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Comment
A.G. Gray' and P.J. Thomson’

1. Introduction

STL is a simple robust seasonal-trend
decomposition procedure built around
the loess smoother. It is computationally
efficient and is straightforward to use with
most of the smoothing parameters selected
via simple rules or diagnostic plots. We
commend the authors for their simple design
and thorough analysis of the filters involved.
It is hoped that this study will lead to simi-
lar analyses of the filters used in other
procedures.

In the discussion that follows we com-
ment on the effects of the loess filters at
the ends of the time series, the frequency
response functions involved and the iter-
ative analysis. Also included is an analysis
of New Zealand building permit data using
STL and X-11 together with a concluding
section containing general remarks and
other observations.

2. End Effects of Loess Filters

Consider a loess filter of nominal length
g = 2r + 1 applied to an equispaced time
series of length n > ¢. (In fact, due to the
definition of the neighbourhood weights, the
actual lengthis¢ — 2 in the body and ¢ — 1
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at the ends of the series.) In the body of the
series, loess acts as a symmetric moving aver-
age filter with window length ¢q. However, at
the ends of the series, its window length
remains at ¢, rather than decreasing to
r + 1 asin the case of X-11 and other stan-
dard procedures. Is this a vice or a virtue?

Conventional wisdom argues that a sym-
metric smoothing filter used in the body of
the series can also, to good effect, be applied
at the ends, but with unknown future values
replaced by predictions based on past obser-
vations. (See Cleveland (1983) and Kenny
and Durbin (1982) for example. Dagum
(1978) uses this as the basis for the X-11
ARIMA method.) This applies here if the
predicted values are generated by loess
based on the last ¢ observations and then
these observations, augmented by the pre-
dictions, are smoothed by a symmetric loess
filter of length 2X,(¢) + 1 centred at a given
time point z. To see this, note that if g,(x) is
the loess least squares regression curve based
on the last g observations and A, (f) = s
then

0 = X 40 - &)
> Y 43 — 40O

where the d, are the symmetric loess weights.
Thus, if the y,,;(j > n — 1) are replaced
by g,(j), then Q is minimised when g,(j) =
g(j) (—=s<j<n—1) yielding the
required loess smooth. Similar consider-
ations apply at the beginning of the_series.
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The import of the previous paragraph is
that the effective window length at the ends
of the series may be regarded as 2A,(¢) + 1.
However, over the r = (g — 1)/2 obser-
vations at each end of the series, A (1)
increases from r through to ¢ — 1 at the
extreme ends. Thus the effective window
length at the ends is almost twice that in the
body of the series. This, in turn, would
imply heavier than expected smoothing at
the ends of the series than in the body.

To investigate the smoothness properties
of STL filters at the ends of the series the
following criterion was considered. If the
smoothed series is given by

n

mit) = > w

Jj=1

@Oyt =1,...,n)

and the w;(¢) are the filter weights, then
the smoothness of m(f) was measured by
E{(A’m(1))*} where A? is the centred second
difference operator. Suppose that y, follows
an additive locally linear model with uncor-
related errors and error variance 2. Then,
since STL filters pass linear trends,

o) = E{(Azm(r))2}=czil{w,-(t+ 1

—2w(1) + wit — D}

This criterion should provide a reasonably
accurate measure of the smoothness of m(r).
Note that ¢(7) is constant, ¢, say, in the
body of the series and changes only at
the ends. Plots of the relative smoothness
d(1)/ b, over the most recent time points are
given in Figure 1, not only for STL filters,
but also for the Henderson filters used in
X-II. Note, however, that the Henderson
filters only pass linear trends approximately
at the ends of the series with the approxi-
mation worst at the extreme ends. The results
reinforce the view that STL significantly
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smooths the ends of the time series by com-
parison to the body.

We regard this as a defect, particularly in
the case of economic time series where turn-
ing points are important to identify. The
artificial smoothness at the ends of a series
smoothed by STL, particularly over the
most recent time points, could lead to unduly
optimistic (or pessimistic) assessments of the
most recent and future trend values. Practi-
cal evidence of this can be seen, to some
extent, in the examples given in the paper
and also in our example given below. We
recommend the adoption of conventional
time series windows where the window
length decreases from g tor + 1. Indeed, in
this case the relative smoothness presents a
more satisfactory picture as is borne out in
Figure 1.

3. Frequency Response Functions and the
Iterative Analysis

The operator matrices of the STL filters are
near Toeplitz and I-L effectively removes
trend. Thus a conventional linear filtering
analysis would seem to apply, particularly
if end effects are to be ignored. Adopting
this approach the transfer functions of the
seasonal and trend components after the kth
iteration are given by

SE) = S*HA = TE(Sf)

k = 1,..)

TF(f) = T*(NHA = SE)

where T (f) = 0. To ensure that

Tx(f) = T*(HA — S*(f)
+ T*(NS*(NTE(S)

converges, it is essential that |T*()S*(f)| <
1. However, although the symmetric loess
filters are real and bounded in modulus by
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Fig. 2. Limiting Frequency Response Function H(f).

unity, they are not non-negative definite
since they can take negative values. Indeed,
a straightforward limiting argument shows
that D*(f) defined in §5.2 can be well
approximated for r large by H(rf) where

1

J w(u) cos uh du
H(f) = *———.
J w(u) du

0

A graph of H(f) is given in Figure 2. Note
that the first side lobe is negative. This may
prove to be a problem in some circumstances
and, as pointed out in §5.4, this is the
reason 1 — L*(f) can exceed unity. In
the latter case, the choice of ny, = [n,)]oua
effectively eliminates the negative side
lobe; indeed this choice for n, could well
be justified in these terms alone. With
these caveats |T*(f)S*(f) < | and, if
| T*(f)S*(f)l < 1, the transfer functions
converge to

T*(f) = T*(NH( - S*(N)/

(I = T*(NS*(f)

S*(f) = S*(NHU — T*(N)

(I = T*(NHS* ().

Moreover |T*(f)S*(f)| can now only
equal one when T*(f) = S*(f) = 1.
These observations provide an alternative
justification to the analysis given in §5.3.

The negative side lobe problem in 1 —
L*(f) could be removed by iterating the
loess smoother or replacing the tricube
weight function by a non-negative definite
weight function. Why was the tricube func-
tion chosen? If the tricube function were
replaced by another weight function, what
smoothness and fidelity criteria should it
satisfy? The bisquare function, although not
non-negative definite, is equivalent for large
g to the optimum filter that passes linear
trends and whose second differences have
minimum mean square.

4. An Analysis of New Zealand Building
Permits Data

The example of the CO, data given in the
paper ‘is atypical of many economic time
series in that it has stable variance, strong
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additive seasonality and is generally well
behaved. By comparison, a typical example
of an economic series that the New Zealand
Department of Statistics adjusts is the Build-
ing Permits for Houses and Flats which is
characterized by changing variance, several
turning points, large irregulars, and fairly
weak seasonality. This monthly data was
analysed over the period January 1981 to
April 1989 and, since STL does not have a
calendar adjustment procedure, was prior
adjusted using X-11 to remove trading day
effects. A plot of the data is given in Figure 3.
Note that the series is too noisy to be able to
use Statistics Canada’s ARIMA extension
of X-11 and too short to apply the sliding
spans analysis recently developed by the
U.S. Bureau of the Census.

For X-11 we used an additive model
and based our choice of seasonal and trend
filters on standard X-11 diagnostics. For the
seasonal we chose an 11 term (3 x 9)
weighted moving average and for the trend
we chose a 13 term Henderson weighted
moving average. The default values were
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used for the exclusion of outliers. Note that,
since there are at most nine observations for
any monthly subseries, nowhere will sym-
metric seasonal weights be used. The decom-
position plot, the cycle-subseries plot,
the seasonal-diagnostic plot and the trend-
diagnostic plot all indicate that this choice
of parameters is appropriate. In this context
another useful diagnostic plot is a graph of
the original series together with the fitted
values plotted by month in much the same
way as the seasonal-diagnostic plot.

For STL we followed the guidelines given
in the paper and chose a seasonal filter
of length 11 and a trend filter of length
21 = [1.5*12/(1 — 1.5/11)]. We also chose
to iterate the inner loop once and the outer
loop three times. The former choice follows
the recommendation of the paper; the latter
so that it fits into the X-11 framework. If the
convergence criterion given in the paper is
adopted then nine iterations are required.
However there was little difference between
the third and ninth iterations except for
June 1987 and July 1988 where the additional
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Fig. 3. Building Permits for Houses and Flats.
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Fig. 4. Building Permits for Houses and Flats; Seasonally Adjusted and Trend.
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iterations strengthened the growth in the
seasonal component. Again the various
diagnostic plots proved to be satisfactory.
Overall the two procedures gave com-
parable fits to the data and comparable
seasonally adjusted series. However STL
fitted the smoother trend and X-11 the
smoother seasonal. This was true even when
X-11 used the 23 term Henderson moving
average to estimate the trend. For this data
the balance struck by X-11 seems preferable
since its trend better fits the seasonally
adjusted data (see Figure 4) and its seasonal
is more stable. X-11 also identifies a turning
point at the end of the series. The heavier
smoothing by STL at the end of the series
reduces its sensitivity to turning points and,
conversely, makes the near-linear trends at
the ends of the series far too sensitive to
modest changes induced by the addition of
new data. This is illustrated in Figure 5. In
the case of STL note the apparent disconti-
nuity in the slope of the trend (¢ — 1)/2 +
1 = 11 points from the end. This can also
be inferred from Figure 1. Similar effects
were observed with the STL seasonal which
typically exhibited more extreme and more
volatile near-linear behaviour than X-11,
especially at the ends of the series.

5. General Remarks and Conclusions

The simplicity of the design adopted for
STL has clearly focussed attention on the
key elements involved in the seasonal-trend
decomposition of a time series. This is most
welcome. However, as a consequence of this
clarity, the paper also raises as many ques-
tions as it has provided answers, especially
with regard to the issues of robustness and
end effects. )

The theoretical analysis in the paper has
concentrated on the effects of STL filters in
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the body of the series and in the absence of
robustness weights. What can be said about
the convergence properties of the robustness
iterations? How do the robustness weights
affect convergence of the inner loop and the
properties of the STL filters? Is cycling a
possibility?

We agree with the authors that the correct
identification and estimation of the seasonal
component is the most important step;
otherwise trend estimation, whether by eye
or by more formal means, will be unreliable.
We are not convinced that STL is estimating
the seasonal and trend components reliably
at the end of the series. With economic time
series, where there is noisy data and chang-
ing seasonality, the accurate estimation of
the components of the decomposition at the
ends of the series is of primary importance.

We congratulate the authors for a stimu-
lating and interesting paper which has
addressed a number of important practical
and theoretical issues in seasonal adjust-
ment and provided a framework for the
assessment of others.
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