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Comment

Alan M.Zaslavsky'
1. Introduction

Sample design for the coverage measurement survey for the year 2000 census in the
United States is a problem of tremendous practical importance. The cost of the survey
will be of the order of $250 million, but under the Integrated Coverage Measurement
plans, the entire $3.9 billion census (cost estimates based on U.S. Bureau of the Cen-
sus 1995) will depend on whether the survey can produce sufficiently precise and cred-
ible estimates of net coverage for relevant domains. Very often statisticians can make
their greatest contributions when designing data collection, so I am pleased that
Joseph Kadane has added his thoughts on design to his many contributions to ana-
lysis and evaluation of previous census coverage measurement efforts.

Kadane’s conclusions, under some simplifying assumptions about the structure of
the population, imply that sample sizes should be equal in every state. I first explain
my (non-technical) disagreements with his argument, and then offer some principles
that support what I consider a more plausible sample allocation, roughly propor-
tional to a power of the state population.

2. Kadane’s argument
The argument of Kadane’s article can be summarized as follows:

1. The Hill algorithm, used for converting non-integer ‘“‘deserved” seats into
integral seat apportionments, minimizes a particular loss function similar to
the chi-square statistic.

2. This function implicitly measures loss due to the different state population
shares and shares of legislative representation.

3. Posterior risk for this loss equals loss evaluated at the value of population shares
given by the squared root of the posterior expectation of the squared population
shares, ¢} = ¢;/1+ CV?2.

4. Therefore, a Bayesian who accepts the chi-square-like loss must apply the Hill
algorithm to {4} instead of to {¢;}.

5. If the ratio ¢;/ #; is equal for every state, the Hill algorithm produces the same
results whether applied to {¢}} or to {¢;}.

6. The ratio ¢;/ é: is equal for every state if and only if the coefficient of variation
CV, is the same in every state.
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7. If ¢*/  is the same in every state, a strong argument can be made that uncer-
tainty about {¢;} does not have an inequitable effect on apportionment when
{d,} is used.

8. These arguments support a design that makes the coefficient of variation of
estimated population equal across states.

Points (1), (3), (5) and (6) are theorems, and (4) follows if we accept its premises.
(The converse of (5) is not necessarily true, because small changes in the proportions
will not necessarily be reflected in changed apportionments.) Furthermore, I consider
loss function (2) very useful, although not primarily because of its relationship to
apportionment rules. Therefore, I next focus on points (7) and (8) and on whether
they constitute an adequate argument for the design that Kadane proposes.

3. Is This Argument Compelling?

The very restrictive design constraint in (8) follows because the Bayesian argument
of (4) is combined with the external (non-Bayesian) constraint of (7). To make the
Bayesian’s allocation based on loss function (1) agree with the procedures established
in law (using {qgi}), Kadane’s procedure requires the survey designer to control the
information available to the Bayesian so that the Bayesian will calculate a posterior
distribution that satisfies constraints (7), even without being told what those con-
straints are! This proposal implies that the survey designer’s loss is not a function
of the errors in the population estimates, but only of the disagreement between the
apportionment calculated by the Bayesian and the legislated apportionment.

I would find (7) more compelling if I were convinced that the terms of the argument
over apportionment following the 2000 census will be set mainly by the arguments of
the Bayesians described in (4) against the equity of apportionments using {¢;} as man-
dated by current legislation. I believe it is more likely that a challenge will be based
either on an attack on the accuracy of the population estimates, or on some theory
about the equity of the entire apportionment procedure. If some notion of equity is
an important criterion, then loss (2) should be minimized within the class of decision
rules (apportionment schemes) that are equitable in the desired sense (or the loss func-
tion should be modified). This imposes no special constraints on the sample design. If
we attempt to carry through this program by making the notion of equity expressed in
(7) precise, we immediately confront the fact that the equity of the Hill algorithm
between small and large states is hotly disputed, even when there is no sampling error.
I believe that it is highly unlikely that Congress will revise its apportionment proce-
dures to replace ¢; with ¢}, or that a demand for such a change would be a potent
basis for a challenge to the apportionment. This is because the current consensus is
built around a particular procedure rather than a loss function, even though the
two are mathematically equivalent for known ¢;.

Furthermore, the correction in (4), and therefore the discrepancy addressed by (7),
will be very small. Suppose for illustrative purposes that the coefficient of variation of
the population estimate for a state is .02 (2%). This quantity is large compared to
typical differentials by state, and therefore probably at least as large as typical target
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coefficients of variation in the census. Then ¢;/ &; is 1.0004 and the relative discre-
pancy between é and ¢* is .0004 (ignoring the relatively small uncertainty in the
denominator X¢;), compared to another state with zero coefficient of variation.
This is negligible relative to the coefficient of variation. It is also much smaller than
biases due to measurement error (e.g., see Mulry and Spencer 1993) that will'remain
after applying estimated corrections for differential coverage. Therefore, neither
Congress nor the courts would be very wrong to ignore it.

My objections to design constraint (8) stem primarily from its implications for
census design. Assume, for purposes of discussion, that the sampling variance of
the estimated coverage rate is inversely proportional to the corresponding sample
size, Var (¢; — ¢;)/¢; = CV? o 1/n;, with the same constant for all states. This
“homogeneous variance assumption” (HVA) allows us to draw some broad conclu-
sions about the consequences of the differing population of states by ignoring differ-
ences in conditions between regions. HVA is unlikely to be true, but if an argument
leads to a sample allocation that is undesirable under HVA, there is no reason to
count on HVA being violated in just the way that fixes up the problem.

Under HVA, (8) requires that the sample size in every state should be the same,
despite tremendous disparities in population. This counterintuitive conclusion should
give us a pause.

4. Alternative Approaches to Integrated Coverage Measurement Design

I now turn to some alternative principles for sample allocation that do not require us
to use the same sample size in California and Wyoming (ratio of populations ~ 66),
expanding on the discussion in a National Academy of Sciences report (Steffey and
Bradburn 1994, pp. 125-126). Given the loss function defined by Kadane, we would
naturally seek a design that minimizes risk, i.e., that minimizes the expectation of
the chi-squared loss of apportionment under the Hill algorithm. This is difficult
because the number of seats apportioned to each state is a discontinuous function
of the estimated shares. However, if we assume that loss from sampling error
Lg=%(¢; — ¢:)*/é; is approximately independent of loss due to integral
apportionment L, = X(h¢; — a;)?/a;, then the optimal allocation minimizes the
expectation of Lg. Under HVA, optimal sample size for this risk is n; o ¢>} 2, (As
in most design problems, the parameters that control the design, in this case {¢;},
are unknown before the census, but we have good estimates from the previous census,
or better yet, from postcensal estimates.)

Another popular and intuitively appealing loss function is the number of seats
that are misapportioned. This is related to the size of the absolute errors, because
the cutoffs for states to receive an extra seat (beyond what each deserves) are
approximately uniformly distributed over the interval [¢;, ¢; 4+ 1/435] and the cut-
offs for losing a deserved seat are approximately uniformly distributed over
[¢; — 1/435,¢;]. (See the Appendix.) Minimization (under the HVA) of the
expected sum of absolute errors ZIJJ,- — ¢,;| implies n; o qﬁf/ 3. This allocation puts
slightly more sample into larger states than the last, because chi-squared loss
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gives smaller weight to an error of the same absolute size in a larger state than in a
smaller one.

Considerations other than accuracy of apportionment support unequal sample
sizes. Zaslavsky (1993, sec. 2.1) argues for the two loss functions considered above
(chi-squared and absolute error) as general-purpose measures of the'cost of misallo-
cation of continuous benefits such as monetary block grants. Another consideration is
that a design with equal sample size for every state (and therefore very different sam-
pling rates) would almost certainly be highly inefficient for estimation of total
national population or population of nationally-distributed domains such as racial
groups. Estimates for Blacks would be particularly bad because of the concentration
of Blacks in the larger states.

Estimation of relative populations of substate domains is also important, and per-
haps more so for parts of a large state than for corresponding fractions of a smaller
state. For example, differences between New York City and upstate New York, or
between northern and southern California, are of immense importance for distribu-
tion of representation and funds; direct estimates of these estimates may be needed.
On the other hand, we may be willing to accept model-based (e.g., synthetic) estimates
(possibly constrained to agree with direct estimates for states, as suggested in Steffey
and Bradburn 1994, p. 126) for the difference between northern and southern Idaho.
In particular, recent decisions on Congressional districting have established very
stringent standards for equality of district populations within each state. Assuming
(unrealistically) that direct estimates for every district must be precise enough to sup-
port these standards, state sample size would have to be proportional to the number of
districts (and therefore approximately proportional to population). Similar arguments
apply to distribution of funds to localities and districting for state legislatures.

Thibaudeau and Navarro (1995) consider what we might call “equity of accuracy”
in sample allocation for sampled follow-up of nonrespondents to the mailed census
questionnaire. This follow-up involves a much larger sample than the coverage
measurement survey, so direct estimates will be obtained for relatively small substate
domains. Thibaudeau and Navarro propose that target levels of accuracy be defined
for domains of equal population, thereby avoiding the issues that are the main focus
of Kadane’s article and this discussion. Instead, they focus on equitable sample allo-
cation between domains with different rates of mail nonresponse. If we ignore state
boundaries, however, this argument leads to a sample allocation of this operation
that is roughly proportional to state populations, modified for differing mail response
rates in different states.

These models and loss functions suggest allocating sample size roughly propor-
tional to some power of state population between 1/2 and 1. In practice, other
considerations will be important (see Kadane’s Section 4). It may be politically neces-
sary to maintain a ceiling on the CV of direct estimates for any state, implying a floor
on any state’s sample size. The HVA does not hold, due to varying block sizes and
degrees of interblock heterogeneity, which further complicate sample design. Esti-
mates for many domains will be based on models, which have the potential to
improve on direct estimates for these domains. States also differ in the heterogeneity
of substate domains, which affects the number of such domains into which the state



Zaslavsky: Comment 99

should be divided for estimation purposes. These factors, as well as the experience of
the 1995 census tests and the multiplicity of objectives that the census must serve, will
all be considered as Census Bureau staff proceed with design for the year 2000.

5. Appendix — Congressional Apportionment and Absolute Error Loss

Regard estimated populations for all states except state i as fixed. If ¢; is overesti-
mated by a sufficient amount, ¢;1/a; (a; + 1) becomes larger than the corresponding
value, before assignment of the last seat, for the state that got that seat; then the seat is
erroneously transferred to state i. Conversely, if state i has more than one seat and ¢;
is underestimated by a sufficient amount, the last seat apportioned to state 7 is lost to
the next state in line for a seat. For each state we may calculate the positive and nega-
tive errors in population share estimates that would lead to erroneously gaining or
losing a seat, denoted by eg; and e;;, respectively.

With any fixed set of state populations, the number of seats misallocated is a
deterministic and discontinuous function of errors of estimated populations. How-
ever, over hypothetical draws of state populations that resemble current true popula-
tions but are slightly perturbed for each state, the quantities eg; and e;; may be regarded
as random. (This random population argument is in the spirit of Balinski and Young
1982, sec. A5, and Spencer 1985, sec. 9.1.) The probability that an error ¢; will lead to
misallocation of a seat for state i is P(e; > eg;) if ¢; > 0 and P(e; < e;;) if e; < 0.

I conjectured that the distributions of e;; and e;; over slightly perturbed popula-
tions would be approximately uniform for all but the smallest states. In a simulation
study, 5000 pseudo-populations were created by multiplying state populations from
the 1990 census by log-normal noise with coefficient of variation 0.1 (representing
our uncertainty about how much populations will change between 1990 and 2000).
For the 31 states with five or more seats, comprising 91% of the population of the
United States, the distributions of eg; and e;; were close to uniform over the intervals
(0,1/435) and (—1/435, 0) respectively; dividing the intervals into five equal subinter-
vals, probabilities of falling into each subinterval had standard deviation less than
0.01 across all states and subintervals. Thus, if we regard the fractional parts of state
quotas as essentially random noise, the probability of misallocation of a seat is
roughly proportional to absolute error for these states.

If very good population projections are available before the census, it may be
possible to determine which states are likely to be close to a cutoff, so that a small
error in population has a high probability of causing an error in apportionment.
Using this information, it would be possible to go beyond the random model used
in the simulations and determine for which states it would be critical to get precise
population estimates. In principle, it could even be possible to determine which states
are more likely to gain (because they are just below a cutoff) or more likely to lose
(because they are just above a cutoff) if their population shares are measured with
error. This information, however, is not likely to be available at the time at which
the coverage measurement survey must be designed. In any case, the objectivity of
the census could be called into question if the design were based on anticipation
of effects on identifiable states.
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At the other extreme, assuming 1990 population shares, the six smallest states
(Wyoming, Alaska, Vermont, North Dakota, Delaware, and South Dakota) will
receive their single representative despite any conceivable measurement error because
to get a second representative would require a combined relative undercount and
measurement error of at least 16%. From the standpoint of apportionment, coverage
measurement in these states is unnecessary; of course there are other reasons why it
would be unacceptable to omit these states from the coverage measurement survey.
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