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Comparing and Assessing Time Series Methods for
Forecasting Age-Specific Fertility and Mortality Rates

William R. Bell’

Fertility and mortality rates exhibit strong age patterns, and various researchers have devel-
oped methods to capture this structure and use it in forecasting. Two general approaches
have been developed. The curve fitting approach involves fitting parametric curves to the
age-specific rates. The principal components approach involves computing principal com-
ponents to obtain a linear transformation of the data with simplified structure. This article
reviews and compares proposed alternative versions to these two approaches, and then
evaluates the out-of-sample performance of the various alternatives in forecasting age-speci-
fic U.S. white male and female mortality rates. None of the approaches tried produced short-
term forecasts more accurate than those obtained from a simple random walk with drift model
applied to the rates for each age separately. Also, the curve fitting approach and low-
dimensional principal components approaches clearly require a bias adjustment to avoid
having approximation errors compromise short-term forecast accuracy.
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1. Introduction

Population projections often involve the forecasting of age-specific fertility and mortal-
ity rates, which is a forecasting problem of large dimension. Age detail may be used for
fertility rates to take advantage of the known age structure of the existing female popu-
lation when forecasting births, or because age-specific fertility forecasts are of inherent
interest. Age-specific mortality forecasts are needed to achieve age detail in the popula-
tion projections. A characteristic feature of age-specific fertility and mortality rates is
the smooth shape over age of the data each year. It seems desirable to use modelling
and forecasting methods that capture this smooth shape over age, both to produce fore-
casts that appear internally consistent, and in the hope that this will improve the accuracy
of short-term forecasts.

Several researchers have developed methods for capturing the smoothness of fertility
and mortality rates over age and using this in forecasting. This article reviews two general
approaches that have been explored. The curve fitting approach fits a parametric curve (a
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function of age) to approximate each year’s fertility or mortality rates in terms of a set of
curve ‘‘parameters.”’ One then forecasts these parameters, thus producing forecasted
curves, which are then taken (possibly with some modification) as forecasts of the rates
themselves. The second approach uses the dimensionality reduction technique of principal
components from multivariate analysis to linearly transform the mortality or (relative)
fertility rates (generally after taking logarithms). The resulting principal component
time series provide approximations to each year’s fertility or mortality rates, with the
accuracy of the approximations depending on the number (J) of principal components
that are used. Having selected J, the first J principal component time series can be forecast,
and these forecasts transformed back to forecasts of the fertility or mortality rates. Alter-
natively, aided by the simplified structure of the principal components time series, it can be
feasible to forecast all the components and transform these back to forecasts of the rates
without the approximation error. For the forecasting parts of both the curve fitting and
principal components approaches, much of the recent literature has used univariate or mul-
tivariate ARIMA (autoregressive-integrated-moving average) time series models (Box
and Jenkins 1976; Tiao and Box 1981).

This article focuses on comparing and assessing specific variants of the curve fitting and
principal components approaches to forecasting age-specific fertility and mortality rates.
Section 2 gives as background a brief review of some specific problems that motivate the
search for such techniques. Section 3 discusses the curve fitting approach, focusing on the
methods of Thompson et al. (1989); McNown and Rogers (1989); and Knudsen, McNown,
and Rogers (1993). Section 4 discusses the approaches of Bozik and Bell (1987), Bell and
Monsell (1991), Lee and Carter (1992), and Lee (1993) that make use of principal com-
ponents. Section 5 then discusses the general advantages and disadvantages of the curve
fitting and principal components approaches. Section 6 presents results of an empirical
study comparing out-of-sample forecast performance for alternative variants of the curve
fitting and principal components approaches to forecasting age-specific mortality rates.
The data used in this study are central death rates for (mostly) 5-year age groups for
U.S. white males and white females from 1940-1991. Section 7 provides conclusions
and some suggestions for future research.

2. Problems in Forecasting Age-Specific Fertility and Mortality Rates

Figures 1 and 2 illustrate the character of the U.S. white age-specific fertility and mor-
tality rate data. (The latter are analyzed in Section 6.) Figure 1.a shows white fertility
rates for three years — 1927, 1957, and 1977. The three curves show similar shapes
but quite different levels. The corresponding total fertility rates (TFRs), defined as
the sum of all the age-specific fertility rates for a given year, were 2.78, 3.58, and
1.71. Figure 1.b shows the relative fertility rates obtained by dividing the fertility rates
in Figure 1.a by the corresponding TFRs. By removing the effect of different levels, this
more clearly shows the basic similarity in shape of the three curves, while also showing
those differences in shape that evolved over the years shown. The data for 1927 look the
most different, but some of the irregularities in the rates at the higher ages arg probably
due to errors in the age-specific female population estimates (denominators of the rates)
for 1927.
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Figures 2.a and 2.b show base 10 logarithms of the mortality rates for U.S. white
females and males, respectively, for three years (1940, 1960, and 1980). The similarity
in shape over the years of both the female and male mortality curves is evident, as is the
general downward trend of mortality. Also, some changes over time in the shapes of the
curves can be detected, particularly the increasing importance of the ‘‘accident hump,”’
the sharp increase in mortality at ages 15—19, in both the female and male mortality
rates. (Note: Figure 2 actually shows central death rates rather than mortality rates,
the distinction between which is discussed in Section 6. As this distinction is mostly
unimportant for this article, the term ‘‘mortality rate’’ is used for either of the two.)

The highly structured nature of these data almost begs for a methodology that can
capture this structure and use it in forecasting. Methods that have been proposed for
doing so are discussed in Sections 3 and 4. Other forecasting approaches could be and
have been pursued, however. Bell (1992) discusses possible problems with three such
alternatives.

The first such alternative is analysis of the data on a cohort basis (data indexed by year
of birth), rather than on a period basis (data indexed by calendar year, as in Figures 1 and
2). Since completion of cohort fertility requires about 30 years and completion of cohort
mortality about 100 years, analysis of rates on a cohort basis presents massive missing data
problems, which leads to formidable statistical problems. It also leads to practical pro-
blems for forecasting, as noted by Brass (1974). (See also De Beer’s (1989) investigation
of an age-period-cohort model suggested by Willekens and Baydar.) Further, Bell (1992)
notes that U.S. cohort fertility rates do not exhibit the same degree of smoothness over age
as the period rates shown in Figure 1.

The second such alternative is to directly develop a multivariate time series model for
the complete set of age-specific fertility or mortality rates. This is generally infeasible due
to the high dimensionality involved (unless very broad age groups are used) and the high
cross correlations between the rates for different ages (a consequence of the smoothness of
the rates over ages). Bell (1992) illustrates that this high cross correlation can have
apparently unreasonable effects on model parameter estimates.

The third alternative is simply to forecast the fertility or mortality rates for each age
separately. A possible drawback is that resulting forecasts may not show the same smooth
shape over age as the historical data, particularly in the long-run. The extent to which this
is a problem depends on how the rates at different ages are forecast and on the objective of
the analysis. For illustration, Bell (1992) forecast U.S. white age-specific relative fertility
rates separately at each age using ARIMA (1,1,0) models (first order autoregressive
models for the first differenced series) applied to logged data. The resulting long-run
forecasted fertility curve showed mild irregularities in shape over age. Using different
models at different ages can easily produce much larger shape irregularities. De Beer
(1992) obtained significant irregularities in shape from just a three-year-ahead forecast
of the Netherlands fertility rates using different spline functions for each age. Irregularities
in the shape of the forecast curve do not necessarily mean that the forecasts, taken
individually, are bad, even though their joint appearance may seem unreasonable.

A second problem with the approach of separate forecasting at each age is its-limitations
in regard to measuring expected forecast uncertainty, since it does not directly provide
estimates of the correlations of forecast errors at different ages. Given the smooth shapes
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over age of the fertility and mortality rates, these correlations would be expected to be
quite high. Information on cross correlations over age of forecast errors is needed for com-
puting forecast error variances for quantities, such as population, that depend on fertility or
mortality at more than one age. (See, e.g., Alho 1992.) This problem might be addressed
by simply estimating the correlations of forecast errors at different ages from the univari-
ate model residuals, though the high dimensionality of the data means that there are a large
number of correlations to be estimated.

Two other approaches are the use of mortality rates by cause of death, or use of fertility
rates for births of first children, second children, etc. (parity-specific fertility rates). De
Beer (1989) found mild accuracy gains from use of parity-specific data when forecasting
fertility for the Netherlands both with his cohort ARIMA model, and also with ordinary
ARIMA models. McNown and Rogers (1992) found little or no gain in forecast accuracy
from using cause-specific versus aggregate U.S. mortality data in a curve-fitting approach.
Wilmoth (1993) noted several problems with forecasting cause-specific mortality for Japa-
nese data, one being that the behavior of the series that must be forecast (using the Lee-
Carter version of the principal components approach discussed in Section 4.2.) was less
regular by cause than for all causes combined. Alho (1991) discussed conditions under
which aggregate and cause-specific mortality forecasts will yield similar results, observed
that these conditions seemed to hold for mortality forecasts from the U.S. Social Security
Administration, and also noted conditions under which forecasts based on aggregate mor-
tality data can yield more accurate results than those based on cause-specific data. Finally,
note that using cause-specific mortality rates or parity-specific fertility rates greatly
increases the dimensionality of the forecasting problem, magnifying the problems the
methods discussed in Sections 3 and 4 seek to address.

3. Curve Fitting Approaches

The fitting of curves to fertility and, particularly, mortality rates has a long history in
demography and actuarial science, going back to the efforts of De Moivre and Gompertz.
The objectives have usually been to estimate fertility or mortality curves with limited
data, or to graduate (smooth) irregular curves of directly estimated rates. Hoem et al.
(1981) fit a number of curves to Danish fertility data, and reviewed other work in this
area. Hartmann (1987) reviews work on fitting mortality curves. Cramér and Wold
(1935), as discussed in Section 3.2., developed an early curve fitting approach to fore-
casting mortality, and reviewed other early work on mortality forecasting. Rogers
(1986) proposed an approach to population projection based on fitting curves to age-specific
rates of fertility, mortality, marriage, divorce, and remarriage, and then projecting the curve
parameters. His parameter projections relied heavily on judgement. More recently, various
authors (discussed below) have combined curve fitting with forecasting of curve parameters
from time series models.

In more detail, the basic curve fitting approach to forecasting is as follows. Let r;, be
a set of fertility or mortality rates, or transformations of the same, observed for ages
i=1,...,Kandyearst = 1,...,n. A parametric curve, g(i, 1,), where 5, isan m x 1 vec-
tor of curve parameters, is postulated as an approximation to the r;,. This approximat-
ing curve is intended to be used for every year, but with different values of 9, each year.
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The curve is fitted to the data separately for each year r = 1,...,n, possibly by least
squares:

find 7, to min 'y [r; — g(i,n)I° M

A weighted least squares fitting criterion can also be used. Since g(i,n,) is invariably a non-
linear function of i, such curve fitting requires nonlinear least squares software. Having
determined », from (1) for t = 1, ..., n, one treats these as observations on an m-dimen-
sional multivariate time series, and forecasts ,, possibly using (univariate or multivariate)
ARIMA models. The forecasts ,. ¢ of 7, , for € >0 yield forecasted curves g(i, 9,1.¢),
which are taken as forecasts of the r; ,, ¢.

3.1.  Curve fitting and forecasting fertility

Thompson et al. (1989), and Knudsen, McNown, and Rogers (1993) applied the curve
fitting approach to fertility forecasting. Knudsen et al. used a ‘‘double exponential’’ curve,
which Rogers (1986) had suggested as a simpler alternative to an earlier model of Coale
and Trussel (1974). Knudsen et al. fit a reparameterized version of the curve by nonlinear
least squares, and forecasted the resulting four curve parameters (after taking logarithms)
using univariate ARIMA models. They noted (p. 21) however, that, ‘“The task of fore-
casting the model schedule is made difficult by the strong interactions among the four
parameters,”’ and suggested using multiple time series methods instead.

Thompson et al. (1989) converted the fertility rates f;, to the total fertility rate and rela-
tive fertility rates: TFR, = >, f;;, and r;, = f;,/TFR,. They then fit the following shifted
gamma density to the r;, (which sum to one over the ages i) by weighted nonlinear least
squares:

8, &, B,A¢) = [T(@)B%] 7' (i — Ag)* ™" exp{—(i — Ag)/B} @)

Weights of four were given to ages 18—32, and one to the other ages, to give more weight
in the fit to ages with higher fertility. Thompson et al. used a multivariate ARIMA model
to forecast the (logarithms of the) TFR and the mean («f) and standard deviation (3 \/&)
of the gamma curve. The end point of the curve, A, was held fixed at 0 in the forecast
period.

Thompson et al. show gamma curve fits to the U.S. white fertility rates for 1957 and
1977. While the gamma curves fit well and successfully capture the shape of the curves
in both years, there are nevertheless significant deviations of the actual fertility rates
from the fitted curves. This is perhaps to be expected when approximating 33 fertility rates
by a curve involving only four parameters. Bozik and Bell (1987) show comparable fits for
the gamma and the double exponential curve (which also uses four parameters) for a year
of U.S. data. Hoem et al. (1981) found the gamma curve and Coale-Trussell models fit
Danish fertility data about equally well, and better than the alternatives they tried except
for spline functions (discussed below). Bell (1992) noted polynomial functions of age and,
particularly, Fourier series, were not as successful at approximating fertility rates as the
gamma curve. -

Thompson et al. found it desirable to make a ‘‘bias adjustment’’ to their gamma curve
forecasts to deal with the curve approximation error. This involved taking the deviations of
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the r,s from the fitted gamma curve in the last year of data, and extrapolating these
forward as constant forecasts of the deviations of future r;s from the forecasted gamma
curves (effectively assuming random walk models for these deviations). An empirical
illustration showed improvements in accuracy from bias adjustment for the first two
forecasts, but apparently diminishing effects as the forecast horizon increased. The
bias adjustment was motivated by the observations that (i) the discrepancies between
the fitted curves and the actual data were significant for some ages, and (ii) the discre-
pancies tended to persist and change slowly over time, so that they could be forecast in
the short run. In the long run (say, beyond ten years) the errors in forecasting the curve
parameters are likely to dominate, so that bias adjustment becomes less important.
Knudsen, McNown, and Rogers (1993) noted that errors in their curve fits persisted
into the forecast period, and that, in fact, ‘‘Errors in approximating the true fertility
age profile with the double-exponential model account for most of the forecast errors
over the shorter intervals’> (p. 17). Despite this, they made no adjustment to their fore-
casts to address this problem.

An obvious generalization to the bias adjustment of Thompson et al. would be to
develop and use time series models (not necessarily random walks) to forecast the approx-
imation errors. The potential benefits of this generalization are unknown. It also goes
against the objective of dimensionality reduction (raising the question, why not just model
and forecast the rates directly?), particularly if a multivariate model is sought for the
approximation errors.

In the U.S. Census Bureau implementation of the approach of Thompson et al., data on
total births were available for the two most recent years, but without age-specific detail.
These total birth figures were used to make a proportional adjustment to the TFR forecasts
(described in Bell et al. (1988)) that constrained predicted total births to equal actual total
births for these years.

3.2.  Curve fitting and forecasting mortality

Cramér and Wold (1935) fit Makeham curves to Swedish mortality data for ages 30 and
above, and then extrapolated (most of) the curve parameters using fitted logistic functions
(in one case, a linear function was used). They did this on both a period and cohort basis.
More recent authors have fitted curves to mortality rates for all ages. McNown and Rogers
(1989) used the Heligman and Pollard (1980) curve for mortality rates g;:

q; =0/ + Q)

0, ~ A"B° 4 Dexp{— N 2 ; 3)
i p{—Ellog(i) — log(F)1"} + GH

where the ¢ subscript is omitted in (3) for simplicity. Rogers (1986) used a modified
version of (3). The three terms in the expression for Q; in (3) model childhood mortality,
the accident hump, and adult through old age mortality. The middle term is dropped for
i = 0. Figure 3 (see Section 4.2.) shows the Heligman-Pollard mortality curve fit to
1980 U.S. white female mortality rates. While the fit appears good, this should be expected
from an eight-parameter curve fitted to 22 data points. Note that this achieves much less _
dimensionality reduction than the 4-parameter gamma or double exponential curves
achieve for 33 fertility rates.
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McNown and Rogers (1989) fitted curves (3) to U.S. male and female mortality data,
and forecast the eight curve parameters for each sex (after taking logs) using univariate
ARIMA models. McNown and Rogers (1992) used a nine parameter ‘‘multiexponential
model’”’ to fit U.S. male and female cause-specific mortality rates. To deal with the
high dimensionality, for each cause they held six shape parameters constant at historical
average values, and explicitly forecast only (logs of) three level parameters using univari-
ate ARIMA models.

3.3.  Related approaches

There are other methods of analyzing fertility and mortality curves over age that will not
be considered in detail here, though they are related to the curve fitting approach just
described. These would include the fertility model of Coale and Trussell (1974) and the
relational models of Brass (1974), both of which make use of ‘standard’” age schedules.
These models were not necessarily designed for forecasting, but for other purposes such as
estimating fertility or mortality curves from limited data, or smoothing irregular curve
estimates. In analysis with Danish fertility data, Hoem et al. (1981) found the gamma
curve to give comparable fits to the Coale-Trussell model (as noted earlier), and better
fits than the Brass models. Another approach closely related to the curve fiiting approach
is the fitting of spline functions over age. These were found by Hoem et al. (1981) to yield
the best fits to the Danish fertility data. Splines, however, have the disadvantage that they
generally involve a large number of parameters with no interpretation.

4. Principal Components Approaches

Bozik and Bell (1987) developed a principal components (PC) approach for time series
forecasting of age-specific fertility rates. This approach was extended by Bell and Monsell
(1991), where it was used in forecasting age-specific mortality rates. Lee and Carter (1992)
(see also Carter and Lee 1992) explored a modified version of this approach for forecasting
mortality rates, which Lee (1992, 1993) also applied to fertility rates. Actually, application
of principal components analysis to mortality rates goes back at least to Ledermann and
Breas (1959), who did their analysis not with time series data, but with life table data
from many countries, both developed and developing. Sivamurthy (1987) pursued a
similiar analysis with fertility rate data from different countries. Le Bras and Tapinos
(1979) used the three principal component approximation suggested by Ledermann and
Breas (1959) in forecasting mortality rates for France, although details of their forecasting
methodology were not specified.

4.1. The approaches of Bozik and Bell (1987) and Bell and Monsell (1991)

In outline, the general approach is as follows. Let the r;, be as in Section 3, and let
r, = (rys ..., g;) . Suppose a linear approximation of dimension J < K is to be used to
approximate the r;. Such an approximation is defined by a K x J matrix A whose columns
span the J-dimensional approximating space. Given A, the approximation to r, each year is
AB,, where B, is obtained by least squares regression of r, on A. The 3, fort=1,...,nare
considered as a J-variate time series, which can be forecast using a time series model or
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other techniques. Having obtained these forecasts 8n+g, the corresponding forecasts of
Fpig are AB,,H;.

It remains to determine A for given J. First, the columns of A are restricted to be ortho-
normal. This implies that 8, = (A’A)"'A’r, = A'r,, and the approximation to r, is
#, = AA'r,. If J = K then A is a K x K orthogonal matrix, so AA" = I and #, = r, so there
is no approximation error. Next, we ask what set of J vectors (columns of A) provide the
approximation that minimizes the aggregate error, >, ||r; — 7| |2? The answer is that the
columns of A are the first J principal component vectors (the J eigenvectors corresponding
to the J largest eigenvalues) of the sum of squares and cross products matrix of the data,
>~ r,r;. Hence the term *‘principal components approach.”” One can also define weighted
PCs corresponding to a weighted least-squares criterion that gives more weight to certain
ages in determining the approximation (Bozik and Bell 1987).

We should distinguish the PC approach with J < K from that with / = K. When J < K,
the J PC series are taken to provide a reduced dimension approximation to the original K
series, and the approximation error is typically ignored. Thus, Bozik and Bell (1987) used
a four PC approximation for the logarithms of the single-year-of-age U.S. white relative
fertility rates, and developed a five-variate times series model to forecast TFR along
with the four PC series. One goal of the analysis reported there was to determine how
many PCs were needed to provide a ‘‘sufficiently accurate’’ approximation, though no
firm conclusion was reached. In contrast, when J = K there is no dimensionality reduc-
tion, but the PC approach yields K time series with simplified structure. In particular,
the PC series are much less cross-correlated than the original series. (Complete removal
of cross-correlation via PCs is not achieved when the data are autocorrelated, as it is in
the i.i.d. case.) This makes development of a multivariate model for all K PC series
feasible. Thus, Bell and Monsell (1991) developed a time series model for all 22 PC
time series obtained from the data on (log) U.S. white female mortality rates described
in Section 6. Inverting the PC transformation (multiplying by A) then yields a multivariate
time series model for the complete r, vector. Contrast this with the discussion in Section 2
about the infeasibility of directly developing a multivariate model for r,.

Figure 3 (see Section 4.2.) illustrates the one, two, and four PC approximations to the
1980 U.S. white female mortality rates. Comparisons of the accuracy of PC and HP
approximations to the U.S. mortality data are made in Section 5.

Since the PC time series (3, are a linear transformation of the original series r;, it is easy
to translate their prediction error variances and covariances into prediction error variances
for the rates themselves. Normal theory prediction intervals for the elements of r; can thus
be obtained. This is illustrated in Bozik and Bell (1987) and Bell and Monsell (1991). Alho
(1992) used simplified versions of these models to produce prediction standard errors for
U.S. population forecasts. Lee and Carter (1992) also discussed use of their approach (dis-
cussed next) for producing prediction intervals for mortality rates. Except with the
approach of Bell and Monsell (1991) that uses all the PCs, such intervals ignore PC
approximation error, which contributes to forecast error. With their approach Lee and Car-
ter (1992) found the contribution of approximation error to be important for short term
(less than ten years) prediction intervals of mortality rates for specific age groups, less
important for prediction intervals for life expectancy, and unimportant for long-term pre-
diction intervals.
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4.2.  The approach of Lee and Carter (1992)

Lee and Carter (1992) used principal components in modeling and forecasting (log) mor-
tality rates for mostly 5-year age groups for the entire U.S. population (not for subgroups
defined by race and sex). The approach was applied to corresponding data for males and
females in Carter and Lee (1992), and to fertility rates for 5-year age groups in Lee (1992,
1993). The Lee-Carter approach differs from those of Bozik and Bell (1987) and Bell and
Monsell (1991) in the following ways:

1. They first subtracted out age-specific means — the average (log) mortality curve over
the history of the data.

2. They used a one PC approximation.

3. Given A, now a K X 1 vector, they obtained the univariate time series (3, (k, in their
notation) by requiring the number of deaths in year ¢ implied by the approximation to
equal the actual number of deaths (or births, in the case of fertility).

They also suggested use of the singular value decomposition to perform the computations;
this is merely a different way of computing the same quantities as PCs.

Given that a one-PC approximation is to be used, subtracting out the age-specific means
is definitely recommended. This improves the approximation without requiring the fore-
casting of additional parameters, since the age-specific means are treated as constant
over time, and so are merely added back to the forecasts of the mean-corrected data. Since
use of two PCs provides, by definition, the best two-dimensional linear approximation, the
Lee and Carter (1992) approximation has an accuracy that lies between the accuracy pro-
vided by one and by two PCs obtained without removing means. This is illustrated for the
1980 U.S. white female mortality rates in Figure 3, which shows all these approximations.
(See also the comparison in Table 1 of Section 5.) Subtracting out means is useful with
low-dimensional PC approximations, but it becomes less important the more PCs are
used, and is unnecessary if all the PCs are used as in Bell and Monsell (1991).

Lee (1992) noted that determining k, as in item 3 above has a couple of advantages,
including permitting the determination of k, for years for which only deaths (or births,
in the case of fertility), and not age-specific rates, are available. Lee and Carter (1992)
used this feature to extend their U.S. mortality data both forward and backward before
modelling and forecasting k,, and Lee (1993) did the same for fertility rates. This is similar
to the proportional adjustment of TFR mentioned in Section 3.1. that was used by Thomp-
son et al. (1989) (as detailed in Bell et al. 1988). This idea could also be applied to the PC
approaches of Bozik and Bell (1987) and Bell and Monsell (1991).

One additional aspect to the approach used by Lee (1993) for fertility was to transform
his fertility index (essentially, TFR) by the logistic transformation over a specified interval
(he used (0,4)) to constrain point forecasts and prediction intervals. This technique was
also suggested by Thompson (1989) and Alho (1990). In the U.S. Census Bureau imple-
mentation of Thompson et al. (1989), the transformation log(TFR-1) was used to con-
strain TFR forecasts and prediction intervals to lie above one.

The Lee-Carter approach has the advantage of requiring the forecasting of only a single
time series (the first PC after the means are subtracted), and the correspondi_ng disadvan-
tage of more approximation error than if more PCs are taken as in Bozik and Bell (1987) or
Bell and Monsell (1991). Two alternative simple modifications to the Lee-Carter approach
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Fig. 3. Approximations to 1980 U.S. white female mortality rates

could avoid this drawback. One is to apply the ‘‘bias adjustment’” procedure of Thompson
et al. (1989). This is equivalent to forecasting all PCs after the first using random walk
models (forecasts constant at the last observed values). The other possibility is to modify
step 1 above by subtracting out r,, (the logged rates for the last year of data) rather than the
mean of r, over the years 1, ..., n, a possibility noted by Lee and Carter (1992, pp. 665—
666). This latter approach produces no approximation error in the last year of data, and
hence no need for bias adjustment. (The value in year n of all the PC series is then
zero, so that, in this case, ignoring all PCs other than the first is equivalent to forecasting
them using random walk models. These results would not appear to be the same as when
applying the bias adjustment to mean corrected data, however, since the computed PCs
will be different.)

It is instructive to examine the form of the Lee-Carter forecasts with and without bias
adjustment. Their one PC approximation to central death rates m;, (defined in Section 6) is
log(m;,) = ri = a; + b;k,, where the qg; are the sample means over ¢t = 1, ...,n of the r;,
and the b; are the elements of the first PC vector computed using the data r; — a;. The fore-
cast in year n + £ of the mortality index k, is obtained from a random walk model with
drift, so IAc,,Hz =k, + &€, where ¢ is the estimated drift parameter. Thus, the forecast of
M pte 18

Mipie = expla; + bk, + ¢€)} = fyof ) -

where 7, = exp(a; + b;k,) is the one PC approximation to the death rates in the last year
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(n) of data, and p; = exp(b;¢). It turns out that ¢ < 0 and b; > 0 for all i, so p; < 1, which
means that (4) yields forecasts 7 ,,, that decay geometrically from the 7;,. The
approximation errors (biases) in the last year are

bias; = log(m;,) — log(i;,) = log(m;,) — (a; + b;k,)

The bias adjusted forecasts in the log-scale are log(i; , ¢) + bias;, for all € > 0, and the
resulting bias adjusted forecasts (/7;,,¢) of the death rates themselves can be shown to be

~ ¢

Minre = MinP;
Thus, the bias-adjusted forecasts decay at the same rate (p;) as the original forecasts, but
from the death rates in the last year (m;,) rather than from the one PC approximation to these
rates (71;,). Similar expressions could be obtained for other models or procedures that might

be used to forecast k,. To the extent that error in the one PC approximation is important and
persists over time, the bias adjustment should thus improve short-term forecasts.

5. Relative Advantages and Disadvantages of the Curve Fitting and Principal
Components Approaches

The primary advantages to the curve fitting approach, relative to the principal components
approach, are its familiarity and interpretability. Rogers (1986) and McNown and Rogers
(1989) discuss how fitting curves to age-specific fertility or mortality rates can summarize
the information in the data in terms of a few demographically meaningful parameters. As
noted earlier, this advantage is better realized in fitting a four parameter curve to fertility
rates for 30 plus ages than in fitting an eight or nine parameter curve to mortality rates for
20 plus age groups. Also, the high correlations between estimates of the Heligman-Pollard
curve parameters (Hartman 1987) compromises their interpretability. The corresponding
disadvantage to the principal component approach is that the resulting time series would
seem to have no natural interpretation beyond their ability to provide approximations to
the underlying rates. This is not entirely true, however, depending on how the approach
is applied. For fertility rates Bozik and Bell (1987) model TFR plus principal component
series for the relative fertility rates, and Lee (1993) defines his one principal component
series so that it effectively approximates the TFR. Also, Lee and Carter (1992) discuss
the demographic interpretation of their approach to forecasting mortality rates.

A minor advantage to the curve fitting approach is that the curves guarantee positive rate
forecasts (perhaps with some restrictions on the curve parameters). This can be achieved in
the principal components approach by taking logarithms of the data. It would also be
necessary to apply any bias adjustment in either approach to the logged data (a propor-
tional bias adjustment) to guarantee positivity.

The major disadvantage to the curve fitting approach is the approximation error
involved. Table 1 gives aggregate mean absolute per cent errors (MAPEs, with averages
taken over both the 52 years and 22 age groups of the data) for various approximations to
U.S. white male and female mortality rates. (Outlier adjustments were made to the data as
discussed in Section 6.) Similar results, though with larger numbers, were obtained for root
mean squared errors (RMSEs). Notice that the Heligman-Pollard curve (HP) is overall
more accurate than the Lee-Carter approximation (LC), whose accuracy Ties between
that of the Bell-Monsell one and two principal component approximations (PC1 and
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Table 1.  Aggregate mean absolute per cent error in approximations 1o U.S. white mor-
tality rates

HP LC PC1 PC2 PC3 PC4 PG5

Females 4.1 4.6 83 35 2.5 20 17
Males 3.8 5.1 103 44 23 1.9 16

Explanatory note: For each approximation, the aggregate MAPE (mean absolute per
cent error) is defined as MAPE = 100/(52 X 22) 312904 3222 11 — #ing./my;|. The nota-
tion of the column headings is as follows: HP = Heligman-Pollard curve, LC = Lee-Car-
ter one principal component approximation (with means removed), PC1-PC5 =Bell-
Monsell one to five principal component approximations (without means removed).

PC2), as noted in Section 4.2. Interestingly, the HP and three or more PC approximations
are slightly more accurate for males than females; while the LC, PC1, and PC2 approxi-
mations are more accurate for females than for males. MAPEs (and RMSEs) for individual
age groups vary over age by factors of usually two or less, though this variation is some-
what larger for PC1, PC2, and LC. An extreme case is age zero for HP, for which the
approximation error is near zero. Heligman and Pollard (1980, p. 50) report that the B
parameter of (3) has little effect on the fitted curve at ages above zero, implying that
this parameter can be adjusted each year so the curve accurately reproduces the observed
gor» Which would explain the very low MAPE at age zero. Hartmann (1987, p. 34) relegates
absence of effects of B to ages beyond one, but notes C in (3) is also closely related to go,.

Note that using only three PCs yields substantially more accurate approximations to the
U.S. mortality rates than the eight parameter HP curve. (Also note that fitting the HP curve
to all 52 years of data determines 416 parameters, while computing three orthonormal PC
vectors, and their associated coefficients for each year, determines 216 total unknowns.)
Bozik and Bell (1987) similarly noted the superiority of low-dimensional PC approxima-
tions to fertility rates relative to the gamma curve or double exponential fits. Furthermore,
the accuracy of PC approximations is controllable by using more PCs, and no approxima-
tion error is involved if all PCs are forecast as in Bell and Monsell (1991).

In Section 6 we will see that the approximation error in the curve-fitting and low-
dimensional PC approximations compromises the accuracy of short-term forecasts.
This problem can be at least partly addressed through the bias adjustment procedure
of Thompson et al. (1989). Though such a bias adjustment seems to have been used
only in the gamma curve approach of Thompson et al. for forecasting fertility, there
is no reason it cannot be used with other approximations to fertility or mortality rates,
and this is explored in Section 6.

Along with compromising the accuracy of point forecasts, approximation error also
causes problems for producing prediction intervals with the curve fitting and low-
dimensional PC approaches. Ignoring the approximation error is inappropriate, and bias
adjustment does not solve the problem, since it only affects the point forecasts. For
low-dimensional PC approaches with bias adjustment, this problem might be addressed
by formally recognizing the use of random walk models for any PCs involved in the
bias adjustment. How successful this approach is would depend on the appropriateness
of random walk models for these PCs. Apart from approximation error, obtaining predic«
tion intervals for rates under a curve fitting approach would require either some sort of



292 Journal of Official Statistics

simulation method or asymptotic approximation, since the curves employed are highly
nonlinear functions of their parameters. This contrasts with the ease of obtaining predic-
tion intervals for the principal components approach since, as noted in Section 4.1., the
(log) rates r, are linear functions of the PCs.

Another possible disadvantage to the curve fitting approach is that some of the fitted curve
parameters may show erratic behavior as time series, making them ill-suited to modelling
and forecasting. Keyfitz (1982) raised this question in relation to a range of mortality curves
and related approaches, e.g., the relational models of Brass (1974). Reparameterization of
curves may help. In fact, Thompson et al. (1989) found the original gamma curve parameters
o and @ in (2) showed erratic time series behavior, whereas the alternative parameters of3
and 3 \/E — the gamma curve mean and standard deviation — showed much more stable
behavior. The end point parameter A, remained problematic, and so was projected at its
most recent value of zero. Knudsen, McNown, and Rogers (1993) observed the four original
parameters of the double exponential function to be ‘‘somewhat difficult to interpret,”” and
so reparameterized the curve. One of the resulting parameters was closely related to TFR. Of
the remaining three parameters, graphs of two of them still showed unstable time series
behavior. For the Heligman-Pollard curve parameters in (3), several of the graphs in
McNown and Rogers (1989) show unstable behavior. I found similar problems with some
of the Heligman-Pollard curve parameters in the empirical study of Section 6. There may
be value in investigating possible reparameterizations of the Heligman-Pollard or other mor-
tality curves, to improve the time series behavior of the fitted curve parameters.

A potential disadvantage to the PC approach is that its transformation of the data is itself
data dependent. That is, given the PCs, i.e., given A, the transformation is linear, but the
determination of A depends on the data. The consequences of this for forecasting are unclear.
If the structure of the data evolved quickly enough over time so that PCs computed now
would soon provide a poor approximation in the future, there would be a clear problem.
Given the quality of the approximation provided by a small number of PCs, however, this
seems unlikely to be a significant practical problem. As it is, the complicated nature of the
transformation from data to PCs makes their analysis not as clean as may be desired.

In particular, the data dependence of the PC transformation has some implications for
time series modelling. For example, Bell and Monsell’s (1991) model for white female
mortality rates involves differencing only the first three 3;s, a decision based on the usual
examination of sample autocorrelations for these time series. But the decision about how
many in the set of 8;s to difference is intimately related to the issue of unit root testing
with potentially cointegrated time series, as investigated by Stock and Watson (1988),
among others. Without going into details, an important implication of their results is
that even if all 8;s need to be differenced (no cointegration), this may not be apparent
from the usual unit root tests applied to these series separately. There is a bias that makes
the first few 3;s look the most nonstationary, and subsequent ;s less and less so. This
bias should be accounted for in unit root inference. Unfortunately, the results of Stock
and Watson (1988) and others on this problem are (1) asymptotic, and (2) developed for
a relatively small number of series (generally no more than five or six). The implications
of these results for a large number of short to moderate length time series of age-specific
fertility or mortality rates are unclear. They do suggest that perhaps more 3, should be
differenced than is readily apparent, and that perhaps other biases may be present in time
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series analysis of the PC series. On the other hand, the excellence of the PC approximations
may render these issues practically unimportant.

6. Empirical Comparisons of Mortality Forecasts from the Curve Fitting and
Principal Components Approaches

We now evaluate empirically the performance of variants of the curve fitting and PC
approaches to forecasting mortality rates. The data used are central death rates for U.S.
white males and white females from 1940-1991 for ages 0, 1, 2, 3, and 4; five-year age
groups from 5-9 through 80-84; and 85 and over. Data with this level of age detail
were not available beyond 1991 at the time this study was done. Central death rates are
defined as m;, = d;/P;,, where d;, is the number of deaths in year ¢ to persons age i, and
P, is the corresponding midyear (July 1) estimate of population age i. For simplicity,
the data will be referred to as ‘mortality rates,”’ though actual mortality rates are defined
somewhat differently. (Shryock and Siegel (1977, Chapters 14 and 15) note mortality rates
g, are defined by dividing dj, by a beginning-of-year population at exact age i. The differ-
ences between m;, and g;, are small for all but the lowest and highest ages. In any case, the
distinction is mostly immaterial for the present study, since the methods considered could
be applied to approximate and forecast either m;; or g;,, though a possible consideration for
the Heligman-Pollard curve is noted shortly.)

Previous authors have done some limited empirical evaluations of their forecasting
models. McNown and Rogers (1989) assessed the accuracy of their forecasts of male
and female age-specific mortality rates over a ten-year forecast horizon. They found their
forecasts to be superior to those of a random walk (no change) forecast. Carter and Lee
(1992) examined forecasts of male and female life expectancy over a twelve-year horizon
from two versions of their approach. They found their forecasts superior to those obtained
by directly modelling and forecasting life expectancy. Both of these assessments are
narrow in scope and are referenced to standards that might be expected to do poorly.
Both also contain an important technical deficiency: they evaluated forecast accuracy
from a single origin year, aggregating accuracy measures over different forecast leads.
This is not advisable because of the heteroscedasticity of forecast errors for different leads,
and the strong autocorrelation of forecast errors from a common origin (see, €.g., Box and
Jenkins 1976, Chapter 5). A better strategy is to compute measures of forecast accuracy for
fixed lead times using different forecast origins. This strategy is implemented here by first
fitting models to data through 1980 and forecasting 1981 through 1991, then refitting
to data through 1981 and forecasting 1982—1991, and so on. This provides eleven
one-step-ahead out-of-sample forecast errors, ten at two-steps-ahead, and so on. I
will focus on accuracy at leads one through five, because of the very small number of
observations available for the more advanced forecast lead times.

As a first step, detection of additive outliers and level shifts as discussed in Chang, Tiao,
and Chen (1988) and implemented in the REGARIMA time series program (U.S. Bureau
of the Census 1995) was applied to the individual series r; = log(m;) using ARIMA
(1,1,0) models with trend constants and an outlier critical value of 3.0. The number of out-
liers found was not large, but level shifts were found in the 1980s for four series (females
age 65, and males ages 5, 20, and 30). These series were adjusted for the level shifts, and*
the adjusted series were used in the modelling and forecast evaluations. The goal of this
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adjustment was to robustify the forecast evaluations against outliers. If outliers in the fore-
cast period are not modified, they may distort forecast comparisons so that whichever
approach happens by chance to forecast the outliers best comes out best in the compari-
sons. Since the Gaussian models used here can make no claim to any inherent ability to
forecast outliers, it seems best to adjust for outliers, to avoid letting them drive the forecast
comparisons. Given the small number of outliers found, the results would probably be
essentially the same without this adjustment.
The models evaluated were as follows:

random walk with drift models (RWD) applied separately to each log(m;,),
the curve fitting approach using the Heligman-Pollard curve (HP),

same as 2 but with bias adjustment,

the one PC approximation of Lee and Carter (1992), denoted LC,

same as 4 but with bias adjustment, and

6. the approach of Bell and Monsell (1991) using all the PCs.

For each model forecasts of all the m; s were generated through 1991 from each forecast
origin year 1980 to 1990. Then RMSEs for the logged data, and MAPE:s for the original
data, were computed for each age group and each forecast lead, averaging the results over
the available forecast origin years. For example, if 7, , denotes the forecast of m; ¢
from forecast origin year n for any of the above models, then the lead one forecast
MAPE for that model at age i is

1990
MAPE(, 1) = (100/11) S |1 = sty /g1 )
n=1980

Dt ol

Summary measures were also computed for each forecast lead by averaging the MAPEs
and RMSEs over all ages. This is not necessarily estimating a well-defined quantity, but
was computed to give an overall indication of the quality of the forecasts for a given lead.

Results for RMSEs tended to be in the same direction as the MAPESs, but showed some-
what more extreme differences. Thus, results will be presented only for the MAPEs.
Before doing so a brief summary of the time series analysis performed for each model
will be given.

The random walk with drift model for each age i is log(m,,)—log(m;,_1) = ¢; + &,
where g, is a series of random errors (i.i.d. N(0, a,~2)). Forecasts of log(m;,) from this model
follow a straight line connecting the first and last data points (the ‘‘ruler method of fore-
casting.”’) When transformed back to the original scale, these forecasts decay exponen-
tially from the last data point () at the rate exp(¢;) (Where &; = [log(m;,/m;))/(n — 1)).
Outlier detection was performed as part of using this model, but this affects the results
only if an outlier is detected at the first or last data point. (Note that as the forecast origin
is advanced the last data point (n) shifts from 1980 through 1990.) Actually, for a few
series a number of outliers were found at the beginning of the series, including additive
outliers in 1940 and level shifts early in the 1940s. In such cases the first observations
of the series were dropped so that the series used started past these outliers. In no case
was a series started later than 1950.

The Heligman-Pollard curves were fitted by minimizing >_,;(m;/i;, — 1)%, where my, is
the fitted HP curve for year ¢. The fitting was done with the Minpack software (More,
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Garbow, and Hillstrom 1980). Time series modelling of the curve parameters led to
random walk models for all but one parameter. The one exception was the B parameter
for males, for which an ARIMA (0,1,1) model was used. Drift parameters were significant
and included in the models for the level parameters (A, D, and G), except for the D para-
meter for females. Only one of the other parameters was found to have a possibly signifi-
cant drift — the H parameter for males (its f-statistic was marginal at 1.95). These
determinations of series with drift corresponded well to the visual appearance of time
series plots of the HP parameters. Outlier detection was performed as part of the model-
ling. Most of the series showed no outliers, but a few did, and the F parameter for females
showed many outliers, depending on the outlier critical value used. A few of the series
showed several outliers in the 1940s, so these series were redefined to start in 1950.

(Through my own inadvertent errors, the above fitting criterion that I used differs from that
originally recommended by Heligman and Pollard (1980). They minimized S il@alqi — 1%,
with g;, obtained from m;, via the approximation g;, = m;/(1 + .5m;,). Hartmann (1987) used
the same fitting criterion, but with ¢;, obtained directly from Swedish life tables. Relative to
these references, I substituted m;, for g;,, and inverted the ratio in the criterion as well. (If con-
sulting either reference, note carefully how their notation differs from that used here.) I have
since fitted the HP curve as originally recommended by Heligman and Pollard, inverting the
fitted results via 1, = §;/(1 — .5§;). The overall quality of the resulting fits for males and
females was quite similar to that for my original fits (cf. Table 1), though with differences
for some individual ages. It may have been preferable to follow Heligman and Pollard’s ori-
ginal fitting recommendation, which would have generated different time series of curve
parameters to be forecast. Nevertheless, since my inadvertent modifications at least yielded
fits to the data that were as reasonable as would have been otherwise obtained, it seems unli-
kely that this had a major effect on the forecasting results.)

The Lee and Carter (1992) RWD model for the first PC series was used without mod-
ification. However, the first PC was used rather than their modified ‘‘second stage esti-
mate’’ obtained by determining the mortality index so that the approximation in each
year reproduces actual total deaths. Outlier detection was performed as part of the model-
ling, but no outliers were found in the first PC series for either males or females.

The bias adjustment of Thompson et al. (1989) was applied to the HP and LC forecasts
as described in Sections 3 and 4.

The multivariate time series model for the female PC series in Bell and Monsell (1991)
was used, although it was of course reestimated with the data for each time frame used.
Even for the same time frame used in Bell and Monsell (1991), the results would not
have been exactly the same, because the mortality rate data were revised using population
estimates derived from results of the 1990 census. Otherwise, the model was applied as
discussed in Bell and Monsell (1991). For the male PC series, a multivariate time series
model of similar form to that for females was used. Details are omitted.

The RWD model applied separately for each age is presented here as a benchmark
(‘“naive’” model) for measuring the performance of the other models. Thus, the MAPEs
will be presented for the RWD, and the ratio of the MAPE:s for the other models to those
for the RWD will be presented. Note that use of the ordinary random walk model with no
drift parameter (a no change forecast) would not be an appropriate benchmark, due to the ™
obvious downward trend of mortality rates.
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Table 2. Average forecast MAPEs for the RWD model, and ratios of average forecast MAPEs for the other
models to those of the RWD model

Forecast lead MAPE ratios

RWD MAPE HP HP +bias LC LC + bias PC

Females

1 2.6 1.93 1.34 2.34 0.98 1.22
2 34 1.52 1.13 1.89 1.00 1.18
3 42 1.26 1.03 1.66 1.02 1.17
4 5.2 1.04 0.94 1.48 1.04 1.11
5 6.0 0.99 0.87 1.37 1.05 1.10
Males

1 2.7 2.45 2.01 3.03 0.99 1.14
2 3.8 1.90 1.66 2.43 0.99 1.06
3 4.8 1.61 1.49 2.05 1.01 1.03
4 54 1.51 1.48 1.97 1.04 1.03
5 6.1 1.39 1.41 1.86 1.07 1.06

Explanatory note: The average forecast MAPE (mean absolute per cent error) for each model is the average over
all ages i of its age-specific MAPEs defined in (5). The notation of the column headings is as follows: RWD = ran-
dom walk with drift model applied to each age separately, HP = curve fitting approach using Heligman-Pollard
mortality curve, HP + bias=HP with bias adjustment of forecasts, LC = Lee-Carter one-PC approximation
approach, LC + bias =LC with bias adjustment of forecasts, and PC = Bell-Monsell approach using all PCs.
The first column following forecast lead shows MAPEs for the RWD model; the remaining columns show the
ratios of MAPE:s for the other models to those for the RWD.

Table 2 presents the summary measures obtained from the averages of the MAPEs over all
ages, for forecast leads one through five. The average MAPESs for the RWD model show that
mortality rates for males were a little harder to forecast than those for females. They also show
the expected behavior of increasing forecast errors with increasing forecast lead. The MAPE
ratios show that the only model that appears competitive with the RWD model is the Lee-Car-
ter model with bias adjustment, which seems roughly on par with the RWD. The next best
choice is the Bell-Monsell PC approach, which is moderately worse than the RWD for
females, and just slightly worse for males. Particularly worth noting are the results for the
HP and LC forecasts without bias adjustment. These results are very poor, clearly showing
the importance of the bias adjustment for short-term forecasting. This is not surprising — com-
paring Tables 1 and 2 reveals that the approximation error for the HP and LC approaches has
about the same magnitude as the short-term forecast error of the RWD model. Bias adjustment
significantly improves the HP forecasts, making them more competitive with those of the
RWD model for females, though it does not completely solve their problems for males. Notice
that the MAPE ratios for the HP and L.C forecasts without bias adjustment decline with
increasing forecast lead. This shows that approximation error diminishes in importance as
the forecast lead advances and more inherent forecast error is accumulated. The bias adjusted
HP forecast MAPE ratios also decline with increasing lead, for unknown reasons.

Figures 4 through 7 show MAPE results graphically by age. The first graph in each figure
shows the MAPEs by age for the RWD model (for males or females for forecast lead one or
two, as noted). Most of the MAPESs are below seven per cent, and MAPE:s for the ages above
40 tend to be even lower. The other graphs in Figures 4 through 7 show the logafithms of the
ratios of the MAPEs for the other models to those of the RWD model. Values of the log ratios
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Fig. 4. U.S. white female mortality rates—lead 1 forecast accuracy

Explanatory note: The first graph shows mean absolute percentage errors (MAPEs) by age at lead 1 for the random
walk with drift model applied to each age separately (RWD). The remaining graphs show logs of ratios of the corre-
sponding MAPESs for other models, to those for the RWD. The notation is as follows: PC = Bell-Monsell approach using _
all 22 principal components; HP = Heligman-Pollard curve fitting approach; HP + bias = HP with bias adjustment of
forecasts; LC = Lee-Carter one principal component approach; LC + bias = LC with bias adjustment of forecasts.
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Fig. 5. U.S. white female mortality rates—lead 2 forecast accuracy

Explanatory note: Notation and arrangement of graphs is as for Figure 4

below 0 indicate better performance than the RWD model; values above O indicate worse
performance. As with Table 2, the graphs reveal that among the more ‘‘sophisticated models’’
only the bias adjusted LC forecasts appear competitive with those of the RWD model. It is
perhaps surprising how poorly some of the alternative models do. Note, for ekample, the
very poor performance at advanced ages for the bias adjusted HP forecasts.
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Fig. 6. U.S. white male mortality rates—lead 1 forecast accuracy

Explanatory note: Notation and arrangement of graphs is as for Figure 4

The reason that the performance of the bias adjusted LC forecasts is so close to that of
the RWD model is not entirely clear. Note that both models produce forecasts that decline
exponentially from the mortality rates in the last year, though they do so at different rates.
The estimated drift parameters ¢; in the RWD model were compared to the corresponding
quantities b;¢ in the Lee-Carter model (note Equation (4)), but the two sets of values did
not appear very similar. Perhaps the fact that the forecast functions of the two models are



300

RW with drift PC/RW with drift
Xx ™ 1
g ]
8 * 2
¥ s w
S IR -
3_x x X x S XXX xxXy x X x X
c} X BQ.% " Pa— X
g XXx xX x ,'_.x
o 2 4 & 8 o 2 4 & &
Age Age
HP/RW with drift (HP+bias)/RW with drift
™ ™
x .
SN- g(\l xx
Sv—- x Ev—- Xx
é xxx xxxxx i X xx
go xxxx xx xx" 30'%xx'va:x=x
°o 2 4 e & °o 2 & e &
Age Age
LC/RW with drift (LC+bias)/RW with drift
o 4 ™ 4
— N A xxxxx — N
% X x X g
& - {x x g
3°'xxxx X go-im—x—n—»-x—n—*-n—n—x—n—x—x—x—x_x_x
xX X
°o 2 4 e & o 20 4 e &
Age Age

Journal of Official Statistics

Fig. 7. U.S. white male mortality rates—lead 2 forecast accuracy

Explanatory note: Notation and arrangement of graphs is as for Figure 4

of this same form is more important to forecast performance than the exact values of the
estimated rates of decline in mortality at each age.

7. Conclusions

While a single study using data from a single country and evaluating forecasts over only an
eleven-year period cannot be taken as definitive, two conclusions still emerge€ from the
results. The first is tentative, due to limitations of the data. The second is rather firm.
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The tentative conclusion is that the curve fitting and principal components approaches
should not be expected to greatly improve the accuracy of short-term mortality forecasts rela-
tive to using a simple random walk with drift model for each age separately. Similar studies of
this question with data from other countries would be instructive. Also, future research should
perform similar assessments of the curve fitting and principal components approaches to
forecasting fertility. In the case of fertility the simple random walk model without drift is
a suitable choice of a ‘‘naive’’ model for comparisons, as there has been no long-term
monotonic trend in fertility rates in developed countries. Thus, the benchmark forecast is
no change in fertility. The question is then whether the curve fitting and principal components
approaches can successfully capture and forecast variations over time in the level (TFR) and
shape of the fertility curve, and thus produce better forecasts than the random walk model?

The rather firm conclusion from the results here is that when using a curve fitting or
low-dimensional principal components approach to forecasting (such as Lee-Carter), the
forecasts should be bias adjusted in some way (e.g., as in Thompson et al. 1989), to avoid
unnecessarily large short-term forecast errors due to persistent approximation errors.
There is no reason to expect that approximation error would not compromise the accuracy
of short-term forecasts from the curve fitting or Lee-Carter one PC approaches when they are
applied to other data sets of mortality or fertility rates. (Note, e.g., the results of Thomson et
al. 1989; and Knudsen, McNown, and Rogers 1993.) As demonstrated in Section 4.2., with-
out bias adjustment the forecasts emanate not from the rates in the last year of data, but from
the fitted curve or PC approximation to these rates. Thus, it should be expected that problems
from approximation error will be avoided only under the unlikely and extremely fortunate
circumstance that the approximation is essentially error free in the last year of data. In this
case the bias adjustment will be negligible anyway. In the common case of significant
approximation error, bias adjustment is easy and can be expected to lead to significant
improvements in short-term forecasts. Since there is no reason to expect bias adjustment
to be harmful to long-term forecasts, there is no reason not to use it. Finally, as noted in Sec-
tion 4.2., the bias adjustment integrates well with the PC approach, emphasizing a point
implicit in Bell and Monsell (1991), that the central issue is not how many PCs to use in
the approximation, but how to forecast all the PCs.

It is possible that the curve fitting and PC approaches may improve longer-term fore-
casts, but empirical evaluation of this requires a lot of data, more than was available for
the study of Section 6. In any case, these approaches can at least facilitate construction of
long-term forecasts by reducing the dimension of the forecasting problem, thus allowing
the forecaster to concentrate attention on forecasting a few quantities rather than a large
number of age-specific mortality or fertility rates. Also, the curve fitting and PC approaches
may have value for describing forecast error variation in a way that allows for the strong
correlation over both time and age. The principal components approach is more convenient
than the curve fitting approach in this respect, and, if all PCs are used, it avoids problems
with approximation error compromising estimates of forecast error variance.
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