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We present a variant of Link-Tracing Sampling which avoids the ordinary assumption of an
initial Bernoulli sample of members of the target population. Instead of that, we assume that a
portion of the target population is covered by a sampling frame of accessible sites, such as
households, street blocks, or block venues, and that a simple random sample of sites is
selected from the frame. As in ordinary Link-Tracing sampling, the people in the initial
sample are asked to nominate other members of the population, but in this case we trace only
the links between the sampled sites and the nominees. Maximum likelihood estimators of the
population size are presented, and estimators of their variances that incorporate the initial
sampling design are suggested. The results of a simulation study carried out in this research
indicate that our proposed design is effective provided that the nomination probabilities are
not too small.
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population; maximum likelihood; model-based approach; sampling frame.

1. Introduction

Link-tracing sampling (LTS) has been proposed as an appropriate methodology for

sampling hidden and hard-to-access human populations, such as drug users, homeless

persons or undocumented worker populations. The basic idea behind this sampling

methodology is to start with an initial sample of people from the population of interest, and

then to increase the sample size by asking the people in the initial sample to nominate

other members of the population. The nominated people might in turn be asked to

nominate other members of the population, and so forth until a specified stopping rule is

satisfied. (See Spreen (1992), and Thompson and Frank (2000) for descriptions and

reviews of different variants of this sampling methodology.) For example, in a study of

injecting drug users in relation to the risk of HIV infection, a drug user often can refer

researchers to injecting and sexual partners and others in the at-risk population, so that

starting from an initial sample the sample can be built up by following these social links.
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For such studies, link-tracing sampling tends to produce a larger number of individuals

from a hidden population, in comparison with other sampling designs.

An attractive characteristic of LTS is that it allows the researcher to make valid model-

based inferences about a number of population parameters. For instance, model-based

estimation of the population size has been considered by Frank and Snijders (1994). These

authors have derived a number of estimators of the size of a hidden population from the

following two assumptions: (i) The initial sample is a Bernoulli sample; that is, persons are

independently included in the initial sample and with equal inclusion probabilities.

(ii) People are independently nominated by the persons in the initial sample and the

nominations are made with equal probabilities. Other models and inferences about other

parameters have been considered by other authors; for a review see Thompson and Frank

(2000).

Although valid model-based inferences can be made using LTS, one problem is that

model assumptions may not be realistic. For example, in real studies the assumption (i) of

Frank and Snijders (1994) is frequently violated because researchers often carry out the

initial recruitment by using health centers or police stations, so that members of the hidden

population may not be encountered independently or with equal probabilities.

In this article, we develop a variant of LTS which avoids the assumption of an initial

Bernoulli sample. We do that by supposing that a portion of the population of interest is

covered by a sampling frame of accessible sites where members of the population can be

found with high probability. An initial sample of sites (clusters) is selected by using an

ordinary cluster sampling design and, as in an ordinary LTS, persons in the initial sample

are asked to nominate other members of the population. However, because the sites are the

sampling units, instead of tracing links between initial responders and their nominees, we

follow the links between the clusters in the initial sample and the people nominated from

these clusters. Here, a person will be meant to be nominated by a cluster if any person in

the cluster nominates him or her.

The structure of the article is as follows. In Section 2, we describe the proposed

sampling design and present some of the notation to be used throughout the article. Next,

in Section 3, we describe a design-based estimator of the size of the population covered by

the sampling frame and which does not use the nomination information. In Section 4, we

present two models for the nomination probabilities, and under each model we derive

maximum likelihood estimators (MLE’s) of the population size, as well as model-based

and design-based estimators of their variances. Then, in Section 5, we describe the results

of two simulation studies carried out to explore the performance of the proposed sampling

strategy. Finally, in Section 6, we present some final remarks and some possible extensions

to our proposal.

2. Sampling Design and Notation

Let U ¼ {u1; : : : ; ut} be a finite hidden-human population of unknown size t. We will

assume that a portion of the population can be found in accessible sites, such as work

places, parks, hospitals, city-blocks, or households, and that a list of N of those accessible

sites can be constructed. We will also assume that we are able to define an operational rule

which allows us to determine whether or not a person belongs to one of the sites on the list,
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and in the affirmative case, to which site that person belongs (a person can belong to only

one site). Let U1 be the portion of U covered by the sampling frame (list), and let t1 be

its size. Let Ai be the i-th cluster (site) on the list and let mi be the number of members of

the population who belong to Ai, i ¼ 1; : : : ;N; so that t1 ¼
PN

1 mi: Let U2 ¼ U 2 U1 be

the portion of U not covered by the sampling frame, and let t2 ¼ t2 t1 be its size

(see Figure 1).

The sampling design is as follows. By using a simple random sampling without

replacement (SRSWOR) design a sample S0 ¼ {A1; : : : ;An} of n clusters is selected

from the sampling frame. (Although we are using as subscripts the integers 1; : : : ; n; this

does not mean that the first n clusters in the frame are the clusters in the sample.) We will

assume that each of the mi persons who belong to Ai [ S0 is identified. Thus, the number

of people in S0 is m ¼
Pn

1mi: Next, the persons who belong to the cluster Ai [ S0 are

asked to nominate other members of the population outside of Ai; that is, in U 2 Ai. This

nomination procedure is carried out in every cluster Ai [ S0; and we will say that a person

is nominated by a cluster if at least one of the members of the cluster nominates him or her.

We will assume that the nominations from different clusters are carried out independently,

but we will not assume that the same nomination strategy is used in every cluster.

(For instance, in cluster Ai, the mi members, as a group, might be asked to nominate other

members; whereas, in cluster Aj, each of the mj members might be separately asked to

nominate other members.) For each nominated person, we will assume that the following

information is obtained: the clusters that nominated him or her, and whether that person

belongs to a cluster in S0, or to a nonsampled cluster (a cluster in U1 2 S0), or to the

portion not covered by the sampling frame (U2) (see Figure 1).

Fig. 1. Population U divided into U1 and U2. Bold squares represent sampled clusters. From a sampled cluster

there might be three types of arcs: to a person in U2, to a person in a sampled cluster ðAi [ S0Þ and to a person in

U1 2 S0
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It is worth noting that this sampling design resembles that of Multiple Capture-

Recapture Sampling (MCRS). (See Otis et al. (1978) and the International Working Group

for Disease Monitoring and Forecasting (1995a, b) for reviews of this methodology in the

contexts of wildlife and human populations, respectively.) To see this, notice that in

MCRS the population of interest is sampled on a specified number of occasions, and the

elements captured (sampled) on any occasion are marked and then released to the

population so that they can be captured on different occasions. Thus, a cluster in our

sampling design corresponds to a sampling occasion in the context of MCRS. Similarly,

the people nominated by a cluster correspond to the elements captured on a sampling

occasion, and the probability that a person is nominated by a cluster corresponds to the

probability that an element is captured on an occasion. Furthermore, models similar to

those used in MCRS can be specified in our case, and consequently the estimators derived

under those models will resemble those used in MCRS. However, in our design we have

two additional complexities. The first one is that here the clusters are randomly selected,

whereas in MCRS the sampling occasions are fixed. The second one is that here an initial

sample of clusters is selected, and consequently a person can be included in the final

sample if either he or she belongs to a sampled cluster or he or she is nominated from a

sampled cluster, whereas in MCRS, an initial sample is not considered, and therefore an

element is in the sample only if it is captured on a sampling occasion. Thus, these two

factors introduce problems that are not found in MCRS.

We will end this section by introducing the matrix x ¼ ½xij� of indicator variables xij,

where xij ¼ 1 if person uj [ U is nominated by cluster Ai, and xij ¼ 0 otherwise. Because

we do not have a sampling frame of people, the labels of the individuals are not

observable; consequently, the matrix x is known only up to permutations of its columns.

For this reason, the xij’s will not be used for making inferences but only for defining

models. Inferences will be based on the observable set of counts yv, v # V ¼ {1; : : : ; n};

of the people who are nominated by every sampled cluster Ai with i in the set v – Y; but

not otherwise. (For instance, if v ¼ {1; 3; 9}; yv would be the number of people who are

nominated by only A1, A3 and A9.) The set of counts yv will be denoted by y. Other

variables will be used in this article, but they will be introduced as they are required.

3. A Design-based Estimator of t1

Because of the sampling design used to select the initial sample S0, we have that

�t1 ¼ Nm=n is a design-unbiased estimator of t1. The design-based variance of �t1 is

Vpð �t1Þ ¼ N 2 1 2
n

N

� � 1

n

1

N 2 1

XN

i¼1

mi 2
t1

N

� �2

and a design-unbiased estimator of Vpð �t1Þ is

�Vpð �t1Þ ¼ N 2 1 2
n

N

� � 1

n

1

n 2 1

Xn

i¼1

mi 2
�t1

N

� �2

The estimators �t1 and �Vpð �t1Þ have the attractive property of being free of model

assumptions; that is, regardless of the stochastic process that generated the mi’s, �t1 and
�Vpð �t1Þ should be reasonable estimators of t1 and Vpð �t1Þ; respectively. However, we do not
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expect �t1 to be an efficient estimator (in terms of variance) of t1, because it does not

incorporate the information about the nominations contained in the variables yv.

4. Maximum Likelihood Estimators of t1, t2, and t

Our goal is to estimate t1, t2 and t by using the information on both ms ¼ ðm1; : : : ;mnÞ

and y. We will do that by assuming stochastic models for the distributions of these

variables. Let us first consider the distribution of the cluster sizes. We will suppose that the

number of persons mi in Ai is a realization of a Poisson random variable Mi with mean l,

i ¼ 1; : : : ;N; and that the Mi’s are independently distributed. Although the assumed

distribution for the Mi’s might seem restrictive, we will later justify the robustness of the

proposed likelihood estimators to deviations from the assumed model. To have t1 as a

parameter, we will work with the conditional distribution of the Mi’s given thatPN
1 Mi ¼ t1: By a well-known property of the Poisson distribution, we have that the

conditional joint distribution of Ms ¼ ðM1; : : : ;MnÞ; given that
PN

1 Mi ¼ t1; is a

multinomial distribution with parameters t1 and {1=N}
n
1 [which will be denoted by

Multðt1; {1=N}
N
1 Þ�; that is,

f ðm1; : : : ;mnjt1Þ ¼
t1!

ðt1 2 mÞ!Pn
1 mi!

1 2
n

N

� �t12m 1

N

� �m

ð1Þ

It is worth noting that under this model, the estimator �t1; which should now be written as

�t1 ¼ NM=n; where M ¼
Pn

1Mi; is a maximum likelihood and an unbiased estimator of t1.

The model-based variance of �t1 is

Vð �t1Þ ¼ N 2 1 2
n

N

� � t1

Nn
ð2Þ

and the MLE of this variance is �Vð �t1Þ ¼ N 2ð1 2 n=NÞ �t1=Nn.

Therefore, the assumed model gives rise to an MLE of t1 that is robust to the

misspecification of the model. However, the model-based variance and variance estimator

are not robust to the misspecification of the model. In fact, if the Mi’s do not have the same

mean l, the value given by Expression (2) will be less than the actual variance.

We will now specify a model for the distribution of the indicator variables. First, we will

assume that given Mi ¼ mi; xij is the realization of a Bernoulli random variable Xij with

mean pij. Furthermore, we will assume that given Ms ¼ ms; the Xij’s are independently

distributed. Second, we will reduce the dimensionality of the vector of probabilities pij’s

by imposing an appropriate restriction on the pij’s. In this article we will consider the

following two models for the pij’s:

Model I: pij ¼ pi for every uj [ U 2 Ai; and

Model II: pij ¼ pð1Þ
i if uj [ U1 2 Ai and pij ¼ pð2Þ

i if uj [ U2

Notice that in the first model the pij’s only depend on the clusters, whereas in the

second one they depend on both the clusters and the regions in which the nominees are

located.

Clearly, other models might be assumed. For instance, if we supposed that the

persons in a cluster make independent nominations, each with probability p, then
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pij ¼ 1 2 ð1 2 pÞmi would be a reasonable model. As another example, we might suppose

that pij ¼ 1 2 expð2bmiÞ; which is the ordinary model assumed in catch-effort studies

(see Seber 1982, Ch. 7). However, because of the generality of Models I and II

(they do not need the specification of functional forms for the pij’s), we will focus on these

models.

4.1. Model I

The likelihood for t1, t2, and p ¼ ð p1; : : : ; pnÞ has two components: the conditional

distribution of Ms given t1 ¼
PN

1 mi; and the conditional distribution of Y given t1 and

Ms ¼ ms:The first component is given by (1). The second component can be factorized into

three factors which correspond to the three possible locations of the nominees: S0, U1 2 S0,

and U2. To obtain these factors, let Y1, Y2, and YAi
; Ai [ S0; be the sets of the variables Yv’s

that correspond to the counts of the people in U1 2 S0, U2, and Ai [ S0; respectively. The

sets of variables Y1, Y2, and YAi
; Ai [ S0; are conditionally distributed, given ms, as

Multðt1 2m; {Pv}v#V;QÞ;Multðt2;{Pv}v#V;QÞ; and Multðmi; {Pv}v#V2{i};Q=ð12 piÞÞ;

where Pv ¼ Pi[vpiPj�vð1 2 pjÞ; and Q ¼ Pn
i¼1ð1 2 piÞ: Then, following Darroch’s

(1958) approach, we get that the factors of the second component of the likelihood that

correspond to the locations S0, U1 2 S0, and U2 are the following:

L1ðt1; pjyA1
; : : : ; yAn

;msÞ /
Yn

i¼1

p
zð0Þ

i

i ð1 2 piÞ
m2mi2z

ð0Þ
i ð3Þ

L2ðt1; pjy1;msÞ /
ðt1 2 mÞ!

ðt1 2 m 2 r1Þ!

Yn

i¼1

p
zð1Þ

i

i ð1 2 piÞ
t12m2zð1Þ

i and ð4Þ

L3ðt2; pjy2;msÞ /
t2!

ðt2 2 r2Þ!

Yn

i¼1

p
zð2Þ

i

i ð1 2 piÞ
r22zð2Þ

i ð5Þ

where zð0Þi ; zð1Þi and zð2Þi are the observed values of the random variables, Zð0Þ
i ; Zð1Þ

i ; and Zð2Þ
i ;

that count the number of nominees in S0 2 Ai, U1 2 S0, and U2, respectively, who are

nominated by people in cluster Ai [ S0; i ¼ 1; : : : ; n; and r1 and r2 are the observed values

of the random variables, R1 and R2, that count the total number of nominees in U1 2 S0 and

U2, respectively.

Notice that the conditional distributions of Zð0Þ
i ; Zð1Þ

i and Zð2Þ
i ; given mi, are

bin(m 2 mi, pi), bin(t1 2 m, pi) and bin(t2, pi), respectively. Similarly, the conditional

distributions of R1 and R2, given m s, are bin(t1 2 m, 1 2 Q) and bin(t2, 1 2 Q),

respectively.

From the previous results, and the independence of the nominations, we have that the

likelihood function for t1, t2, and p is the product of (1), (3), (4), and (5).

To obtain the likelihood equations we will follow Darroch’s (1958) approach; that

is, the parameters t1, t2, and pi, i ¼ 1; : : : ; n; will be treated as continuous variables,

and the partial derivatives of the log-likelihood with respect to these parameters will

be computed (using the fact that for large x the derivative of ln x! is approximately

lnx) and will be set to zero. Doing this we obtain the following system of nonlinear
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equations:

p̂i ¼
Zi

t̂1 þ t̂2 2 Mi

; i ¼ 1; : : : ; n

t̂1 ¼
M þ R1

1 2 ð1 2 n=NÞPn
i¼1 ð1 2 p̂iÞ

ð6Þ

¼
M þ R1

1 2 ð1 2 n=NÞPn
i¼1 ½1 2 Zi=ðt̂1 þ t̂2 2 MiÞ�

ð7Þ

and

t̂2 ¼
R2

1 2Pn
i¼1 ð1 2 p̂iÞ

¼
R2

1 2Pn
i¼1 ½1 2 Zi=ðt̂1 þ t̂2 2 MiÞ�

ð8Þ

where Zi ¼ Zð0Þ
i þ Zð1Þ

i þ Zð2Þ
i is the random variable that counts the number of

nominees in U 2 Ai that are nominated from Ai, i ¼ 1; : : : ; n: (Notice that the

conditional distribution of Zi, given mi, is bin(t 2 mi, pi).)

The MLE’s t̂1 and t̂2 of t1 and t2 are obtained by solving the previous system of

equations, and the MLE of t is t̂ ¼ t̂1 þ t̂2:

Notice that the likelihood equations are very natural. For instance, p̂i is the ratio of the

number of people in U 2 Ai who are nominated by persons in Ai to the estimated number

of people in U 2 Ai, and t̂1 is the ratio of the number of people in U1 who are in the final

sample to an estimate of the final sample inclusion-probability (see Equation (6)).

Now, if t̂ is large enough so that p̂i ¼ Zi=ðt̂2 MiÞ < Zi=t̂; then from (7) we have that

t̂1 <
ðn=NÞ �t1 þ R1

1 2 ð1 2 n=NÞPn
i¼1 ð1 2 Zi=t̂ Þ

Therefore, t̂1 depends on the Mi’s mainly through �t1; and since �t1 is robust to the

misspecification of the distribution of the Mi’s, we should expect t̂1 to have this property

too. Similarly, since t̂2 and t̂ depend on the Mi’s through t̂1; we also expect these

estimators to be robust to deviations from the assumed distribution of the Mi’s.

Approximations to the model-based variances of t̂1; t̂2 and t̂ can be obtained by using

the formula

Vðt̂ Þ ¼ Vj½Ej ðt̂jmsÞ� þ Ej½Vj ðt̂jmsÞ� ð9Þ

where Ej ð · jmsÞ and Vj ð · jmsÞ denote the conditional model-based expectation and

variance operators, given Ms ¼ ms; and Ej ð · Þ and Vj ð · Þ denote the model-based

expectation and variance operators computed with respect to the conditional distribution

of the Mi’s given that t1 ¼
PN

1 mi:

From Equations (7) and (8), we have that t̂1; t̂2 and t̂ are functions of

ws ¼ ðMs;Zs;R1;R2Þ; where Zs ¼ ðZ1; : : : ; ZnÞ: Therefore, using the first-order Taylor

approximations to these estimators about Ej (ws) (the model-based conditional expectation

of ws given t1) and applying (9) to these approximations, we get

Vj ðt̂1Þ < E21ðC 2 DÞ; Vj ðt̂2Þ < E21ðB 2 DÞ; and Vj ðt̂ Þ < E21ðB þ CÞ
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where E ¼ B £ C 2 ðB þ CÞ £ D;

B ¼
1 2 ð1 2 n=NÞQ

t1ð1 2 n=NÞQ
; C ¼

1 2 Q

t2Q
; and D ¼

1

t2 t1=N

Xn

1

pi

1 2 pi

Even though variance estimators can be obtained by replacing the unknown quantities in

the expressions for the variances by their respective estimators, we will use the alternative

estimators obtained by using the variant of the Delta method suggested by Binder (1996).

In this variant, the derivatives that appear in the Taylor expansion are evaluated at

the observed values of the variables instead of at their expected values; however, the

derivatives are treated as constants (as in the ordinary Delta method). This approach yields

variance estimators that are still less model dependent than those obtained by the ordinary

Delta method.

Thus, using the Taylor approximations to t̂1; t̂2 and t̂; with the derivatives evaluated at

ws, replacing the unknown parameters by their estimators, and applying (9) to the

approximations, we obtain that model-based estimators of the variances are

V̂j ðt̂1Þ ¼ E21
s ðCs 2 DsÞ; V̂j ðt̂2Þ ¼ E21

s ðBs 2 DsÞ; and V̂j ðt̂ Þ ¼ E21
s ðBs þ CsÞ

where Es ¼ Bs £ Cs 2 ðBs þ CsÞ £ Ds;

Bs ¼
M þ R1

t̂1ðt̂1 2 M 2 R1Þ
; Cs ¼

R2

t̂2ðt̂2 2 R2Þ
; and Ds ¼

Xn

1

p̂i

1 2 p̂i

1

t̂2 Mi

We expect t̂1; t̂2 and t̂ to be robust to the misspecification of the distribution of the

Mi’s; however, we do not expect their model-based variances and model-based variance

estimators to be unaffected by deviations from this distribution. Therefore, our goal is

to derive approximations to the variances of these estimators, as well as estimators of

their variances, which are more robust to model misspecifications than the previous

ones. Our strategy is to compute approximate variances and variance estimators by

replacing, whenever possible, the assumption on the distribution of the Mi’s by the

design-based distribution used to select the initial sample S0. This strategy is not new,

and it has been used by Wolter (1986) in the context of estimating the census

undercount.

The initial sampling design will be incorporated in the variances and variance

estimators by replacing in (9) the model-based expectation and variance operators Ej ð · Þ

and Vj ð · Þ by their corresponding design-based operators Epð · Þ and Vpð · Þ which are

computed with respect to the distribution used to select the initial sample.

Let us first derive an approximation to the variance of t̂1; as well as an estimator of its

variance. Using the first-order Taylor approximation to t̂1 about Ej ðwsÞ we get that

Ej ðt̂1jmsÞ < a1m þ c1; where c1 does not depend on the mi’s, and a1 ¼ ½E21ðC 2 DÞ�=

½t1ð1 2 n=NÞ�: Then, treating a1 and c1 as constants with respect to the distribution used to

select S0, we have

Vp½Ej ðt̂1jmsÞ� < n 1 2
n

N

� � a2
1

N 2 1

XN

1

mi 2
t1

N

� �2

ð10Þ
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Using again the first-order Taylor approximation to t̂1; we get that

Vj ðt̂1jmsÞ<E22 C 2 1

ðt2 t1=NÞ2

Xn

1

pi

12pi

ðt2miÞ22D
t1 2m

t1ð12n=NÞ

" #(

2C£D2 122
t1 2m

t1ð12n=NÞ

� �
þðC2DÞ2 £C£

t2ðt1 2mÞ

½t1ð12n=NÞ�2


ð11Þ

Therefore, by (9) an approximation to Vðt̂1Þ is obtained by summing (10) and the design-

based expectation of (11).

A design-based estimator of Vðt̂1Þ is obtained by using Binder’s (1996) approach.

Following that strategy we obtain that an estimator of Ej ðt̂1jmsÞ2 c1 is â1m; where

â1 ¼ ½E21
s ðCs 2 DsÞQ̂�=ðt̂1 2 M 2 R1Þ; and Q̂ ¼ Pn

1ð1 2 p̂iÞ: Consequently an estimator

of Vp½Ej ðt̂1jmsÞ� is

V̂11 ¼ n 1 2
n

N

� � â2
1

n 2 1

Xn

1

ðmi 2 �mÞ2 ð12Þ

where �m ¼ m=n; and an estimator of Ep½Vj ðt̂1jmsÞ� is

V̂12 ¼ E22
s C2

s Ds 1 2
2ðt̂1 2 mÞQ̂

t̂1 2 m 2 R1

� �
þ D2

s

t̂2Q̂ð1 2 Q̂Þ

ðt̂2 2 R2Þ
2

�

þ ðCs 2 DsÞ
2 ðt̂1 2 mÞQ̂ð1 2 Q̂Þ

ðt̂1 2 m 2 R1Þ
2

þ 2CsD
2
s Q̂

t̂2R1 2 ðt̂1 2 mÞR2

ðt̂1 2 m 2 R1Þðt̂2 2 R2Þ



Therefore, V̂ðt̂1Þ ¼ V̂11 þ V̂12 is an estimator of Vðt̂1Þ:

An approximation to the variance of t̂2; as well as an estimator of its variance, can be

derived using the same analysis as that used in the case of t̂1: Thus, an approximation to

Vp½Ej ðt̂2jmsÞ� is given by (10) but replacing a1 by a2 ¼ ðE21DÞ=½t1ð1 2 n=NÞ�:

Similarly, an approximation to Vj ðt̂2jmsÞ is

Vj ðt̂2jmsÞ < E22 B2 1

ðt2 t1=NÞ2

Xn

1

pi

1 2 pi

ðt2 miÞ2 2D

" #
þ 2B £ D2

(

£ 1 2
t1 2 m

t1ð1 2 n=NÞ

� �
þ C £ D2 £

t2ðt1 2 mÞ

½t1ð1 2 n=NÞ�2
þ CðB 2 DÞ2


ð13Þ

Therefore, by (9) an approximation to Vðt̂2Þ is obtained by summing Vp½Ej ðt̂2jmsÞ� and

the design-based expectation of (13).

An estimator V̂21 of Vp½Ej ðt̂2jmsÞ� is given by (12) but replacing â1 by

â2 ¼ ðE21
s DsQ̂Þ=ðt̂1 2 M 2 R1Þ:
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Similarly, an estimator of Ep½Vj ðt̂2jmsÞ� is

V̂22 ¼ E22
s B2

s Ds 1 2
2t̂2Q̂

t̂2 2 R2

� �
þ D2

s

ðt̂1 2 mÞQ̂ð1 2 Q̂Þ

ðt̂1 2 m 2 R1Þ
2

�

þðBs 2 DsÞ
2 t̂2Q̂ð1 2 Q̂Þ

ðt̂2 2 R2Þ
2
þ 2BsD

2
s Q̂

ðt̂1 2 mÞR2 2 t̂2R1

ðt̂1 2 m 2 R1Þðt̂2 2 R2Þ



Thus V̂ðt̂2Þ ¼ V̂21 þ V̂22 is an estimator of Vðt̂2Þ:

Applying the previous approach to t̂ we obtain that an approximation to Vp½Ej ðt̂jmsÞ�

is given by (10) but replacing a1 by a1 þ a2.

An approximation to Vj ðt̂jmsÞ is

Vj ðt̂jmsÞ < Vj ðt̂1jmsÞ þ Vj ðt̂2jmsÞ þ 2E22 B £ C

ðt2 t1=NÞ2

Xn

1

pi

1 2 pi

ðt2 miÞ

(

2DðC 2 DÞ
ðt1 2 mÞn=N

½t1ð1 2 n=NÞ�2
2 D2 B þ C £

t1 2 m

t1ð1 2 n=NÞ

� �
ð14Þ

Thus, an approximation to Vðt̂ Þ is obtained by summing Vp½Ej ðt̂jmsÞ� and the design-

based expectation of (14).

An estimator V̂1 of V½Eðt̂jmsÞ� is given by (12) but replacing â1 by â1 þ â2: Similarly,

an estimator of Vj ðt̂jmsÞ is

V̂2 ¼ V̂12 þ V̂22 þ 2E22
s BsCsDs 2 DsðCs 2 DsÞ

ðt̂1 2 mÞQ̂

t̂1 2 m 2 R1

Bs 2
1 2 Q̂

t̂1 2 m 2 R1

� ��

2DsðBs 2 DsÞ
t̂2Q̂

t̂2 2 R2

Cs 2
1 2 Q̂

t̂2 2 R2

� �
2 D2

s Q̂
Bst̂2

t̂2 2 R2

þ
Csðt̂2 2 mÞ

t̂1 2 m 2 R1

� �

Thus V̂ðt̂ Þ ¼ V̂1 þ V̂2 is an estimator of Vðt̂ Þ:

4.2. Model II

In this case the parameters of interest are t1; t2; pð1Þ ¼ ð pð1Þ
1 ; : : : ; pðnÞ

n Þ and

pð2Þ ¼ ðpð2Þ
1 ; : : : ; pð2Þ

n Þ: The likelihood function for these parameters can be constructed

using the same approach as that used in the case of Model I. Using that approach, we

obtain that the three factors of the second component of the likelihood function are still

given by (3), (4), and (5) but replacing pi by pð1Þ
i in (3) and (4), and pi by pð2Þ

i in (5). Notice

that now the conditional distributions of Zð0Þ
i ; Zð1Þ

i and Zð2Þ
i are binðm 2 mi; pð1Þ

i Þ;

binðt1 2 m; pð1Þ
i Þ and binðt2; pð2Þ

i Þ; respectively. Similarly, the conditional distributions of

R1 and R2, given ms, are bin(t1 2 m, 1 2 Q1) and bin(t2, 1 2 Q2), respectively, where

Q1 ¼ Pn
i¼1 1 2 pð1Þ

i

� �
and Q2 ¼ Pn

i¼1 1 2 pð2Þ
i

� �
:

As in the case of Model I, the likelihood function for t1, t2, p (1) and p (2) is given by the

product of (1), (3), (4), and (5). Likewise, using Darroch’s approach we obtain the
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following likelihood equations:

~p
ð1Þ
i ¼

Zð01Þ
i

~t1 2 Mi

; ~p
ð2Þ
i ¼

Zð2Þ
i

~t2

; i ¼ 1; : : : ; n

~t1 ¼
M þ R1

1 2 ð1 2 n=NÞPn
i¼1 1 2 Zð01Þ

i =ð ~t1 2 MiÞ
� � ð15Þ

and

~t2 ¼
R2

1 2Pn
i¼1 1 2 Zð2Þ

i = ~t2

� � ð16Þ

where Zð01Þ
i ¼ Zð0Þ

i þ Zð1Þ
i :

The MLE’s ~t1 and ~t2 of t1 and t2 are obtained by solving Equations (15) and (16),

respectively, and the MLE of t is ~t ¼ ~t1 þ ~t2:

Similarly to the case of Model I, the likelihood equations are very natural. Also, from

(15) we can see that if ~t1 is large enough so that ~p
ð1Þ
i ¼ Zð01Þ

i =ð ~t1 2 MiÞ < Zð01Þ
i = ~t1; then

we should expect ~t1; and consequently ~t; to be robust to deviations from the assumed

distribution of the Mi’s. Furthermore, since ~t2 is not a function of the Mi’s, it is also robust

to deviations from the hypothesized joint distribution of the Mi’s.

Approximations to the model-based variances of ~t1 and ~t2 can be obtained using the

same approach as that used in the case of Model I. From (15) and (16), we have that ~t1 and

~t2 are functions of wð1Þ
s ¼ ðMs;Zð01Þ

s ;R1Þ and wð2Þ
s ¼ ðZð2Þ

s ;R2Þ; respectively, where

Zð01Þ
s ¼ ðZð01Þ

1 ; : : : ; Zð01Þ
n Þ and Zð2Þ

s ¼ ðZð2Þ
1 ; : : : ; Zð2Þ

n Þ: Therefore, using the first-order

Taylor approximations to ~t1 and ~t2 about Ej wð1Þ
s

� �
and Ej wð2Þ

s

� �
; respectively, and

applying (9) to these approximations, we get that

Vj ð ~t1Þ < K21
1 t1 and Vj ð ~t2Þ < K21

2 t2

where K1 ¼ F1 2 G1; K2 ¼ F2 2 G2; F1 ¼ ½1 2 ð1 2 n=NÞQ1�=½ð1 2 n=NÞQ1�;

F2 ¼ ð1 2 Q2Þ=Q2;

G1 ¼
N

N 2 1

Xn

1

pð1Þ
i

1 2 pð1Þ
i

and G2 ¼
Xn

1

pð2Þ
i

1 2 pð2Þ
i

Since we have that Ej ð ~t2jmsÞ < t2; then Covj ð ~t1; ~t2Þ < 0; and consequently

Vj ð ~t Þ < Vj ð ~t1Þ þ Vj ð ~t2Þ:

Estimators of these variances obtained using Binder’s (1996) approach are

~Vj ð ~t1Þ ¼ K21
1s ;

~Vj ð ~t2Þ ¼ K21
2s ~t2; and ~Vj ð ~tÞ ¼ ~Vj ð ~t1Þ þ ~Vj ð ~t2Þ

where K1s ¼ F1s 2 G1s; K2s ¼ F2s 2 G2s; F1s ¼ ðM þ R1Þ=½ ~t1ð ~t1 2 M 2 R1Þ�;

F2 ¼ R2=ð ~t2 2 R2Þ;

G1s ¼
Xn

1

~p
ð1Þ
i

1 2 ~p
ð1Þ
i

1

~t1 2 Mi

and G2s ¼
Xn

1

~p
ð2Þ
i

1 2 ~p
ð2Þ
i

We can obtain approximations to the variances of ~t1; ~t2; and ~t; as well as variance

estimators, which are more robust to the misspecification of the distribution of the Mi’s

Félix-Medina and Thompson: Combining Link-Tracing Sampling and Cluster Sampling 29



than the previous ones by using the same approach as that used in Model I. Thus, using the

first order Taylor approximation to ~t1 about Ejðw
ð1Þ
s Þ; we obtain that an approximation to

Vp½Ej ð ~t1jmsÞ� is given by (10) but replacing a1 by b1 ¼ N=½K1ðN 2 nÞ�; and that an

approximation to Vj ð ~t1jmsÞ is given by

Vj ð ~t1jmsÞ < K22
1

ðt1 2 mÞð1 2 Q1Þ

ð1 2 n=NÞ2Q1

2
2ðt1 2 mÞ

1 2 n=N
2 t1

� �
G1

� 
ð17Þ

Therefore, an approximation to Vð ~t1Þ is obtained by summing Vp½Ej ð ~t1jmsÞ� and the

design-based expectation of (17).

An estimator ~V11 of Vp½Ej ð ~t1jmsÞ� is given by (12) but replacing â1 by
~b1 ¼ ~Q1=½K1s £ ð ~t1 2 M 2 R1Þ�; where ~Q1 ¼ Pn

i¼1½1 2 ~p
ð1Þ
i �:

Similarly, we have that an estimator of Ep½Vj ð ~t1jmsÞ� is

~V12 ¼ K22
1s

ð ~t1 2 mÞ ~Q1ð1 2 ~Q1Þ

ð ~t1 2 m 2 R1Þ
2

2
2ð ~t1 2 mÞ ~Q1

~t1 2 m 2 R1

2 1

� �
G1s

� 

Thus, ~Vð ~t1Þ ¼ ~V11 þ ~V12 is an estimator of Vð ~t1Þ:

In the case of ~t2; we have that Vp½Eð ~t2jmsÞ� < 0; and Vj ð ~t2jmsÞ ¼ K21
2 t2; which is

exactly the same as the model-based variance Vj ð ~t2Þ: Therefore, Vð ~t2Þ is the design-based

expectation of Vj ð ~t2jmsÞ; and a variance estimator of Vð ~t2Þ is ~Vð ~t2Þ ¼ K21
2s ~t2; which is the

same as the model-based estimator ~Vj ð ~t2Þ:

An approximation to the variance of ~t is Vð ~t Þ < Vð ~t1Þ þ Vð ~t2Þ; and a design-based

estimator of Vð ~t Þ is ~Vð ~t Þ ¼ ~Vð ~t1Þ þ ~Vð ~t2Þ:

5. Monte Carlo Studies

In order to observe the performances of the estimators derived in the previous section, two

simulation studies were carried out. The first study was based on data obtained from a real

study. The second one, which was more extensive than the first one, was based on data

obtained from simulated populations.

5.1. Monte Carlo study based on the Nuevo Laredo sex worker population

In the Nuevo Laredo study on high-risk behavior in relation to HIV/AIDS transmission

(Valdez 2000), a sampling frame of N ¼ 107 venues (bars, clubs, and other

establishments) where sex workers can be found with high probability was constructed.

The sampling frame was divided into eleven strata, which were formed taking into account

the characteristics and locations of the venues. A stratified sample of n ¼ 27 venues was

selected, and an average of about two sex workers were interviewed in each sampled

venue. The median of the numbers of people in the target population nominated by the

interviewed sex workers was 20. It is worth noting that the sampling design used in this

study was not the same as that considered in this article. In particular, in the study the

sample of sites was stratified and the responders only indicated the number of sex workers

known by them, but the nominees were not identified. However, the information contained

in the study allowed us to set realistic values to the population parameters used in this

numerical study.
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From the results of the study we set the following values to the parameters used in

this simulation study: N ¼ 107; {mi}
N
1 ¼ {5; : : : ;5 ð18 timesÞ; 6; : : : ;6 ð16 timesÞ;

8; : : : ;8 ð33 timesÞ; 9;9;9;10; : : : ;10 ð5 timesÞ; 11;11;11;15;15;22; : : : ;22 ð6 timesÞ;

23; : : : ; 23 ð5 timesÞ; 25; 25; 25; 26; 26; 26; 27; : : : ; 27 ð5 timesÞ; 36; 36; 36; 37; 37};

t1 ¼ 1307; t2 ¼ 1193; t ¼ 2500; n ¼ 27; and pð1Þ
i ¼ pð2Þ

i ¼ :016; i ¼ 1; : : : ; n:

The simulation study was executed as follows. From the finite population of N ¼ 107

values of the mi’s, r ¼ 10,000 samples of n ¼ 27 values were selected using an SRSWOR

design. For cluster Ai, in the sample, the values of the indicator variables Xij’s, were

generated using t2 independent identically distributed Bernoulli random variables with

mean pð2Þ
i ; and t1 2 mi independent identically distributed Bernoulli random variables

with mean pð1Þ
i :

The six estimators t̂1; t̂2; t̂; ~t1; ~t2; and ~t; their respective model-based and design-based

variance estimators, and their corresponding 95% normal-based confidence interval

estimators were considered. The performances of an estimator t̂ and a variance estimator

V̂ðt̂ Þ were evaluated by their simulation relative-biases (r-bias) and the square root of their

simulation relative mean squared error (r-mse), defined as r–bias ¼
Pr

1ðûi 2 uÞ=ðruÞ andffiffiffiffiffiffiffiffiffiffiffiffiffi
r–mse

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
1ðûi 2 uÞ2=ðru2Þ

q
; where ûi; is the value of t̂ or V̂ðt̂ Þ obtained in the i-th

replication, and u is the value of t or that of the simulation variance of V̂ðt̂ Þ: Finally,

the performance of a confidence interval estimator t̂^ 1:96
ffiffiffiffiffiffiffiffiffiffi
V̂ðt̂ Þ

p
was evaluated by

its simulation relative frequency of coverage, and by the simulation mean of its

semi-length.

The results of the numerical study (Tables 1 and 2) indicate that every one of the

estimators of the population size performed very well. They all are practically unbiased

and the squared roots of their mean squared errors are less than 0.1. Notice that even

though the simulation study was carried out using the assumption that pð1Þ
i ¼ pð2Þ

i ; the

performances of the estimators derived under the assumption that the probabilities are not

necessarily equal were almost as good as those derived under the assumption of equal

probabilities.

With respect to the performances of the variance estimators, we have that the model-

based variance estimators behaved very badly, whereas the design-based estimators

performed very well. The model-based estimators greatly underestimated the actual

variances (except ~Vj ð ~t2Þ; which is also a design-based estimator), and their biases affected

the performances of the confidence intervals. The poor behaviors of these estimators were

consequences of the fact that the Mi’s were not distributed as Poisson random variables.

On the other hand, the design-based estimators were practically unbiased, and the relative

frequencies of coverage of the confidence intervals were close to 95. Thus, according to

Table 1. Simulation results for the population of sex workers in Nuevo Laredo: Estimators of population size.

First entry in each cell is r-bias, second entry is
ffiffiffiffiffiffiffiffiffiffiffi
r-mse

p

Cluster-element link probability t̂1 t̂2 t̂ ~t1 ~t2 ~t

E½pð1Þ
i � ¼ :016 .002 .002 .002 .002 .008 .005

E½pð2Þ
i � ¼ :016 .065 .067 .060 .071 .092 .057
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Table 2. Simulation results for the population of sex workers in Nuevo Laredo: Variance estimators

Model

based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length

Design

based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length

V̂jðt̂1Þ 2 .735 .736 .686 85.2 V̂ðt̂1Þ 2 .007 .307 .930 163.2

V̂jðt̂2Þ 2 .319 .338 .889 128.9 V̂ðt̂2Þ .001 .236 .943 155.7

E½pð1Þ
i � ¼ :016 V̂jðt̂ Þ 2 .616 .619 .776 181.5 V̂ðt̂ Þ 2 .002 .290 .931 290.3

E½pð2Þ
i � ¼ :016 ~Vjð ~t1Þ 2 .755 .755 .668 89.5 ~Vð ~t1Þ 2 .008 .320 .925 177.8

~Vjð ~t2Þ 2 .004 .322 .950 211.9
~Vjð ~t Þ 2 .314 .367 .895 230.5 ~Vð ~t Þ 2 .004 .230 .946 278.4 Jo

u
rn
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the results of this study, we have that the model-based variance estimators are very

sensitive to deviations from the Poisson distribution.

5.2. Monte Carlo study based on simulated populations

This study was more extensive than the previous one, but because of the limited number of

situations considered, the character of the study was still exploratory. Four finite

populations of N ¼ 250 values of Mi’s were generated. A description of each of those

finite populations is presented in Table 3.

The nomination probabilities p
ð jÞ
i ; j ¼ 1; 2; were obtained by means of the model

p
ð jÞ
i ¼ 1 2 expð2bjmiÞ; where the values of bj were set so that the specified values of

Eðp
ð jÞ
i Þ were obtained. This Monte Carlo study was carried out similarly to the previous

one. Although several situations were considered in this study, because of limitations of

space only some selected results are shown in Tables 4 to 6.

A summary of the results of the estimators of the population sizes (Table 4) follows:

– The use of the Negative binomial distribution as the distribution of the cluster sizes

did not have a serious effect on the performances of the estimators.

– The violation of the assumption pð1Þ
i ¼ pð2Þ

i affected the unbiasedness of the

estimators derived under this assumption. The biases of these estimators were large

enough to affect the coverage properties of their corresponding confidence intervals.

– The average value of the nomination probabilities had a great effect on the

performance of the estimator ~t2; and a moderate effect on the performances of the

other estimators. When both the probabilities and the initial sample size were small

ðpð2Þ
i < :01 and n ¼ 20Þ; ~t2 was highly variable and excessively overestimated t2.

Its performance improved considerably when the sample size was increased

ðn ¼ 50Þ; but it was not good enough to yield good estimates of t2. Finally, when the

probabilities were large (about .05), its performance was good regardless of the

sample size. The behavior of ~t was affected by the behavior of ~t2: The performances

of the other estimators were not greatly affected by the size of the probabilities.

– The fraction of coverage of the sampling frame did not have a great effect on the

performances of the estimators t̂ and ~t: However, these estimators performed

slightly better in the case in which the fraction of coverage of the sampling frame was

large, t1=t < 0:8; (and omitting the case in which ~t2 performed very badly), than in

the case in which the fraction of coverage was small, t1=t < 0:4:

Table 3. Simulated finite populations

Population I Population II Population III Population IV

Mi Poisson Mi Neg. binomial Mi Poisson Mi Neg. binomial
EðMiÞ ¼ 8 EðMiÞ ¼ 8 EðMiÞ ¼ 4 EðMiÞ ¼ 4
VðMiÞ ¼ 8 VðMiÞ ¼ 29:33 VðMiÞ ¼ 4 VðMiÞ ¼ 12
t1 ¼ 2,002 t1 ¼ 2,023 t1 ¼ 980 t1 ¼ 1,011
t2 ¼ 500 t2 ¼ 500 t2 ¼ 1,500 t2 ¼ 1,500
t ¼ 2,502 t ¼2,523 t ¼ 2,480 t ¼ 2,511
t1=t ¼ :8 t1=t ¼ :8 t1=t ¼ :4 t1=t ¼ :4
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Table 4. Simulation results for the estimators of the population sizes. First entry in each cell is r-bias, second entry is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r–mse

p

Population I Population II

n t̂1 t̂2 t̂ ~t1 ~t2 ~t t̂1 t̂2 t̂ ~t1 ~t2 ~t

E½ pð1Þ
i � ¼ :01 20 2 .002 .002 2 .001 2 .002 .407 .080 2 .007 2 .006 2 .007 2 .007 1.32 .256

.063 .118 .065 .064 14.08 2.81 .104 .138 .104 .107 31.3 6.19
E½ pð2Þ

i � ¼ :01 50 2 .001 2 .000 2 .001 2 .001 .013 .002 2 .003 2 .002 2 .002 2 .003 .013 .000
.030 .063 .030 .030 .122 .034 .043 .068 .043 .045 .123 .043

E½ pð1Þ
i � ¼ :05 20 2 .001 2 .000 2 .001 2 .001 .002 2 .000 2 .004 2 .003 2 .004 2 .004 .001 2 .003

.022 .038 .021 .023 .054 .021 .025 .039 .024 .027 .055 .024
E½ pð2Þ

i � ¼ :05 50 2 .000 .000 2 .000 2 .000 .000 2 .000 2 .000 2 .000 2 .000 2 .000 .000 2 .000
.006 .013 .006 .006 .015 .006 .006 .013 .006 .007 .014 .006

E½ pð1Þ
i � ¼ :02 20 .020 2 .436 2 .071 2 .002 .530 .105 .013 2 .440 2 .077 2 .008 1.46 .283

.053 .441 .085 .048 21.2 4.24 .073 .446 .102 .071 35.7 7.07
E½ pð2Þ

i � ¼ :01 50 .020 2 .361 2 .056 2 .001 .009 .001 .019 2 .360 2 .056 2 .002 .012 .001
.028 .363 .059 .019 .122 .029 .030 .362 .061 .023 .124 .031

E½ pð1Þ
i � ¼ :07 20 .019 2 .144 2 .013 2 .000 .003 .000 .017 2 .144 2 .015 2 .002 .002 2 .001

.025 .148 .020 .016 .054 .017 .024 .149 .023 .017 .055 .018
E½ pð2Þ

i � ¼ :05 50 .005 2 .046 2 .005 2 .000 .000 2 .000 .004 2 .046 2 .005 2 .000 .000 2 .000
.006 .048 .007 .003 .015 .004 .006 .048 .007 .004 .015 .004

Population III Population IV

n t̂1 t̂2 t̂ ~t1 ~t2 ~t t̂1 t̂2 t̂ ~t1 ~t2 ~t

E½ pð1Þ
i � ¼ :01 20 2 .005 2 .000 2 .002 2 .004 .038 .021 2 .011 2 .008 2 .009 2 .009 .040 .021

.086 .109 .092 .095 .216 .134 .118 .125 .115 .134 .228 .142
E½ pð2Þ

i � ¼ :01 50 2 .001 2 .000 2 .001 2 .001 .004 .002 2 .003 2 .002 2 .002 2 .004 .005 .002
.040 .050 .040 .044 .071 .046 .049 .052 .045 .057 .068 .046

E½ pð1Þ
i � ¼ :05 20 2 .002 2 .001 2 .001 2 .002 .001 2 .001 2 .004 2 .002 2 .003 2 .006 .000 2 .002

.028 .027 .023 .034 .032 .023 .031 .028 .024 .038 .032 .024
E½ pð2Þ

i � ¼ :05 50 2 .000 2 .000 2 .000 2 .000 2 .000 2 .000 2 .001 2 .000 2 .000 2 .001 2 .000 2 .000
.009 .008 .006 .009 .009 .006 .009 .008 .006 .009 .009 .006

E½ pð1Þ
i � ¼ :02 20 .098 2 .381 2 .192 2 .005 .035 .020 .089 .385 2 .194 2 .013 .040 .019

.123 .386 .201 .072 .221 .135 .132 .391 .208 .092 .230 .139
E½ pð2Þ

i � ¼ :01 50 .095 2 .295 2 .141 2 .001 .005 .003 .092 2 .293 2 .138 2 .003 .004 .001
.100 .296 .143 .028 .072 .045 .097 .295 .141 .031 .069 .043

E½ pð1Þ
i � ¼ :07 20 .075 2 .094 2 .028 2 .001 2 .000 2 .001 .070 2 .094 2 .028 2 .004 .001 2 .001

.078 .097 .034 .023 .032 .021 .074 .098 .035 .025 .032 .022
E½ pð2Þ

i � ¼ :05 50 .020 2 .031 2 .011 2 .000 2 .000 2 .000 .018 2 .029 2 .010 2 .000 .000 2 .000
.021 .032 .012 .005 .009 .006 .019 .031 .012 .005 .009 .006

Jo
u

rn
a

l
o

f
O

ffi
cia

l
S

ta
tistics

3
4



Table 5. Simulation results for Population I: Variance estimators

Model
based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length
Design
based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length

n ¼ 20

E½pð1Þ
i � ¼ :01

E½pð2Þ
i � ¼ :01

V̂j ðt̂1Þ 2 .040 .080 .945 241.4 V̂ðt̂1Þ 2 .014 .216 .942 243.4
V̂j ðt̂2Þ .011 .186 .948 115.9 V̂ðt̂2Þ .016 .192 .948 116.3
V̂j ðt̂ Þ 2 .033 .095 .946 312.6 V̂ðt̂ Þ 2 .007 .204 .944 315.4
~Vj ð ~t1Þ 2 .043 .082 .943 245.8 ~Vð ~t1Þ 2 .018 .223 .942 247.7
~Vj ð ~t2Þ 85.5 5,891 .932 2,626
~Vj ð ~t Þ 85.6 5,897 .959 2,711 ~Vð ~t Þ 85.6 5,897 .959 2,713

n ¼ 20

E½pð1Þ
i � ¼ :05

E½pð2Þ
i � ¼ :05

V̂j ðt̂1Þ 2 .020 .160 .948 84.8 V̂ðt̂1Þ 2 .030 .157 .947 84.4
V̂j ðt̂2Þ 2 .030 .154 .944 36.7 V̂ðt̂2Þ 2 .031 .153 .944 36.7
V̂j ðt̂ Þ 2 .021 .169 .948 102.3 V̂ðt̂ Þ 2 .027 .164 .948 102.0
~Vj ð ~t1Þ 2 .025 .163 .947 88.9 ~Vð ~t1Þ 2 .030 .158 .946 88.7
~Vj ð ~t2Þ 2 .003 .304 .949 51.8
~Vj ð ~t Þ 2 .014 .177 .951 103.0 ~Vð ~t Þ 2 .017 .172 .950 102.9

n ¼ 20

E½pð1Þ
i � ¼ :02

E½pð2Þ
i � ¼ :01

V̂j ðt̂1Þ 2 .039 .093 .930 188.2 V̂ðt̂1Þ 2 .044 .143 .929 187.5
V̂j ðt̂2Þ 2 .211 .249 .000 54.3 V̂ðt̂2Þ 2 .212 .249 .000 54.3
V̂j ðt̂ Þ 2 .085 .122 .619 215.1 V̂ðt̂ Þ 2 .087 .156 .615 214.5
~Vj ð ~t1Þ 2 .033 .094 .944 186.9 ~Vð ~t1Þ 2 .027 .144 .944 187.1
~Vj ð ~t2Þ 97.4 5,804 .932 4,217
~Vj ð ~t Þ 97.4 5,804 .958 4,269 ~Vð ~t Þ 97.4 5,804 .957 4,269

n ¼ 20

E½pð1Þ
i � ¼ :07

E½pð2Þ
i � ¼ :05

V̂j ðt̂1Þ .061 .203 .779 62.3 V̂ðt̂1Þ .049 .198 .776 61.9
V̂j ðt̂2Þ 2 .358 .372 .002 25.2 V̂ðt̂2Þ 2 .359 .372 .002 25.2
V̂j ðt̂ Þ 2 .080 .190 .834 72.3 V̂ðt̂ Þ 2 .088 .191 .833 72.0
~Vj ð ~t1Þ 2 .016 .189 .950 60.4 ~Vð ~t1Þ 2 .017 .187 .949 60.4
~Vj ð ~t2Þ .001 .304 .951 52.0
~Vj ð ~t Þ 2 .026 .210 .949 79.8 ~Vð ~t Þ 2 .026 .209 .949 79.8
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Table 6. Simulation results for Population II: Variance estimators

Model
based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length
Design
based

r-bias
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 
 mse

p
Coverage Semi-

length

n ¼ 20

E½pð1Þ
i � ¼ :01

E½pð2Þ
i � ¼ :01

V̂j ðt̂1Þ 2 .655 .656 .750 241.4 V̂ðt̂1Þ 2 .020 .310 .922 402.2
V̂j ðt̂2Þ 2 .278 .309 .894 114.7 V̂ðt̂2Þ .008 .245 .935 135.2
V̂j ðt̂ Þ 2 .627 .629 .772 311.7 V̂ðt̂ Þ 2 .014 .303 .926 501.7
~Vj ð ~t1Þ 2 .663 .663 .747 245.7 ~Vð ~t1Þ 2 .019 .317 .922 413.9
~Vj ð ~t2Þ 107.9 3,695 .934 11,766
~Vj ð ~t Þ 108.1 3,700 .884 11,851 ~Vð ~t Þ 108.1 3,700 .951 11,968

n ¼ 20

E½pð1Þ
i � ¼ :05

E½pð2Þ
i � ¼ :05

V̂j ðt̂1Þ 2 .244 .320 .916 85.3 V̂ðt̂1Þ 2 .091 .273 .938 93.5
V̂j ðt̂2Þ 2 .038 .250 .944 36.7 V̂ðt̂2Þ 2 .019 .254 .946 37.0
V̂j ðt̂ Þ 2 .227 .318 .920 102.9 V̂ðt̂ Þ 2 .087 .283 .940 111.8
~Vj ð ~t1Þ 2 .263 .331 .915 89.4 ~Vð ~t1Þ 2 .093 .272 .939 99.1
~Vj ð ~t2Þ .001 .475 .948 52.5
~Vj ð ~t Þ 2 .202 .317 .925 103.8 ~Vð ~t Þ 2 .067 .291 .943 112.3

n ¼ 20

E½pð1Þ
i � ¼ :02

E½pð2Þ
i � ¼ :01

V̂j ðt̂1Þ 2 .566 .568 .795 187.7 V̂ðt̂1Þ 2 .117 .244 .923 266.2
V̂j ðt̂2Þ 2 .350 .367 .000 53.7 V̂ðt̂2Þ 2 .250 .287 .000 57.7
V̂j ðt̂ Þ 2 .575 .576 .569 214.3 V̂ðt̂ Þ 2 .157 .256 .736 299.9
~Vj ð ~t1Þ 2 .557 .559 .809 186.3 ~Vð ~t1Þ 2 .081 .241 .921 266.7
~Vj ð ~t2Þ 117.0 3,837 .932 13,849
~Vj ð ~t Þ 117.1 3,841 .922 13,901 ~Vð ~t Þ 117.1 3,841 .953 13,948

n ¼ 20

E½pð1Þ
i � ¼ :02

E½pð2Þ
i � ¼ :01

V̂j ðt̂1Þ 2 .047 .327 .773 62.7 V̂ðt̂1Þ .046 .364 .798 65.7
V̂j ðt̂2Þ 2 .476 .498 .002 25.1 V̂ðt̂2Þ 2 .473 .496 .002 25.2
V̂j ðt̂ Þ 2 .237 .356 .819 72.7 V̂ðt̂ Þ 2 .170 .338 .836 75.8
~Vj ð ~t1Þ 2 .163 .337 .934 60.9 ~Vð ~t1Þ 2 .073 .339 .945 64.0
~Vj ð ~t2Þ .103 .492 .950 52.5
~Vj ð ~t Þ 2 .105 .364 .937 80.5 ~Vð ~t Þ 2 .050 .371 .945 82.9
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A summary of the results of the variance estimators and confidence interval estimators

(Tables 5 and 6) follows:

– When the cluster sizes were distributed as Poisson random variables, both model-

based and design-based variance estimators and the confidence intervals associated

with them behaved reasonably well, provided that their corresponding estimators of

the population size behaved well.

– When the cluster sizes were distributed as Negative binomial random variables, the

model-based variance estimators underestimated the actual variances, and the biases

affected the coverage properties of the confidence intervals. The distortion of the

relative frequencies was more serious when the probabilities were small than when

they were large. The design-based variance estimators and their corresponding

confidence intervals behaved reasonably well.

6. Conclusions and Directions for Future Research

In this article we have developed two sets of estimators of population sizes: one based on

the assumption pð1Þ
i ¼ pð2Þ

i ; and another on the assumption pð1Þ
i – pð2Þ

i : For each estimator,

model-based and design-based estimators of its variance have been developed. From two

simulation studies carried out in this research we obtained the following results. Firstly,

the performance of the estimator ~t2 which does not use the information about the cluster

sizes strongly depends on the average size of the nomination probabilities: with small

probabilities the estimator is not reliable, whereas with large probabilities it behaves

reasonably well under its assumed model. (A similar result have been reported by Otis et al.

(1978) for the well-known Schnabel estimator used in MCRS). The performances of the

other estimators are not greatly affected by the size of the probabilities. Secondly the

estimators derived under the assumption pð1Þ
i ¼ pð2Þ

i are not robust to deviations from that

assumption. Thirdly and finally, the estimators are robust to deviations from the assumed

Poisson distribution of the cluster sizes. This property is shared by the design-based

variance estimators, but not by the model-based variance estimators.

In future research, the study of other sampling strategies obtained by using other initial

sampling designs should be a topic of interest. In addition, the development of estimators

that perform reasonably well with small nomination probabilities should be considered.

An alternative might be the use of estimators obtained by means of the Bayesian approach.

(See Fienberg, Johnson, and Junker 1999, for a review of the Bayesian approach in the

context of MCRS.) Also, the development of design-based variance estimators that are not

completely based on asymptotic expansions, like those presented here, should be a topic of

study. For instance, the use of bootstrap variance estimators might be considered. (See

Buckland 1984, for the use of bootstrap in MCRS.) Finally, the development of estimators

that take into account the effect of heterogeneous nomination probabilities should also be

considered. (See Chao et al. 1992, and Fienberg, Johnson, and Junker 1999, for

descriptions of this type of estimator in the context of MCRS.) This is important because

studies carried out by Otis et al. (1978) in the context of capture-recapture sampling

indicate that the Schnabel estimator is not robust to deviations from the assumption of

homogeneous probabilities.
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