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Comparison Between Maximum Likelihood and Bayes
Methods for Estimation of Binomial Probability with
Sample Compositing

Yogendra P. Chaubey and Weiming Li!

This article focuses on the Bayesian approach to estimating a population prevalence
rate through the method of sample compositing which has important applications in
environmental sampling as well as in estimating the prevalence of certain diseases, etc.
This method requires random samples of fixed size k, which is determined before the
experimentation based on cost consideration as well as the target error in the form of
the mean squared error of the estimator. Thus, two choices of prior may be available
to the experimenter, (i) the prior on P, the population proportion, (i) the prior on
P=1-(1- P)*, the group prevalence proportion. These two choices are considered
in this article and their performance has been evaluated in comparison with the maxi-
mum likelihood estimator. It is observed that the Bayes methodology offers different
choices to the experimenter with possible reduction in cost as well as error.
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1. Introduction

Batch sampling, also known as composite sampling, involves taking samples in
batches, and classifying them into one of two mutually exclusive categories, positive
and negative or defective and nondefective, say. Each batch is supposed to consist of
an equal number of sampling units and may be natural or artificially constructed.
A composite sample of size k is formed by combining k individual test portions
(units) and the composite is judged positive or negative based on a single measure.
Alternatively, a sample of size #n may be divided into m batches, each consisting of
k units such that n = mk. Thus, in batch sampling, a batch is considered positive if
at least one of its members has the positive characteristic. Traditionally, each unit
of a sample is classified and therefore, batch sampling is more cost effective as
compared to the traditional approach.

Sample compositing has been used in various situations (see Garner, Stapanian,
Yfantis, and Williams (1989) for various applications), however, we concentrate
on applications which involve estimation of proportions in a population, e.g.,
proportions of people with AIDS (or other disease), proportion of polluted samples,
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proportion of defectives produced in an industry. Dorfman (1943) applied this
method for estimating the proportion of people with venereal disease in a large
population and more recently Garner, Stapanian, and Williams (1987) advocated
its use in environmental monitoring. The reader may further be referred to the papers
by Boswell and Patil (1987) and Boswell, Gore, Patil, and Taillie (1992) for the use of
the above technique in classification of polluted and nonpolluted samples.

In Garner et al. (1989) the maximum likelihood estimator (MLE) of the population
prevalence is considered for the case of composite sampling and is compared with the
estimator obtained in the case where each sample unit is classified. In the present
article, we investigate a Bayesian perspective of the above situation.

Section 2 presents various estimators considered including the MLE whereas Sec-
tion 3 gives the form of the asymptotic distribution of the estimators. The estimators
are compared in Section 4. Section 4.1 presents the comparison based on the Bayes
risk whereas Section 4.2 presents the comparison based on bias and mean squared
error criteria. Some practical considerations are discussed in Section 5.

2. Methods of Estimation

2.1. Maximum likelihood

As in Garner et al. (1989) we summarize the sample compositing technique for
estimating the probability of presence of a characteristic in a population as follows:
Suppose random samples of size k called groups or batches, are chosen from the
sample of » individual test portions (n > k), and each group of test portions is
composited and analyzed. The group size is m = n/k. Let P denote the population
prevalence. A group is declared to be positive (or defective) if it has at least one
defective item. Let P’ denote the probability of a group being classified as defective
and X(4) be the number of groups which are defective. Then Xy, ~ Binom(m, P'), i.e.,

Py == (7 )PPy 1)
x
where x =0,1,...,m; aﬁd P’ is the probability that a group is defective, i.e.,

P'=1-(1-PF
or

P=1-(1-P)V* (2.2)

Table 2.1.  “Optimal” k for given P and m

m
P 10 20 30 40 50 70 100
0.25 3 4 4 5 5 5
0.10 8 10 12 12 13 13

3

5
0.05 9 15 20 25 25 25 25
0.01 35 60 70 110 120 140 140
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The MLE of P’ as in Garner et al. (1989) is given by P.=X (y/m and thus the MLE
of P is given by

B=1—(1-Xg/m'~ (2.3)

They suggested that k should be chosen so as to give the smallest MSE, where
MSE = V(P;) + B?, B= E(P;) — P and gave a series of tables for choosing such
an “optimal” k. This is summarized in Table 2.1.

The above procedure suffers from two important problems: (i) The optimality
criterion does not give any importance to the bias and (ii) The optimal k depends
on the unknown value P. The first problem requires some consideration of bias
whereas the second problem warrants a Bayesian solution.

The bias of MLE is computed for a selection of values of P, k and m and is
displayed in Table 2.2. From this table we note that MLE may have serious bias,
especially when the value of k is far from its optimal value. We find also that the
bias of MLE of P is always positive and increases as k increases, although MLE gives
lower MSE than that of the traditional estimator (requiring the knowledge of
presence or absence of the characteristic in each unit).

Hence, we consider the possibility of a bias correction. Even though the explicit
form of bias as a function of P is not available, a reasonable approximation may
be provided using the standard methods. We have, for large m,

_ _ _ k
E(P) ~ P+ ’;mki [1(1 E lp)klj } . (2.4)

The comparison of approximate bias using the formula (2.4) with the exact bias shows
that the above approximation is adequate for our purposes (i.e., when P is small, see
Table 2.2). Thus, we propose, a bias corrected estimator, P)c, given by

5 s k=1 [Xg/m

Prcy = P — 2.5
MO TR amk (1 — X fm)*/K (2.5)

when X < m, otherwise f’k(c) =1.

Table 2.3 displays the ratio of the bias of corrected MLE to that of uncorrected
MLE from which we find that the bias correction is effective for small k as well as
large k. Substantial reduction in bias is observed for small values of P.

In the next section we consider the Bayesian estimation procedure where X is
replaced by X for notational convenience.

2.2. Bayes method

To develop a Bayes estimator for P we have two choices, namely, by considering a
prior on P or a prior on P'. The prior on P may be more meaningful since P’ depends
on k, whose optimal value is desired for producing the smallest MSE using sample
compositing. However, when the value of k is fixed in advance such as in fixed size
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Table 2.2. Exact bias and approximate bias of MLE

m
10 20 30
k exact approx.  exact approx.  exact approx.

P=025
2 0.0081 0.0073 0.0038 0.0036 0.0025 0.0024
5 0.0541 0.0193 0.0133 0.0096 0.0073 0.0064
10 0.3940 0.0566 0.2209 0.0283 0.1273 0.0189
15 0.6417 0.1723 0.5556 0.0861 0.4828 0.0574
20 0.7221 0.5599 0.6970 0.2800 0.6732 0.1866
P=0.10
2 0.0028 0.0026 0.0014 0.0013 0.0009 0.0009
5 0.0057 0.0050 0.0026 0.0025 0.0017 0.0017
10 0.0190 0.0076 0.0044 0.0038 0.0027 0.0025
15 0.0905 0.0108 0.0142 0.0054 0.0049 0.0036
20 0.2391 0.0154 0.0695 0.0072 0.0227 0.0051

P =0.05
2 0.0014 0.0013 0.0007 0.0006 0.0004 0.0004
5 0.0024 0.0022 0.0012 0.0011 0.0008 0.0007
10 0.0036 0.0029 0.0015 0.0014 0.0010 0.0010
15 0.0057 0.0034 0.0019 0.0017 0.0012 0.0011
20 0.0145 0.0040 0.0024 0.0020 0.0015 0.0013
P =0.01

2 0.0003 0.0003 0.00013  0.00013  0.00009  0.00008
5 0.0004 0.0004 0.00021  0.00020  0.00014  0.00014
10 0.0005 0.0005 0.00024  0.00024  0.00016  0.00016
15 0.0005 0.0005 0.00026  0.00025  0.00017  0.00017
20 0.0006 0.0005 0.00027  0.00025  0.00018  0.00017
P =0.005
2 0.00013  0.00013  0.00006  0.00006 0.00004  0.00004
5 0.00022 0.00020 0.00010  0.00010  0.00007  0.00007
10 0.00025  0.00023  0.00012  0.00012  0.00008  0.00008
15 0.00026  0.00024  0.00013  0.00012  0.00008  0.00008
20 0.00027  0.00025  0.00013  0.00012  0.00009  0.00008

lots and the experimenter has some knowledge of P’, the alternative prior may be
more meaningful. For completeness, both cases are considered in this article.

2.2.1. Prioron P

Consider a Beta(a, 3) prior on P which can accommodate a variety of prior informa-
tion about P to develop a Bayes estimator, i.e., we consider a probability distribution
on P given by

T =p)!
f(p)_ B(a,ﬂ)

The joint distribution of (X, P) is given by

" (2.6)

m
X

fx,p) =< ) {B(o, )} "7 (1 = p)" L — (1 - p)fT.
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Table 2.3. Ratio of bias of adjusted MLE to the exact bias

m
k 10 20 30 50 100
P=0.25
1 1 1 1 1 1
2 0.0098 0.0024 0.0016 0.0010 0.0005
5 0.6048 0.1241 —0.0012 —0.0092 —0.0042
10 0.9688 0.9264 0.8714 0.7130 0.1809
15 0.9954 0.9904 0.9851 0.9735 0.9371
20 0.9992 0.9983 0.9974 0.9957 0.9912
P=0.10
1 1 1 1 1 1
2 0.0009 0.0006 0.0004 0.0003 0.0001
5 —0.0191 —-0.0135 —0.0086 —0.0050 —0.0025
10 0.4870 —0.0021 —0.0182 —0.0104 —0.0049
15 0.8729 0.5116 0.1177 —0.0165 —0.0086
20 0.9590 0.8727 0.7094 0.2193 —-0.0147
P =0.05
1 1 1 1 1 1
2 8.4E-6 0.0002 0.0002 0.0001 0.0001
5 —0.0252 —0.0116 —0.0076 —0.0045 —0.0022
10 —0.0200 —0.0190 —0.0122 —0.0071 —0.0035
15 0.2334 —0.0245 —0.0162 —0.0093 —0.0045
20 0.6437 0.0128 —0.0207 —0.0120 —0.0057
P=0.01
1 1 1 1 1 1
2 —0.0006 —0.0001 —0.00003 1.2E-7 6.44E-6
5 —0.0225 —-0.0107 —0.0070 —0.0041 —0.0021
10 —0.0310 —0.0147 —0.0096 —0.0057 —0.0028
15 —0.0349 —0.0164 —0.0107 —0.0063 —0.0031
20 —0.0338 -0.0176 —0.0115 —0.0068 —0.0033
P =0.005
1 1 1 1 1 1
2 —0.0006 —0.0001 —0.0001 —0.0000 1.5E-9
5 —0.0222 —0.0105 —0.0069 —0.0041 —0.0020
10 —0.0300 —-0.0143 —0.0094 —0.0056 —0.0027
15 —0.0331 —0.0157 —0.0103 —0.0061 —0.0030
20 —0.0351 —0.0166 —-0.0108 —0.0064 —0.0032
The marginal probability density f(x) of X is given by
1
fx) = JO ( > (B, B)}'p* 7 (1 = p) " L = (1= p)Tdp

()

(e, 8} 2

j=0

)(=1)!B(a, kj + km — kx + ).
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The posterior distribution of P can therefore be evaluated as

F(Plx) = £(x,p)/Ax) = po~I (1 — p)lm—hx+6-1

X -1
x [1=(1=p)* [Z( D=1 Blo,kj + km — kx + )
=0
Then the Bayes estimator of P is given by
X /x .
Z( . )(—1)13(a + 1,kj+ km — kX + B)
~ _ Jj=0 J

Pypy =E(P|X) = (2.7)

X (X
Z( , )(—l)jB(a,kj+km — kX + ).

j=0\J

2.2.2. Prioron P’
If we put a Beta(a, 3) prior on P', the posterior distribution of P’ can be similarly
computed as above and is given by

p/x+a—1(1 _p/)m—x+[3—1
B(x+am-x+08)

f'lx) =

The above yields the posterior of P through the technique of transformation and we
can compute the mean of this distribution giving us the Bayes estimator under the
square error loss. However, we can directly compute this, without computing the
posterior of P as

1
Prgy=| 1 - (=) 1| X)dp’
0

_ Tm+a+B)(m—-X+6+1/k)
 I(m-X+BT(m+a+B+1/k)

(2.8)

An ad hoc but simple estimation procedure would be to consider the posterior
mean of P’ and use it to consider an estimator of P by the virtue of the relation
between P and P'. This procedure will be called indirect Bayesian procedure which
is presented in the next section.

2.2.3  Ad hoc method (approximation to Bayes method)
Choosing a Beta(c, 3) prior on P’ gives the Bayes estimator of P’ as

N X+a
Pl=— 2.9
m+a+ 29)
Substituting above into (2.2) in place of P’, we have indirect Bayesian estimator
N X+a 1/k
Pyp=1—-(1———— 2.10
am =1 (1- 229 ) (.10)

The estimator given in (2.10) can be given the following justification. F or large N
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we have from Abramowitz and Stegun (1960, eqn 6.1.46)

F(N+ a) —b
— <~ N 2.
T(N+0) (2.11)
Therefore for 1arge m, from (2.8) we find that
o m—X+0 Ve
Pygg=l—{———— = 2.12
(B) (m P [5’) %(IB) (2.12)

which is easier to compute, and therefore may be preferred in practice.

3. Asymptotic Distribution

In practice the values of n and m are fairly large, so that large sample distributions of
the estimators can be used for inference purpose. The distributions of Bayesian
estimators are not easily tractable, however, the asymptotic distributions of the
maximum likelihood estimator and that of the indirect Bayesian estimator follow
from the general result which obeys the Mann-Wald Theorem (see Rao 1973,
p. 426), for the function g given by

g(P)=1- (1 —Pljcb) (3.1)
then
~ 2
g(Py) —g(P') a P'+ b\
\/ﬁ—p%—_ﬁr”NG’[uc(l‘ l+c) ]) (32)

For the maximum likelihood estimator, we have g(P}) = P, with b=c=0 and
a=1/k. For the indirect Bayes estimator, g(Py) = Pk(lB) with b= a/m,
¢ = (a+ B)/m and a = 1/k. These results may be used in setting up confidence limits
for P or for setting up large sample standard errors for the corresponding estimators.

The large sample confidence intervals can be obtained using the above large sample
distributions using MLE or indirect Bayes. For Bayes estimator based on the prior on
P one may approximate the prior on P’ by a beta density and use the large sample
result (3.2). It can be pointed out that all the distributions discussed in the above
section have the same asymptotic distribution. However, the use of the asymptotic
distribution is not investigated in this article.

In the next section we present comparisons of the estimators presented above.

4. Comparisons of Estimators

4.1. Bayesian comparisons of different estimators

In general, the Bayes estimator §z(X) is the “optimal” estimator of the parameter #in
the sense that under the given prior and loss function it has the smallest risk, where the
risk (7, 8) for a decision rule (estimator) §(X) with respect to the prior 7 is given by

r(r,6) = EoEX|9[5(X) - 9]2 (4.1)
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under the squared error loss. Therefore, the task of a Bayesian is done once the Bayes
estimator is computed. However, he/she may still be interested in assessing the
closeness of other estimators to the Bayes estimator in terms of the Bayes risk.
A frequentist, on the other hand, is generally interested in comparing the estimators
based on bias and MSE. For this purpose, first we compare the Bayes risks of Pk (B)
and Pk( p) With that of the MLE. We define the Bayes Relative Efficiency (BRE) of an
estimator 6 by

r(7,8p)
r(r,6)

The computations in the following tables have been done using the following
decomposition of the risk function

r(r,6) = Ex(8(X) — 65(X))* + ExVar(6|X). (4.3)

It is clear from the above formula that the Bayes estimator &3(X) = E(f|X) is the
optimal under the squared error loss.

For comparing the Bayes estimator corresponding to a Beta(c, 3) prior on P, the
prior on P’ is chosen to be Beta(d/, 3'), where o/ and (' are obtained by equating
the first two moments. Thus we have

BRE(6) =

(4.2)

,_ (= A)B-4) A(B- )
=g Mg (44)

where
A=T(a+ BT (B+k)/T(BT(a+B+k) and
B =I'(a+ B)L'(B8 + 2k)/T(B)T(a + B + 2k).

For the reason of simplification, we take & = 1 in the following computations. It is
interesting to find that o/ = 1 and 8 = 3/k in this case.

Table 4.1 displays the values of BRE for various estimators corresponding to the
case m = 10 for several values of P and k, where P represents a prior guess for P
and is taken to be the mean of the prior on P. Similar computations were performed
for other values of m = 5(5)100, however, only the m = 10 case is reported here for
the reason of space.

We conclude the following from Table 4.1:

i. The MLE and the bias corrected MLE are much inferior to the Bayes estima-

tors.

ii. The Bayes estimator with matching prior on P’ with that on P gives almost
matching risk.

iii. The three alternative estimators have 100% BRE for k =1 because these
coincide with the Bayes estimator.

iv. The ad hoc estimator (indirect Bayes) seems to be a good approximation to
Pk( By especially when P is small.

In the following section we consider the frequentist’s concerns regarding the
" resulting estimators.
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Table 4.1. Bayesian comparison (m = 10)
k (o,8) BRE(P,) BRE(Pyc) (@,8) BRE(Py) BRE(Ps))

P=025 1, 3)

1 0.7143  0.7143 (1, 3.00) 1.0000 1.0000
5 0.1416  0.1409 (1, 0.60) 0.8682 1.0000
10 0.0787  0.0785 (1, 0.30) 0.6966 1.0000
15 0.0693  0.0693 (1, 0.20) 0.6174 1.0000
20 0.0663  0.0663 (1, 0.15) 0.5730 1.0000
P=0.10 1, 9
1 0.5000  0.5000 (1, 9.00) 1.0000 1.0000
5 0.1737  0.1793 (1, 1.80) 0.9768 1.0000
10 0.0320  0.0320 (1, 0.90) 0.8991 1.0000
15 0.0180  0.0180 (1, 0.60) 0.8225 1.0000
20 00142  0.0142 (1, 0.45) 0.7669 1.0000
P =0.05 a1, 19)
1 0.3333  0.3333 (1, 19.0) 1.000 1.0000
5 03764  0.4182 (1, 3.80) 0.9937 1.0000
10 0.0466  0.0471 (1, 1.90) 0.9713 1.0000
15 0.0144  0.0144 (1, 1.27) 0.9351 1.0000
20 0.0078  0.0078 (1, 0.95) 0.8945 1.0000
P =001 1, 99)
1 0.0909  0.0909 (1, 99.0) 1.000 1.0000
5 0.2938  0.3237 (1, 19.8) 0.9996 1.0000
10 0.3987  0.4535 (1, 9.90) 0.9984 1.0000
15 02787  0.3073 (1, 6.60) 0.9966 1.0000
) 20 0.0975  0.1012 (1, 4.95) 0.9941 1.0000
P=0005 (1,199
1 0.0476  0.0476 (1, 199.0) 1.000 1.0000
5 0.1798  0.1968 (1, 39.8) 0.9999 1.0000
10 0.2883  0.3225 (1, 19.9) 0.9996 1.0000
15 0.3541  0.4017 (1, 13.3)  0.9990 1.0000
20 03516  0.3979 (1, 9.95) 0.9983 1.0000

4.2. Classical comparison of different estimators

In this section we compare various estimators under the criterion of relative efficiency
(RE) and relative bias (RB) which are defined as follows. The relative bias of an
estimator P is defined to be

E(P—P)

RB(P) = 2 (4.5)
whereas the relative efficiency of P is given by
. E(P
RE(P) = MSEPE). (4.6)
MSE(P)

These may be termed as frequentist’s comparisons. In this comparison the Bayes
method is used only to get the form of the estimator and the loss function does not
play any further role. As mentioned before, we want to assess the performance of
different estimators by the frequentist’s measures.
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~

kP Pro) (,)  Pup (@,8) Prap) Py
P =025 1, 3)
10 0 0 (I, 3.000 o0 0
5 0.2166 0.1310 0.0955 (1, 0.60) 0.0125 0.0955
10 1.5758 1.5268 0.2929 (1, 0.30) 0.0019 0.2929
15 2.5669 2.5552 0.3739 (1, 0.20) —0.1085 0.3739
20 2.8885  2.8861 0.3501 (1, 0.15) —0.2356 0.3501
P=0.10 1, 9
10 0 0 (1, 9.00) o0 0
5 0.0573 -0.0011 0.0384 (1, 1.80) —0.0031 0.0384
10 0.1905  0.0928 0.0803 (1, 0.90) 0.0049 0.0803
15 0.9047 0.7897 0.1457 (1, 0.60) 0.0145 0.1457
20 2.3911 2.2930 0.2348 (1, 0.45) 0.0171 0.2348
P =0.05 1, 19)
10 0 0 (1, 19.00) o0 0
5 0.0485 —-0.0012 0.0236 (1, 3.80) —0.0074 0.0236
10 0.0671 —0.0013 0.0435 (1, 1.90) —0.0043 0.0435
15 0.1144  0.0267 0.0624 (1, 1.27) —-0.0005 0.0624
20 0.2996  0.1929 0.0849 (1, 0.95) —0.0039 0.0849
P =001 1, 99)
1 0 0 0 (1, 99.00) 0 0
5 0.0436 —0.0010 0.0045 (1, 19.8) —0.0087 0.0045
10 0.0508 —0.0016 0.0118 (1, 9.90) -0.0110 0.0118
15 0.0545 —-0.0019 0.0182 (1, 6.60) —0.0110 0.0182
20 0.0573 —0.0022 0.0237 (1, 4.95) -0.0103 0.0237
P =0.005 (1, 199)
10 0 0 (1, 199.0) 0 0
5 0.0431 —-0.0010 0.0016 (1, 39.8) —0.0063 0.0016
10 0.0494 —-0.0015 0.0051 (1, 19.9) —0.0098 0.0051
15 0.0521 -0.0017 0.0089 (1, 13.3) —0.0112 0.0089
20 0.0539 —-0.0019 0.0125 (1, 9.95) -0.0117 0.0125

Table 4.2 displays the values of RB while Table 4.3 displays those of RE for the case
m = 10 for different choices of k and P. As in Section 4.1, these values were computed
for m = 5(5)100, but we have chosen to present only the case m = 10.

From these tables we conclude the following:

I

ii.

iii.

iv.

The biases of the Bayes estimators, Pk( B) f’k( 8) and Pk( By are smaller than that
of MLE as well as its corrected version.
Indirect Bayes estimator performs very well in the sense of having small

bias.

The biases of both the Bayes estimators with matching priors almost

coincide.

The MSE’s of Bayes estimators, Pk( B)s f’k( 78) and Pk( By are always smaller than
that of the MLE as well as its corrected version.

. The indirect Bayes estimator performs very well in the sense of having small

MSE; it gives an MSE even smaller than that of the bias corrected MLE.
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Table 4.3. Relative efficiency (RE)

k Pyey (a,0) Pyp) ,8) Py Py
P =025 a1, 3)
1 1.0000 1.9600 (1, 3.00) 1.9600 1.9600
5 1.0326 4.6967 (1, 0.60) 7.0430 4.6967
10 0.9948 19.0334 (1, 0.30) 80.6230 19.0334
15 0.9986 35.9098 (1, 0.20) 269.945 35.9098
20 0.9997 59.8529 (1, 0.15) 147.473 59.8529
P =0.10 a1, 9
1 1.0000 4.0000 (1, 9.00) 4.0000 4.0000
5 1.1792 1.7066 (1, 1.80) 1.9141 1.7066
10 1.0464 7.8234 (1, 0.90) 10.6963 7.8234
15 1.0028 35.6663 (1, 0.60) 69.5410 35.6663
20  0.9992 71.1192 (1, 0.45) 210.2756 71.1192
P =0.05 1, 19)
1 1.0000 9.0000 (1, 19.0) 9.0000 9.0000
5 1.1249 2.1946 (1, 3.80) 2.3577 2.1946
10 1.1985 1.8981 (1, 1.90) 2.1710 1.8981
15 1.0756 5.6804 (1, 1.27) 7.0462 5.6804
20 1.0158 248676 (1, 0.95) 34.7447 24.8676
P =0.01 (1, 99)
1 1.0000 121.0000 (1, 99,0) 121.0000 121.0000
5 1.0948 9.8546 (1, 19.8) 10.1257 9.8546
10 1.1174 44701 (1, 9.90) 4.6918 4.4701
15 1.1331 3.1422 (1, 6.60) 3.3501 3.1422
20 1.1478 2.5710 (1, 4.95) 2.7776 2.5710
P =0.005 (1, 199)
1 1.0000 441.0000 (1,199.0) 441.0000 441.0000
5 1.0919 27.2737 (1, 39.8) 27.7123 27.2737
10 1.1091 9.9768 (1, 19.9) 10.2871 9.9768
15 1.1185 6.0878 (1, 13.3) 6.3488 6.0878
20  1.1259 45019 (1, 9.99) 4.7390 4.5019

5. Discussion

Group testing is in general economical in the light of reduced average number of units
to be tested, since a group is declared defective as soon as one item is found defective.
Based on a given total cost per unit to be tested, a k may be determined in advance
and fixed. Next, based on the prior knowledge of the population proportion (the
mean or the median value of the prior) the above k may be compared to the optimal
value for the MLE or that for the Bayes estimator. If it is far from the “optimum”, a
recommendation to revise the budget is suggested.

Choice of priors may be guided by a target value or a preliminary estimate of P, say
P, along with a measure of its precision V. These may be used in determining the
constants of a Beta prior by equating the first two moments. These values may be
updated based on the new estimates.

The direct Bayes method offers a good alternative to the experimenter as he/she
may have some general ideas about the population proportion which can be used
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to obtain the value of optimal k which can be updated in subsequent testing and
estimation. Once k is known, a prior on P may be transformed into a prior on P’
and then the alternative Bayes estimator or its approximation (the indirect Bayes
estimator) may be used. The indirect Bayes estimator is simple to calculate and hence,
may be attractive to users.

Choice of k may be guided by physical considerations or be chosen by min MSE
criterion or be determined from the optimal k for MLE. For practical use a fixed k
is desirable unless the variability of the prior is very high.
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