W) = (§-90) 27" (4-90), (3.12)
where ﬁq is the estimated covariance matrix
of ¢ with elements 6;. If the degrees of free-
dom, r, for 2:‘. is not large, an improvement to
XZ(W) is obtained by treating

(r-1+1)

Fo(W) = TX(ZJ(W) (3.13)

as an Fvariable with I and r-/+1 d.f. respec-
tively, under H, (Fellegi (1980), Hidiroglou
et al. (1980)). In the context of Canada
Health Survey, r may be taken as the number
of sampled clusters minus the number of stra-
ta.
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Analysis of residuals, §; —q,;, is useful for
detecting deviations from H,,. The standard-
ized residuals

6 =e/d", i=1, ... I+1 (3.14)
are approximately N(0,1) under H,, where
the e; denote the standardized residuals
under the assumption of simple random
sampling:

e; = (4i—q.) / [4: (1-4)) /”(1)]1/2‘ (3.15)

Deviations from H, are indicated by cells
with large |¢|-values. Ignoring the design,
and hence using the e;, could be misleading if
the cell deffs d, are large.

3.2. Example

Suppose that we wish to test the agreement of
age distribution (g;) among those consuming
1-6 drinks per week (D;) with the projected
census age distribution (gq,,), at the national
level. Table 1 gives g, the adjusted and the
unadjusted estimated cell proportions §; and
g%, and the corresponding estimated cell
deffs Zzi and d7, for I+1=7 age categories.

Table 1. Age Distribution Among those Consuming 1-6 Drinks per Week (National Level:
n)=>5,204): Cell Proportions and Cell Design Effects
Age

15-19 20-24 25-34 35-44 45-54 55-64 65+
Goi 0.133 0.127 0.218 0.152 0.140 0.115 0.115
g 0.117 0.150 0.265 0.175 0.148 0.093 0.053
c},» 1.36 1.17 2.07 1.06 0.60 1.09 0.98
q% 0.120 0.138 0.265 0.182 0.153 0.090 0.051
d} 2.58 2.44 7.02 1.66 3.61 2.14 2.70
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It is clear from Table 1 that the post-stratifica-
tion adjustment has led to a substantial reduc-
tion in cell deffs, the average deff d. of the g
being 1.19 compared to d*=3.16, the average
deff of the g%. Also, the d, vary considerably
across the categories, ranging from 0.6 t0 2.2
(similarly the d7 vary from 1.66 to 7.02). The
calculated values of &. and C5 were 1.14 and
0.67 respectively, while 8*=3.04 and C}
=0.92.

The value of X&(P)=298 is so large here,
compared to yZ (0.05)=12.6, that it is not
necessary to do any correction to X2(P) to
conclude that H, : g=q, is not tenable at a
=0.05 level. We ha~ve,~ however, given the
values of corrected X? and the Wald statistic
below for comparison. In the adjusted for
age-sex case, we obtained the following
values:

X%(P)=298, X%(5.)=261, X2(d.)=243,

with estimated type I error rates 0.115, 0.076
and 0.065 respectively (0=0.05), and

X2(S, 0.05)=234, X2(W)=513.

Taking r as 100-31=69, the value of F5(W)
is calculated as 79 and compared to
Fy 4 (0.05)=2.25. The values of XZ(S, 0.05)
and XZ(W) are much larger than the upper
5% point of ¥Z, ¥4(0.05)=12.6, so that the
null hypothesis is not tenable. The effect of
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adjustment, is not substantial in this example.
In the unadjusted for age-sex, we obtained
the following values:

X2(P)=315, X2(5*)=104, X2(d*)=100,

with estimated type I error rates 0.563, 0.095
and 0.085 respectively (a=0.05), and

X2(S, 0.05)=85, X2(W)=281.

The effect of sample design is substantial with-
out post-stratification adjustment since the
type I error rate is reduced from 0.60 to about
0.09 by using a first order correction to
XZ(P). Post-stratification adjustment clearly
provides a more powerful test: compare
X2(S, 0.05)=229 in the adjusted case to
X2(S, 0.05)=86 in the unadjusted case. The
Wald statistic seems to be somewhat unreli-
able. Its value 281 is closer to the uncorrected
X2 value of 315, despite the substantial design
effect in the unadjusted case (d*=3.2).

The standardized residuals é; and e; for the
age-sex adjusted case are given in Table 2.

The residuals ¢; under the assumption of
simple random sampling are comparable to
the é; since the deffs here are small in the
adjusted case. Inspection of the é; clearly
shows a large deviation from H, in most of
the age categories, especially in the 65+ age

group with ¢; much smaller than the corre-

sample design, after post-stratification sponding q,;.
Table 2. Standardized Residuals é; and e;
Age
15-19 20-24 25-34 3544 45-54 55-64 65+
é, -3.06 4.28 5.06 4.20 2.09 -5.32 -19.67
e, -3.59 4.65 7.53 4.36 1.62 -5.46 -19.96
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4. Homogeneity in a Two-Way Table

4.1. Concepts, theoretical results, and com-
putational aspects

The test of the homogeneity problem in-
volves testing of the hypothesis that the 7+1
category proportions, in a specified domain
D,, are homogeneous across R+1 regions
(provinces). Extending the notation of Sec-
tion 3 by adding a subscript “r” (r=1,
R+1) to denote a region, the null hypothesis
of interest is

H,: G =92= - = qRr+1- 4.1
A Pearson chi-squared statistic for testing H,,
is given by

Xi(P) =
R+1 I+1 . . N2
r_zl Ry i=21 (Gri—4+)1q+i, (4.2)
where é+i = Z,n,(l)q,i /n(|) with n(l) = Z,n,(l).

The statistic X7(P) is asymptotically distribu-
ted as a weighted sum, 6, W, + ... + 8z, Wg,,
of independent ¥} variables W,, under H,,
where the weights &, are estimated by §,, the
eigenvalues of estimated deff matrix

Dy =nu (F®Q™M) A (4.3)
(Scott and Rao (1981)). Here

F=diag)-£f".f

= (my/nqy --- traynay)’s

0 =diag (§)- 44> §=(Gu1- 4:n)"-
and

A= r(=§31 g + ﬁ_:R-H & Jrs

where 3, = [6,;] is estimated covariance
matrix of 4,= (g, ... q,;)' obtained from (3.3),
using the §ample data from the r-thregion, J 4
isan R X R matrix of I’s and @ and @ respec-
tively denote the direct sum and direct pro-
duct operators. Note that the estimates g, ...,
Gr+1 are stochastically independent since the
s.amples within regions are drawn independ-
ently.

As before, the corrections to X#(P) can be
obtained without evaluating the individual
eigenvalues, 8. A first order correction to
X#(P), requiring only the estimated cell deffs
d,;, in each region, is given by

X4(8.) = X}(P)5., (4.4)

where

qn
(1 qu)dn } )

IRS. —2 (1 f,){
with

fr=n,qy /g,

and

~

dyi = 6,14, (1-G,) n7(y))-

The statistic X7 (5.) is treated as a 3z under
H,. The second order corrections X}(S) and
X%(S,0) are obtained from (3.10) and (3.11)
with X2(P) replaced by XH(P) I by IR and
582 by tr (D}), where Dy, is given by (4.3)
and “tr” denotes the trace operator.

A Wald statistic, which is asymptotically a
¥jr under H,, is given by

XHW) = 44y A7 g, (4.5)
where
gu = (CZf *‘21’%+1 -4k~ qr+1)-
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The standardized residuals

R R . . r=1,..,R+1
é:=(4,q+)! {var‘(qn» =4
(4.6)

are approximately N(0,1) under H,, where
”%1) var(q, —G+i) =
[4+i (1=¢+)]) [nqy (n(l)—znr(l)) &ri In,y

R+1 p
+ 2 ns(l)dsi].
s=1

Analogous results are obtained from X7 if
adjustment for post-stratification is not used,
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where 27 is obtained from (3.4) using sample
data from the r-th region.

4.2.  Example

Suppose that we wish to test the homogeneity
of age distribution among current smokers
(D)) across the following R+1=4 regions in
Canada: Atlantic Provinces, Quebec, Ontario,
and Western Provinces. Table 3 gives the
adjusted and unadjusted age distributions
among current smokers in the four regions,
i.e.,g;andg*,r=1,...,4andi=1, .., 7. Here
ny=1991, nyqy=1919, n3)=1 415, ny1y=
2 574 (Zn,qy=n)=7 899) and the age cate-
gories (I+1=7) are the same as in the
example of Section 3.2.

Table 3. Age Distribution Among Current Smokers in the Four
Regions in Canada: Cell Proportions

Age
15-19 2024 25-34 35-44 4554 55-64 65+

Atlantic

Gii 0.1499 0.135 0.217 0.138 0.122 0.114 0.123
qti 0.162 0.115 0.184 0.159 0.132 0.124 0.124
Quebec

Gai 0.135 0.129 0.223 0.157 0.142 0.110 0.103
q3i 0.144 0.128 0.199 0.167 0.159 0.116  0.087
Ontario

Gy 0.129 0.122 0215 0.156 0.145 0.116 0.116
93 0.132 0.113 0.217 0.157 0.145 0.108 0.129
West

Ga; 0.132  0.127 0216 0.148 0.136 0.118 0.124
qii 0.127 0.114 0247 0.152  0.136 0.109 0.114

The values of d., &. and (:}, were computed as
0.96, 0.96, and 0.78 respectively, while d*
=3.3,0%=3.2, and C{=1.4. The post-strati-
fication adjustment has led to small deffs
((2.:().% vs. d*=3.3) so that any correction
of X7/(P) is not necessary here. We have,

however, given the values of corrected X?
and the Wald statistic below for comparison.
The type I error rates were estimated as in
Section 3, assuming that the Satterthwaite
approximation is accurate.
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In the adjusted for age-sex case, we ob-
tained the following values:

X2(P)=30.8, X}(8.)=32.1 = X}(d.)
= X%(P)d.

with estimated type I error rates 0.07 and
0.09 respectively (a=0.05) and

X2(S, 0.05)=29.0, X2(W)=75.3.

Note that the type I error rate for the first
order correction, in fact, is slightly larger
than that for the uncorrected X2 since &. is
close to 1 and Cf, is large. In the unadjusted
for age-sex case, we obtained the following
values:

XZ(P)=41.5, X}(8%) = 13.5, X}(d*)=12.5

with estimated type I error rates 0.82, 0.14,
and 0.12 respectively (a=0.05), and

X2(S, 0.05)=10.0, X2(W)=15.6.

Both the first order corrections reduced the
type I error rate dramatically in the unadjust-
ed case (0.82 to about 0.14), but they are not
totally satisfactory here due to a large value
of C%. Post-stratification has provided a
more powerful test of H,. In fact, X3(S,
0.05)=10.0 < x33(0.05)=28.9 in the unadjust-
ed case indicating the tenability of H,, while
X2(S, 0.05)=29.0 in the adjusted case indi-
cating some evidence against H,,.

Turning to the residuals, only one residual
e%,=3.51 (out of 28), corresponding to the
cell (Atlantic Provinces, 15-19) in the two-
way table, indicated significant deviation
from H, in the unajusted case. On the other
hand, three out of seven residuals é,; for the
Atlantic region exceeded 3.0 in absolute
value under post-stratification adjustment.
Therefore it appears that the age distribution
among smokers in the Atlantic region might

be significantly different from the correspond-
ing distributions in the remaining three
regions.

5. Independence in a Two-Way Table

5.1. Concepts, theoretical results, and com-
putational aspects

Suppose that a two-way table has /+1 rows
(variable A) and J+1 columns (variable B)
and p; = N; /N denotes the population pro-
portion in the (i,j)-th cell, where Nj; is the
total count in the (i,j)-th celland N = Z & N,

i=1,..., I+1;j=1,...,J+1. Letp; = N /Nbe
the sample estimate of py, obtained from
(2.2) with “i” replaced by “ij”. Finally, let p,..
=3, p; and p,; = Z; p; be the sample esti-
mates of marginal proportions p;, and p;
respectively, and _ﬁ,~+ = (P14 --- ﬁ,+)’,p+j =

(2SN 298

The hypothesis of independence is given by

H,: p;=pisp+jpi=1,.... I+1;j=1, .. J+1L
5.1
The Pearson statistic for testing H, is
I+1 J+1
(P) =n 21 z (Pq P:+ p+;) /(P:+ P+/)
i= ]—
5.2)

where n is the total sample size. If the hypo-
thesis of independence is to be tested within
a domain D, then n and Py in (5. 2) should be
replaced by n(;yand §; = Ny, / N(,) respecti-
vely. The statistic X7(P) is asymptotically
distributed as a weighted sum, & w; +...+
8, W,;, of independent 3 variables W, under
H,, where the weights O, are estimated by &,
the eigenvalues of estimated deff matrix

D,=n(Pil@Pi)T, (5.3)

(Rao and Scott (1981)). Here
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Pry = diag(pr.) = prs P, Py =
diag(:ﬁ+l) ‘?w?i]

and I:“ is the estimated covariance matrix of
hij = ﬁ[] —ﬁi+pA+j (i=1, ey I; j=1, ey J) ob-
tained from (2.4) with z;, replaced by (see
the Appendix)

Zijne = {BijthiyPi+ Bjiney D+j Bix(ioy
+Pi+ P+j By } — Za (:Bu/.N)
{aNij _ﬁi+ aN+j‘"ﬁ+j aNi+ +ﬁi+ ﬁ+j aN} s (54)

with obvious extension of notation, where
J+1

By = leij(h!)’ etc. Note that the ele-
j=

ments of f, say v;; /', depend only on the
first-stage unit totals By, and their marginal
totals.

As before, the corrections to X3(P) can be
obtained without evaluating the individual
eigenvalues, Ss. A first order correction,

requiring only the estimated cell deffs, aij,
and the estimated deffs of margins, d ¢y and

d B(j» 18 given by

X38.) = x¥P) /6., (5.5)
where
. I1+1 J+1  p;(1-py) .
i=1 j=1 Pi+ P+j
I+1 R A
- (1-Pis) dagy
i=1
J+1

- (1-p4)) ds(j),

3,‘,' = estvar (p;) / [p; (1-p;) n”'],
and

aA(i) = estvar (p;1)/ [pir (1=pix) n7'], as(,‘) =

i
—_

estvar (pA_H) / [ﬁ+l (1—ﬁ+1) n_]].
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The correction (5.5) can be simply imple-
mented from published tables providing the
cell deffs and marginal deffs. The statistic
X3 (8.) is treated as a x2, under H,.

The second order corrections X3(S) and
X%(S,a) are obtained from (3.10) and (3.11)
with X&(P) replaced by X3(P), I by IJ and
287 by n* 9%/ (Biv Poj) B+ Puj'), Where
the summation is takenoveri,i’ =1, ..., [+1
andjj =1,...,J+1.

A Wald statistic can be constructed from
the deviations fz,», as follows:

XyW1)=h' Tk, (5.6)
where A = (hy, ...~y .5 By ... hy)' with
associated covariance matrix f Under H,,
X%(W1) is asymptotically a x3,. An alterna-
tive Wald statistic is obtained by expressing
H, as H, : uy,;,=0 for all (i,j) in the saturat-
ed loglinear model

Inpy= =i+ ug + uy + ),
i=1, ..., I+1;j=1, ..., J+1, 5.7
where the parameters uy(;), Uy;) and uy,; are
constrained by Zu;,=0, Ty =0, Zityp=0
for all j, Z; uy5;=0for all i, and & is a normal-
izing factor to ensure that 2, p;=1. In mat-
rix notation, (5.7) may be expressed as

p=al+ X0, + X;0,; X3 X, =

0. x31 =0, (5.8)
where p is the (/+1) (J+1)-vector of the p;
(in lexicographical order), 6, is the (I+J)-
vector of parameters uy(, o Uy(ys Uaqay, -
Uy with associated model matrix z\:' | consist-
ing of +1’s, 0’s and -1’s, 6, is the (17)-vector
of parameters Uy 11y, ---» Uiz(1s)s ---> Y12(inys +++»
Uy With associated model matrix X similar
to X;, and 1 is the vector of 1’s. Noting that
H,: 8, = 0is equivalent to testing ¢ = X;p =
0, the alternative Wald statistic is -given b;'
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Xi(Wy) = $'Z5' ¢, (5.9)
where gq, is the estimated covariance matrix
of b= Xpp:

$y=X;D;' D5 X,

Here i is the vector of logprobabilities fi;; =
In py, D, = diag (p), p is the (I+1) (J+1)-
vector of estimated cell proportions p; and Z
is the estimated covariance matrix of p ob-
tained from (2.4). Under H,, XX(W,) is also
asymptotically a x3,.

Analogous results are obtained in the unad-
justed case from I'*, where I'* is obtained
from (2.5) with z replaced by Bu—
P+ Bijouy P Bivgwy + P+ PYj B(wy- Similarly,
for testing independence within a domain D,
a subscript (1) is added to terms in (5.4)
involving the subscripts i or j or both, and n
and p; are replaced by n(;, and §;; respective-
ly.

The standardized residuals

é,'j = e,~1~ /{a,] (h)}“2 (5.10)

are approximately N(0,1) under H,, where
€ = flij/ [Bi+ Pvj (A=Pir) A—pL) n7']2,

are the standardized residuals under the
assumption of simple random sampling
(Haberman, (1973)) and a,.,(h) = Y /
[Bi+ P+j (1-pir) (1-p,)n']" is the estimated
deff of fzij under H,,.

5.2.  Example

The estimated proportions, p;, given in
Table 2, are cross-classified by drug use (four
categories: 0,1,2,3 + drug variates in a two-
day period) and sex (male, female). We test
the hypothesis of independence in this two-
way table.

Table 4. Estimated Cell Proportions in
a 4x2 Table (Canada Level): Drug Use X
Sex (n=31 668)

Number Sex
of drug Male Female Total
varieties
0 0.2936 0.2277 0.5213
1 0.1338 0.1589 0.2917
2 0.0478 0.0725 0.1203
3+ 0.0207 0.0450 0.0657
Total 0.4959 0.5041 1.0000

We present here results only for the age-sex
adjusted case. The value of Pearson statistic
X%(P)=774 is so large here, compared to 3
(0.05)=7.8 (IJ=3), that it is not necessary to
do any correction to X% P) to conclude that
the hypothesis of independence is not tena-
ble at a=0.05 level. We have, however,
given the values of corrected X? and the Wald
statistics below for comparison:

d..=32d;/ (I+1) (J+1)=2.37,8. =
1.77, C5s=0.47

and
X2(P) =774, X3(6.) =437, X3(d..) =
X2(P)/d.. =327

with estimated type I error rates 0.226, 0.062,
and 0.023 respectively (a=0.05), and

X2 (5,0.05) =408, X2 (W1) =538,
X2 (W2) =617.

The effect of survey design is quite substan-
tial since the estimated type I error rate is
reduced from 0.226 to 0.062 by using the first
order correction, X%(S.). The Fellegi correc-
tion, X%([i. .), is somewhat conservative: esti-
mated type I error rate of 0.023 compared to
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nominal level 0.05. Note that X3(d..) does
not depend on H, unlike other corrections.
The Satterthwaite correction and both Wald
statistics clearly indicate a strong association
between drug use and sex, although we
should bear in mind the possibility of extra-
neous association due to collapsing over
other related variables. The F-versions of
Wald statistics are obtained by multiplying
X3(W1) and X}(W2) by the factor (r-IJ+1)/
(rl))= (69-3+1)/(69%3)=0.3236 and treat-
ing the resulting statistics as F variables with
1J and r-IJ+1 d.f. respectively, under H,.
The resulting F-values F;(W1)=174.1 and
F;(W2)=199.7 are compared to F;«;(0.05)
=2.74, again indicating a strong association.

The design-based standardized residuals,
é;, are given in Table 5. All the é; are very
large in absolute value (note that é;+¢é,=0),
and we may conclude

Table 5. Standardized Residuals é;

N z

1 19.7 -19.7
2 -7.7 7.7
3 7.6 7.6
4 -16.4 16.4

from the large positive values é,=7.7,
é5,=7.6 and é,,=16.4, that a significantly
greater proportion of women use drugs
compared to men.

Since the independence hypothesis (the
model (5.7) with u,;;,=0) is rejected and
since the drug use variable is ordinal, it may
be possible to find a more complex nonsatura-
ted loglinear model that provides an adequate
fit to the data (see Agresti (1983)). First
order and second order corrections to the
resulting Pearson statistic can be obtained
using the general results of Rao and Scott
(1984), but we have not investigated this
extension.
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Appendix

Derivation of Estimates of Variances and Covariances

At the provincial level the unadjusted esti-
mate Nt =343, {2 Why Yiguky} = ZnZ: Bigny- I
the first-stage units are assumed to be sampled
with replacement within strata, then it is
well-known that

~

vy

Yy
estcov(N%, Nj) =Z 3 (B
( )] P 21 (Bigm)

r-1

~Bi) (Biny-Biw) (A1)

where B,«(,,)=Z, By I74. The estimated cpvari—
ance of the post-stratified estimators N; and
N, is simply obtained from (A.1) by changing
Vicnrky 10 Yicny2a (aNi 1aN) Xnixs 1-€., By 18
replaced by

2y Whik [yi(htk) _Za(aNi /aN) Xn] =
Bigwy~Za (N /uN) B
which gives (2.3).
The estimate p;( = 1(’,»/ I\A/) is the ratio of two
post-stratified estimates. Hence estcov (p;,

p)) is given by (2.4) with 6,(f) for a province,
obtained from (A.1) by changing y;u to

Vicnky = ichany=Za(aNi 1aN) aXnue]

i [+ kyZaaNi [aN) oXnai] (A.2)
where Y., (k) = Z; Yiguky» 1-€-, Bigy) 18 replaced
bY ZWhik Yichiky = [Bitnoy =i Byl = Za(aBhi!alN)
(.N;—p; .N) which leads to (2.4).

Turning to two-way tables, the covariance
matrix of fz,»j = Py—Pi+ P+; is approximately
the same as that of h; = p;—p; p+j—Pi+ P+j-
Hence, using obvious extension of the nota-
tion in (A.2) and noting that Pij=Pi+ P+
qnder H,, the estimated covariance of h; and
h/; is obtained from (2.3) and (2.4) by
changing ;¢ to

Vi) = [ijcnek)
~Div Y+jthtk)

—Pj Yis(uky FPix Psj Y+t

A~

_Za(axhtk/aN) [aNi]—ﬁH aN+j _p+j aNi

+ﬁi+ ﬁ+j am’ (A3)

where .y =Zi Yijnky> €€, 1.€., Bipuy 18
replaced by = Wyu Vi) = Zijne (€quation

(5.4)).



