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Chi-Squared Tests with Categorical Data
from Complex Surveys:

Part II — Independence in a Three-Way Table with
Applications to the Canada Health Survey (1978-1979)

M_.A. Hidiroglou and J.N.K. Rao'

Abstract: This is the second of a two-paper
series presenting a user’s guide to the field of
chi-squared tests under complex survey
designs. The basic chi-squared tests for inde-
pendence in a three-way table that take
account of the survey design are presented

1. Introduction

The first paper in this series focused on chi-
squared tests for simple goodness-of-fit and
homogeneity and independence in a two-way
table. Corrections to standard chi-squared
tests were presented and their use illustrated
on data from the Canada Health Survey
(1978-1979). In this second paper the com-
monly used tests of independence in a three-
way table are investigated in accordance with
the work presented in the first paper and
their use illustrated, again using data from the
Canada Health Survey.

We use the same notation as in the first
paper with obvious extensions to three-way
tables.

' M.A. Hidiroglou is Chief, Business Survey Methods
Division, Statistics Canada, 11 ”P”, R.H.C. Building,
Tunney’s Pasture, Ottawa, Canada, K1A 0T6. J.N.K. Rao
is Professor of Statistics, Department of Mathematics and
Statistics, Carleton University, Ottawa, Canada, K1S 5B6.
Acknowledgments are given in the first paper in this series.

and their use illustrated on data from the
Canada Health Survey (1978-1979).
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2. Concepts, Theoretical Results,
Computational Aspects

and

Suppose that a three-way table has I+1 rows
(variable A), J+1 columns (variable B) and
K+1 layers (variable C). Let p; = Ny / N be
the population proportion in (i,j,k)-th cell
and N=333 Ny, i=1, ..., I+1,j=1, ..., J+1;
k=1, ..., K+1. The survey estimate p, = Ny
/' N of py is obtained from (2.2) of Part I with
‘7’ replaced by ‘jk’. Finally, the one-way and
two-way estimated marginal proportions are
denoted by (B +, D+jrs P++i) and (Bije, Pojis
Di+i) respectively.

In a three-way table, four different types of
hypotheses of independence can be specified
in terms of the saturated loglinear model

In pye = Wi = 0 + uyy + Uy + Us

+ Uy + Uasey + Usry T Uiy, (2.1)
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where the u-parameters sum to zero when

summed over any subscript i,j,k and & is the

normalizing factor to ensure that ZZZp
=1.

The hypothesis of complete independence
of A,B, and C (denoted as A*B*C) is given
by

Ho(1) 2 uypg5) = Uyzginy = Uaz(jy = Uiy = 0

<=> Ppijk = Di++ P+j+ P++x for all (i,j, k).
2.2)

Under H,(1), the estimate of py is p;(1) =
Di++ 15+j+ D vk

The hypothesis of multiple independence,
A independent of (B,C), is denoted as
A*BC. Itis given by

Ho(2) @ upgj) = Uisny = Uizsgjpy = 0 <=>

Pijx = Pi++ P+jx for all (i,/, k). (2.3)
The hypotheses B*AC and C*AB are anal-
ogous to (2.3). The estimated proportions
under Hy(2) are given by pu(2) = Prvs Pajec
Another type of independence hypothesis
is the conditional independence of A and B
given C (denoted as A*B|C). It is given by

H(3) : uypjy = tizsgiy = 0 <=>py =

(Pi+k P+ji) | P+ i for all (i, k). (2.4)

The hypotheses A*C|B and B*C|A are anal-
ogous to (2.4). The estimated proportions
under H,(3) are given by p;x(3) =
(ﬁi+k 13+jk) /13++k-

Finally, the hypothesis of no three-factor
interaction is given by

Hy(4) : ups(ijk) = 0 for all (i,j,k), (2.5)

meaning that the association in the two-way
table corresponding to a level of the third
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variable is constant for all levels. This hypoth-
esis cannot be expressed explicitly in terms
of the marginal proportions, unlike the pre-
vious hypothesis. As a result, the estimates of
piix under H,(4) are obtained by solving
“pseudo-likelihood equations” p;, = pys,
P+jx = P+jx and piy = Piyy iteratively for py,
using the well-known iterative proportional
fitting procedure (IPFP) or some other itera-
tive procedure. The resulting estimates,
Di(4), are consistent, as are the estimates
under the previous hypotheses.

The Pearson statistic for testing H,(J),
1=1,2,3,4 is given by

Xi(P) =

I+1 J+1 K+1

n = 2 2 [pu-puOF/pud. (2.6)
i=1 j=1 k=1

In matrix notation the loglinear model under
H, (I) may be expressed as

w=ual+X;0y

2.7)

where pis the vector of p; ’s (in lexicographi-
cal order), Xy, is the full rank model matrix,
and 0, is the corresponding vector of u-
terms, as explained in Part I for a two-way
table. The saturated model (2.1) may be writ-
tenasu =1+ Xy,0,, + X5 8,, where X, is
orthogbnal to X;;and 1.

The Pearson statistic, X3 (P), is asymptoti-
cally distributed as a weighted sum,

duWi+...4+ 815, Wray,

of independent ? variables W, under H, (I),
where s,is the number of columns of X, (i.e.,
the rank of X)), T=(I+1) (J+1) (K+1), and
the weights 8, are estimated by 8,,, the eigen-
values of “design effects matrix”

D, = n (X3 Djly Xz)!

(X5 Djlyp 2 Djly Xa), (2.8)
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with D, = diag (p())) and p(J) is the T-
vector with elements p,; (/) in lexicographical
order. Furthermore, 2 is the estimated
covariance matrix of p, the T-vector of survey
estimates p;; (in lexicographical order).
Under multinominal sampling, all the , are
equalto1(t=1,...,s;) and =, 8, W, reduces to
X%le, where s, = I+J+K, s, = I+(J+1)
(K+1)-1, s3 = (K+1) (I+J+1)-1 and s, =
(I+1D)K+{+DI+(K+1)J.

A first order correction to X7(P), as in the
first paper in this series, is given by

Xi(6)=X1(P)/6,, 2.9)
where (T-1-s)) &, = =, 8,,. The statistic X3(8 )
is treated as %%, under H,(/). In the case of
H, (1), H,(2) and H,(3), 8, can be expressed
in terms of estimated design effects (deffs) of
cell estimates p;; and of their two-way and
one-way marginals, as follows:

(UK+IJ+JK+IK) § | =

J+1 K+1
> b
1 j=1 k=

P (1-Py) J

I+1
P2 - " ijk
= 1 Div+ Dij+ P++k

1

I+1 R N J+1 R "
- 21 (1-pis+) day— ,21 (1-p)4) dpg)
i= =

K+1 )
- k§1 (1-P140) dC(k)a (2.10)
IJK+J+K) 8, =
I+1 J+1 K+1 Pi (1-p;; R
: z 2 ]A,(—Ap]k) diji
i=1 j=1 k=1 DPi++D +jk
I+1 .
- i§1 (1-Piv+) dagy
J+1  K+1 ) R
B j§1 k§1 (1-P 1) dpciny» (2.11)

and
U(K+1) 65 =

Pix (W-pi) .

b > - ~ ~ ijk
i=1 j=1 k=1 (Pissx p+jk/p..k)
I+1  K+1 s
- = 2 (1-piss) daciny
i=1 k=1
JEI KEl Y
= (1-P4jx) dciny
K+1 X .
+ 151 (1-P++0) degys 2.12)

(Rao and Scott (1984)). Here ﬁ,-ik = estvar
Biin) ! [Py (1-py) n”'] is the estimated deff of
Pijk> aA(i) = estvar (Biy 1)/ [+ (1-pis i) n']is
the estimated deff of one-way marginal p;, ,,
and dpcguy = estvar (poj) / [Pajp (1pp) n']
is the estimated deff of two-way marginal
D+jk> and so on.

In the case of H,(4), the hypothesis of
no three-factor interaction, 8,4 cannot be
expressed in terms of deffs of cell estimates
and of their marginals. It requires the know-
ledge of full estimated covariance matrix 3,
but Rao and Scott (1987) proposed an
approximation to 8,4 in terms of deffs of cell
estimates and of their marginals. Using the
formula for & 5 (similar to (2.12)) for the con-
ditional independence hypothesis “closest”
to the hypothesis of no three-factor interac-
tion in terms of X*(P)-value, the approxima-
tion is given by

(T-1-s3)
- T 3,5, (2.13)

3%,

where s is the d.f. for the “closest” condi-
tional independence hypothesis.

The resulting correction to X3(P), namely
X3 (8*,), is “nearly conservative” relative to
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X3 (84) when the two hypotheses are very
“close”.

A second order correction to X3(P), based
on the Satterthwaite approximation of the
weighted sum of independent x} variables,
requires the knowledge of the estimated
covariance matrix F, [Yii' '« (D] of the
residuals h,,k () = Pk — Pis (D). In general,
F, is given by

I =MZM;, (2.14)
where M, =1- P, Xu (X1 P, X)) " and P,
Dy —p(l) p(l) The covariance matrices F,
for I=1,2,3, however, can be obtained more
simply from formula (2.4) of Part I with z,
replaced z;;, (/) given in the Appendix.

The Satterthwaite correction to X3(P),
1=1,2,3,4, is obtained by treating

X3(S) Xi () as y2
== , V=
: 0, (1+C3) Ko ¥t
T (2.15)
1+C% ’
where
(T-1-s) 8, =
+1 J+1 K+1 Yl
n's "‘—"‘() , (2.16)
=1 j=1 k=1 Py ()
and
T-1-s I+1  J+1 K+l
2 B,I—nz > > >
=1 Qi'=1 jj'=1 kk'=1
Vi, rjie ()
(2.17)

Pir (1) Prpre ()

Note that SJ for /[=1,2,3 can also be calcula-
ted from (2.10), (2.11), and (2.12) respecti-
vely, but (2.16) is readily calculated from the
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diagonal elements of I';. As noted in Part 1, it
is convenient to use the critical point
XTl 5 (0), the customary upper a-point of
x5.1. sp Tather than xyl (o), in which case X3(S)
should be modified to

X3(S,0) = X7 (S) [XF1.5 (@) /5 ()] (2.18)

The null hypothesis H,(/) is rejected at the a-
level if X3(S, o)) exceeds xZ;. ) (a).

The type I error rates of customary X}(P)
and the first order correction X? (6 ;) are esti-
mated as in Part I, assuming that the Satterth-
waite approximation is accurate.

A Wald statistic, which is asymptotically a
X%""z under H,([), is given by

X3 (W) = 91 [Z, O ¢ O, (2.19)
where ¢, X3 o with estimated covariance
matrix 2¢ () = Xy Dj' 2 D X, assuming
that all the elements of p are nonzero, and i
is the T-vector of log:probabilities In Py
(Rao and Scott (1984)). If the degrees of free-
dom, r, for g is not large relative to 7-1-s;, an
improvement compared to X7(W) can be
obtained, as in Part I, by treating

(r-T+s+2)

2
r(T-1-s) X1 (W)

(2.20)

)i =

as an F-variable with T-1-s;and r-T+s,+2d {.
respectively, under H,(/). In the context of
Canada Health Survey, r may be taken as the
number of sampled clusters minus the num-
ber of strata.

Analysis of residuals, ﬁ,»jk(l) = Piix D),
is useful to detect deviations from H,(/). The
standardized residuals

hie (1)

NPT
= o

(2.21)

are approximately N(0,1) under H (/). For
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1=1,2,3, we can express (2.21) as

Cijk 0]

TaGe @1 222

éu () =

where e;;(I) are the standardized residuals
under multinominal sampling given in the
Appendix, and d [ flijk(l) ] is the estimated
deff of A () under H,(J).

As in Part I, the results for a particular do-
main, say D, can be obtained by replacing n
by nay, Pk bY dii = Ny / Nq1y, and so on.

Table 1.
(National Level: ng;, = 8713)

2.1. Example

Consider the estimated counts, I\A/(])ifk, from
the Canada Health Survey (1978 — 79) of
females aged 15 — 64, D, cross-classified by
frequency of breast self-examination (variable
B, four categories: monthly, quarterly, less
often, never), education (variable A, three
categories: secondary or less, some post-
secondary, post-secondary) and age (variable
C, four categories: 15-19, 20-24, 25-44, 45—
64). These counts, given in Table 1, are
adjusted for post-stratification, as explained
in Part I. Here Ny = 22X Ny, Gix =
Niygiwy ! Nay, ngy = 8713, I+1 = 3, J+1 =4
and K+1 = 4.

The results for testing H,(1), [=1,2,3,4 are
summarized in Table 2, where /=2 and /=3
each involve three different hypotheses.

Estimated Counts (in Thousands) of Females Aged 15 — 64 in a 3X4x4 Table

Monthly Quarterly Less often Never
Agel5-19
Secondary or less 92 79 108 615
Some post-secondary 11 10 23 59
Post-secondary 2.4 2.4 - 0.33 4.9
Age20-24
Secondary or less 147 144 106 202
Some post-secondary 41 27 54 44
Post-secondary 53 56 70 54
Age25-4
Secondary or less 486 488 446 539
Some post-secondary 60 64 56 43
Post-secondary 213 244 197 157
Aged5-64
Secondary or less 469 408 312 520
Some post-secondary 26 40 26 13
Post-secondary 72 69 71 38
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Table2. Values of §,, Cs and Test Statistics X3(P), X2 (8.), X%(S,0.05), X2(W) and F(W) for

Eight Hypotheses in a 3x4x4 Table (r=69)

Independence hypotheses

H,(1) H,(2) H,(3) H,(4)
A*B*C A*BC B*AC C*AB A*B|C  B*ClA A*C|B up=0
5, 209 216 1.87 212 191 190 224 1.84
Ca 1.71 1.58 1.41 1.60 122 1.36 1.46 1.14
X3(P) 1867 842 988 1572 148 767 678 45
X34 892 389 528 742 78 402 303 24
X%(S,0.05) 680 298 425 571 64 322 235 20
XAW) 11042 2453 3774 5876 653 2349 762 60
F(W) 127 47 61 9 18 54 21 2.5
T-1-5, 39 30 33 33 24 27 24 18
r-T+s+2 31 40 37 37 46 43 46 52

The effect of sample design on the Pearson
statistic X7(P) is very severe for all the eight
hypotheses: estimated type I error rate of
0.54 or larger compared to nominal level
0.05. The first order correction X3(5 ) brings
the type I error rate down to the 0.12 - 0.17
range, but this is not entirely satisfactory due
to alarge Cg;, which is the coefficient of varia-
tion of the 8,«, ’s, for all the hypotheses. The
simple correction X3(P) / d., based on the
average cell deff d., independent of H,(l),
exhibits a less stable performance than
X3(8 ), the type I error rate ranging from
0.11 t0 0.25. It may be noted that X3(P)/ d_is
not conservative here, unlike in the two-way
table example of Part I.

The first correction X%(8*,) for testing
H,(4), which depends only on the deffs of
cell proportions and of their marginals, is
somewhat conservative relative to XE(SA) :
X3(8*,) = 17.6 compared to X3(8,) = 24
where 8*, = 2.55 using A*B|C as the hypoth-
eses “closest” to H,(4).

The second order correction X%(S,0.05)
for the no three-factor interaction hypothesis
is not significant at the 5% level (20.00 com-
pared to y35(0.05) = 28.87, the upper 5%
point of x> with 18 d.f.). The loglinear model
(2.1) with u;,3 = 0 thus seems to provide an
adequate fit to the data of Table 1. The
values of X%(S,0.05) for all the simpler
models, given in Table 2, are significant at
the 5% level.

The Wald statistic, X3(W), is unstable
here, leading to values larger than the unad-
justed X?(P) in all cases, and 3 to 5 times lar-
ger values in six cases out of eight. It may also
be noted that X3(W) is much larger than
X3%(S,0.05) in all cases. The instability of
X3(W) is caused by the fact that S;1(J) is
ill-conditioned (see Table 3 which gives the
largest and smallest eigenvalues, Ay, and
Amin and the condition number, Ay / Apin, Of
the matrix 24,(1)). The condition number for
all the eight hypotheses is larger than 1 000,
and larger than 10 000 for four of the hypoth-
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Table 3. Values of the Wald Statistic, X3(w), and the Smallest and Largest Eigenvalues and the
Condition Number of 2(1) for Eight Hypotheses

Independence hypotheses

Hy(1) H(2) Hy(3) Ho(4)
A*B*C  A*BC B*AC C*AB A*B|C  B*Cl|A A*C|B  u;u=0
3x4x4 Table
XHW) 11 042 2 453 3774 5 875 653 2 349 761 60
)vmin($¢(1)) 1.46x10* 7.52x10* 3.89x10* 3.21x10* 9.62x10* 8.14x10* 2.75x107 3.71x10;
kmax(Z:‘,q,(l)) 12.82 11.03 9.95 9.24 8.23 6.25 7.53 4.79
Amax / Mmin 87 832 14 676 25 664 28 790 8 551 7 680 2 738 1294
T-1-s, 39 30 33 33 24 27 24 18
2x3x3 Table
X3 (W) 752 202 733 384 132 365 78 9.7
X3(P) 900 420 655 698 199 467 252 31
7\min@¢(1)) 2.01x10° 5.30x10° 2.65x10° 2.67x10° 5.80x10° 4.53x10° 6.39x107 8.42x10°
)»max@(‘,(l)) 2.87x107" 2.41x107 2.77x10" 2.84x10" 1.88x10" 2.74x107 2.37x10! 1.87x10’
Amax ! Mnin 143 45 102 106 32 60 37 22
T-1-s, 12 8 10 10 6 8 6 4

eses, thus clearly indicating that ﬁ_&,'(l) is ill-
conditioned. The instability of X?(W) in the
3Xx4x4 table can be further demonstrated by
comparing its values with the corresponding
values from a smaller table (2x3X%3) ob-
tained by collapsing the original 3x4x4
table: variable B, three categories: monthly
or quarterly, less often, never; variable A,

two categories: secondary or less, some post-
secondary or post-secondary; variable C,
three categories: 15-24, 2544, 45-64.

The condition number of _ﬁq,(l) now ranges
from 22-143, thus indicating significant
improvement in the stability of X3(W) for the
smaller table.

The F-version of the Wald statistic, F(W),
for the 3x4 x4 table leads to some improve-
ment over X3(W), but it also suffers from

the instability problem (see Table 2). For
example, the value of F;(W) for the hypoth-
esis A*B*C is 127 compared to unadjust-
ed X3(P)/ (T-1-s)) = 1 867 /39 = 48.
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Appéndix

Estimated Variances and Covariances
of hy (1) for 1=1,2,3

The estimated variances and covariances of
(1) for [=1,2,3 are given by (2.4) of Part I
with z;, replaced by z;;([), where

Zijkht 1= {Bijk(ht) ~Dis+ ﬁ+,'+ B++k(ht)

Dy 4jPrrk Biv s

Div+ P B+j+(ht)

+ 2 Piss Piju Pk By }

~2, (B! oN) {aNijk DPivs Drri aN+j+

~

Pit+ Dij+ alN++k —Pjt Povk aNViv+

+ 2ﬁi++ﬁ+j+ﬁ++k N}, (A1)

Zijkht (2= {Bijk(ht) i+ Bijuan

P +jk Bis sy tDiv+ Prjx By }

- 2a (thl/aN) {aNiik _ﬁi++ aN+jk

Pk dNix+ FPiv+ Prjk N} (A2)

and

Djk
Zijkht 3)= {Bijk(ht)' — Bi+k(hr)
P++k

Pi+k

P++k

B jkny

P

—za(tht / aN) {aNi/k -

P++k

Di+k  » Pi+k P+jk
R a' ¥ +jk + A2
P++k P¥+k

N, (A3)

with obvious extention of notation used in
Part 1.

Standardized Residuals Under Multinominal
Sampling

The standardized residuals ey (/) for [=1,2,3
under multinominal sampling are given by
(Haberman (1973)).

e (1) = n'? [P —pijp (1]

[ﬁijk (1) {l‘ﬁi++ ﬁ+,'+ _ﬁi++ ﬁ++k

'15+j+ Disik + 2ﬁijk @™} ]-1/2, (A.4)

e (2) = n'? [P —bix (2) ]

PBix @) -pivs) (1-P4i) | (A.S)
and
e (3) = n" [Py —pix 3) ]

. Pk Pajic -
B 3) (1-=—) (1I-=—9) " (A.6)
P+ P++k

respectively.



