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Comparisons of Variance Estimators in
Stratified Random and Systematic Sampling

Richard Valliant'

Abstract: Properties of stratified ratio and
regression estimators and associated vari-
ance estimators can differ considerably
under systematic as opposed to random
sampling. Large sample properties under
the sampling plans are compared theor-
etically and empirically. A simulation study
of estimator performance is presented which
examines the effect of different values of
certain population parameters. The study
contrasts properties under stratified random
and systematic sampling and illustrates
advantages of the separate regression esti-
mator together with the jackknife variance
estimator under a systematic plan. The

1. Introduction

Ratio and regression estimation in conjunc-
tion with stratification are familiar and well-
studied methods in the survey sampling
literature. Design-based variance estimators
are summarized by Cochran (1977). Wu
(1985) introduced a class of estimators,
which included the standard ones, for the
combined ratio estimator and obtained the
member of the class optimal in terms of
design mean squared error (MSE). In the
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separate and combined ratio estimators and
the combined regression estimator, on the
other hand, are less satisfactory. Each
requires a more restrictive model in order to
be conditionally unbiased than does the
separate regression estimator. Even in
populations in which the biases of the ratio
estimators and the combined regression esti-
mator can be controlled by systematic
sampling, the variance estimators studied
here can be substantial overestimates.

Key words: Jackknife variance estimator;
separate ratio estimator; separate regression
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unstratified case, design-based studies of the
ratio estimator have been done by Rao and
Rao (1971), Wu (1982), and Wu and Deng
(1983). Deng and Wu (1987) also studied
design-based properties of variance esti-
mators for the unstratified regression
estimator. Conditional model-based studies
have been done by Royall and Cumberland
(1981a, 1981b) and Royall and Eberhardt
(1975) and have been extended to stratifi-
cation by Valliant (1987a).

Most previous studies have been done in
the context of simple random sampling
(SRS) or stratified simple random sampling
(STSRS) with relatively little attention given
to stratified systematic sampling (STSYS) in
ratio and regression estimation problems.
Much of the literature on variance esti-

.
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mation in systematic sampling deals only
with the simple sample mean (e.g., Heilbron
1978; Wolter 1984). Tachan (1982) gives an
extensive review of studies on systematic
sampling and notes that there is a need for
work on more complex estimators. This
paper contrasts the effects of STSRS and
STSYS on properties of variance estimators
for ratio and regression estimators. Kott
(1986) noted that systematic sampling is one
method of protecting against certain kinds
of model biases when estimating a mean. As
illustrated here, systematic sampling can
also have important effects on variance
estimators.

The population is divided into H, a fixed
number, of strata and within stratum £ a
sample of 7, units is selected from the total
of N, units. The sampling fraction in
stratum hisf, = n,/N,and the set of sample
units from stratum h is denoted as s;,. The
total population size is N = X, N, and the
total sample size is n = X,n,. The propor-
tion of the population in stratum s is W, =
N,/N. Associated with unit (hi) is a random
variable y,; and an auxiliary x, with the
latter known and positive for every unit in
the population. Assume that there are
bounds B, and B, such that 0 < B, <
X, < B, < oo for each h and i As in
Valliant (1987a,b), for model-based analyses
‘we will consider a situation in which N,
n, = o, f, = 0, and n,/n and W, converge
to constants in all strata.

The finite population means of y and x
are j = THEM . IN and & = T E"x, N
and the stratum means are j, = Z," y,/N,
and X, = =Y x,:/N,. The separate and com-
bined ratio estimators are defined as

H
Yrs = ;myhsxhlxhs

and

Yre = )—73)-6'/)-65,
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Where )_)h.\' = Zx,, yhi/nln X'hx = Zx,,xhi/nho )_)_y iS

the stratified expansion estimator defined
- H - - _ H =

as y, = 2/1 [/I//l Yiss and Xy = Z/1 I/thh.\" The

separate and combined regression estimators

are

H
s = Z [’Vh[)_’/..\- + bhx(xh -

h

X))

and

)_/LC = Jy + b(-)-C - )-cx)’

‘where by, = SepnsSias and b = 20 KyS ons
2, K, S With Ky = WAL — f)[my, Sune =
z,, (X — X )yul(ny — 1), and  Spy =
Zs,,(xhi - xhx)z/(nh - 1.

We will study these estimators under
some special cases of the model

- Vhi &y + thhi + Epis

E@(S/,i) = 0, (M
and

Varg(ghi) = Uy

with the g,’s uncorrelated. This model is
often reasonable when strata are formed
based on the size of x and a more com-
plicated relationship between y and x may
be approximated linearly within strata.
Such populations are often encountered
in surveys of business establishments or
institutions such as hospitals conducted by
national governments.

2. Properties of the Ratio and Regression
Estimators

Theoretical properties of the ratio. and
regression estimators are sketched in this
section. In order to make comparisons we
employ both model and design-based cal-
culations. Two results are useful in this
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regard. First, under appropriate conditions,
\/n_,,()'c,,s — X,) converges in distribution to
a normal random variable under simple
random sampling without replacement as
n, = o (Scott and Wu 1981), i.,
(Zps — %) = Oy(ny"?) where O, denotes
probabilistic order with respect to the
sample design. The Lindeberg-Hajek con-
dition under which this order result holds is
somewhat technical to state here, but, to
paraphrase Scott and Wu, the condition
essentially requires that the contribution of
gross outliers to the stratum total sum of
squares =" (x,, — X,)* be relatively small.
The second result is due to Kott (1986) and
states that when a systematic sample is
selected from a list ordered by x and x is
bounded as in Section 1, then
(%4 — X3) = O(n; ") with the order being
nonprobabilistic. Assuming that n,/n con-
verges to a constant in each stratum, we
have %,/x,, = 1 + O,(n"'?) under STSRS
but X,/%,, = 1 + O(m~") under STSYS. It
follows that under STSRS jzs = j, +
O0,(n"'?) while jgs = 7, + O(n~') under
STSYS. These same relationships to the
stratified expansion estimator p, also
hold for jpe, Jis, and jic. Thus, the
differences among the four estimators are of
small consequence in large systematic
samples because that sampling plan is an
effective way of achieving sample balance
on x.

Turning to the model bias and variance of
Jrs under (1), Valliant (1987a) noted that

E(jrs — y) = /Z, Wi (X) — X))/ X
(©))
and
Vs

vary(jrs — J) ® Z VV,,Zth —
h n,

3)

Where D.\'lr = )-Ch/')-clm’ z-)lzx = Zx,,‘vhi/nln and =~
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denotes ‘“‘asymptotically equivalent.” The
model variance has order n~', assuming o,
and n,/n converge to constants as n, —» 0.
The model bias (2) is a random variable with
respect to the sample design.: Since, under
STSRS (%,, — %,) = O,(n"'?), the square
of the bias (2) has order n~' under STSRS
which is the same order as the model vari-
ance (3). On the other hand, under STSYS
the square of the bias is order n=2 The
results of Kott (1986) on systematic sam-
pling also can be applied more generally
when, for example, E.(y,,) is a polynomial
in x,. In summary, when an STSYS is
selected, the dominant term of the model
mean squared error is (3) with the square of
the model bias being asymptotically much
less important than under STSRS.

Similar arguments lead to the same con-
clusions for the combined ratio and com-
bined regression estimators. Defining
D, = X/x,, the model bias and approximate
model variance of yy are

Eg()_’RC -7y = (D, — 1)’2 W, o,

+ ;[’Vhﬁh(l)ﬁ% — %), @)

and

varg(Jre — J) & D%Zh‘, W20, /my. Q)

For the combined regression estimator the
model bias and approximate variance are

Eg()_’Lc - }-’) = Z W;;Bh(xm - )_Ch)

+ Z Bh I<hs.\'.\‘/m‘
S.\‘.\' h

and

- - D
vary(jic — j) = z WhZ;h—
h h

x -x) K,
+ —) W, — s,
S /Z, h n, S Ly

AR I .
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where S, = Z,K;S.s and
z,, (X — T )owl(ny — 1). When stratum
samples are large, D, =1+ 0O,(n""?)
under STSRS and 1 + O(n™') under
STSYS. These facts and the aforementioned
properties of (%, — %,) imply that the
squares of the model biases of Jgc and j, ¢
both have order n~' under STSRS but n~>
under STSYS. As was the case for jzs, the
parts of the MSE’s accounted for by the
squares of the biases of jrc and jc are far
less important under STSYS than under
STSRS.

The separate regression estimator is

Sips =

model unbiased under (1), as is well known,

and has approximate model variance

_ - Uy
varg(js — ) = Z Wi -
h ny
th - - Sths
+ 2y — (% — %) . (6)
h Ny xxhs

The first term on the right-hand side of
(6) has order n~'. The second term in (6)
has order n~¥* under STSRS and order
n~2 under STSYS. Thus, little difference
between the STSRS and STSYS variances
of . is expected in large samples.

3. Variance Estimators

The fact that estimating repeated sampling
variances from systematic samples may
present special problems not encountered
with random samples has long been recog-
nized (e.g., Cochran 1946; Osborne 1942;
Wolter 1984). These special problems are
often not accounted for in practice. Wolter
(1985, ch. 7) notes that common practice in
applied survey work is to regard a systematic
sample as random and estimate design
variances using random sampling formulae.
In a population with linear trend, computed
variances are often considered to be over-
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estimates because the random sampling for-
mulae do not appropriately reflect the effect
of the trend which is picked up by systematic
selection (see e.g., Hansen, Hurwitz, and
Madow 1953, §11.8; Wolter 1984).

A variety of variance estimators have
been studied for jrc and jgs. This paper
examines a number of the choices that have
been proposed for use under STSRS plans
with emphasis on contrasting the properties
that obtain under stratified simple random
and stratified systematic plans. For jrs we
include

K
_ h 2 2
Ursg — Z 1 D3, Z Fini
Ry — Sp
and
n, — 1
— 2
Ursy = Z K, — Dy,
h h

2
Fini 1 AT
Xz[l—k B Sl I
h 1hi n, s, 1hj

where riy; = Vi — Xu Vis/ X and ky; = Xl
(n,,%,,)- For the combined ratio estimator we
consider

LA ¢
— h 2
Urcg = Dt Z ] Z Foni
h nh - Sp
and
A K
2 h
vpes = D
t ; n, — 1

2
Foni 1 Tanj
I el
p — Kopi n, g b= Ko

where ry; = (Y — Pi) — (F,/%) (X0 — i),
ko = Wiy — X))l {0y — Dx,}.

The estimators vgs, and vgc, define classes
studied by Wu (1985) who found values of g
that were optimal in the sense of minimizing
the approximate design MSE’s of the vari-
ance estimators. For the separate estimators
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we treat the case of the same value of g in
all strata although Wu proposed that g
be allowed to vary among strata. Cases of
special interest are g = 0, 1, 2 which have
been studied by a number of authors. The
estimators vgg, and v, are computational
forms for the stratified delete-one jackknife
estimator whose general form was defined by
Jones (1974). For some estimator O the
general formis v, = Z,(1 — f,){(n, — 1)/n,}
2, {0y — 04} where 04, has the same
form as @ but omits the (hi )* sample unit and
0, = Eg(hi, [ny,. Since all x,; are bounded, k,,,
and k,,; are both o(1) and it is clear from the
computational forms above that wgg, is
asymptotically equivalent to vyg,, and vy, is
asymptotically equivalent to vgc,. Wu (1985)
earlier showed that under STSRS vy, is the
closest approximation to vgc, within the class
Vpce- Royall and Cumberland (1978, § 6) also
showed that the general jackknife v, is
asymptotically equivalent to a variance esti-
mator, G, in their notation, which was
derived to be robust against failure of the
variance specification in a linear model.
Variance estimators we consider for the
separate regression estimator are in the class

vLSg = Z \'h z dl/ll

n y — 2 Sp

Where dlhi = (yhi - )—/Im') - bh.\'(xhi - ih.\')'
For the combined regression estimator
consider

LA ¢
‘ULCg - Dg Z h

Z d2/u

h Sh

where dyi = (Vi — Pi) — blxy — %)
The classes defined by v;5, and v, were
studied by Deng and Wu (1987) for the un-
stratified case and by Wu (1985). In the em-
pirical study we additionally include the jack-
knife variance estimators for y;5 and ¢,
computational forms of which are included
in Valliant (1987a).
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In the case of the sample mean, Wolter
(1984) has studied a number of estimators
involving contrasts and other functions of the
sample y’s which are designed to address the
peculiarities produced by systematic samples.
The focus here will not be to develop new
variance estimators but to study the con-
sequences of the common practice of using
random sampling estimators when the
sample is actually systematic.

4. Properties of Variance Estimators

First, consider variance estimators for the
separate ratio estimator. Since, for a fixed
value of g, D% =1 + O,(n ") under
STSRS, we have vgg, = vggy + O,(n~?)
under that plan. However, under systematic
sampling D§, = 1 + O(n™') and vgg, =
vrso + O(n™?). Thus, the choice of g is of
less consequence when an STSYS plan is
used. Under model (1)

Dg xh 5 2 S vxhs
Ups + &, =2 .
n

h Xhs
(7

Recalling (3), vgs, is approximately model
unbiased when o, = 0 while other choices
of g lead to a bias. When o, # 0, all vy, are
biased estimators of the model MSE. The
bias may be substantial and positive under
STSYS because systematic sampling from a
list sorted by x prevents small values of s,
but reduces the importance of the bias (2).
This observation is similar to the findings of
Royall and Cumberland (1978, § 5.2) on the
overestimation by certain variance esti-
mators for the unstratified (H = 1) ratio
estimator in balanced samples (%, = ¥,).
On the other hand, if y is extremely variable
for a given x so that 9,, > a?s,,. /%5, then
the model bias of wvgs, can be negligible
under STSYS.

Turning to the jackknife, we noted in

Ez(‘Ung) =~ Z Wh



120

Section 3 that vy, was approximately equal
to wrs, in large samples so that (7) with
g = 2 also applies to the jackknife for the
separate ratio estimator. Thus, wgg, is
approximately unbiased when a, = 0.
When «o, # 0, the jackknife, like vgg,, is
likely to be a considerable overestimate
under STSYS in populations where the vari-
ance of y given x is small. Generally, vgg,
will be larger than vgg, because of the deno-
minator factors, 1 — k,;, which are less
than one.

Similar theory can be worked out for
Urcy- AN approximation to E; (vge,) is given
by the right-hand side of (7) with X,
replaced by Xx,. Consequently, the same
remarks given above on the model bias of
Ugs, under STSYS also apply to vgc, and to
vre, because of its large sample equivalence
10 Vgeo-

Next, consider the regression estimators.
Using the approximation D§ =~ 1 —
g(x,, — %,)/x, and results from Valliant
(1987a, §3.3), the approximate model bias
of w5, is

2

. W, _
blasg(”LSg) ~ Z — (Xns — %)
n Ny

X [— g @ + 2 M]
Xhs Sxxhs
which has order n~*? under STSRS but only
n~2under STSYS. In either case, the bias of
Vs, has a lower order than the variance of
Js which is O(n™"). Similar findings apply
to vy, if B, = B in all strata. However, if
the slope parameter is not the same in all
strata, v; ¢, has a model bias of order n!as
do wgs, and vge,. Using the computational
forms of vy, and v, in Valliant (1987a,
§4), it can be shown that, in large samples,
v.ss IS approximately equal to v g, and that
v s 18 approximately equal to v;¢,. Thus,
the above comments on v;g, and v, also
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apply to the corresponding jackknife

estimators.

5. Simulation Results

The earlier theory was tested in a simulation
study using six artificial populations. Use of
generated rather than real populations has
some advantages in allowing certain popu-
lation parameters to be systematically
varied in order to study their effect on esti-
mator performance. In particular, we con-
trolled (1) curvature of the regression of y
on x and (2) the conditional variance of y
given x. In each of the six populations 2000
(x, y) pairs were generated. Each x was
generated as x = 150 + 600w where w was
a standardized chi square random variable
with six degrees of freedom (df), i.e. w =
(x2 — 6)//12. Given x, y was generated as

y = a+ bx + cx* + dx’z

where a, b, ¢, and d were constants and z was
a standardized chi square random variable
with six df. Values of x were constrained
to be in the interval [1, 1500] while y was
restricted to [50, 2500]. Table 1 lists the
parameter values used for each population
and Figure 1 shows scatterplots of systematic
samples of 200 units from each population.
Populations 1 and 2 both have the same
specification for E; ( y); population 1 has the

Table 1. Parameters used in generating
study populations

Population b c g
1 1.5 0 0.75
2 1.5 0 1.00
3 1.8 —0.0008 0.75
4 1.8 —0.0008 1.00
S —-0.3 0.0009 0.75
6 —-0.3 0.0009 1.00
Note: In all six populations a = 100 and
d=0.5.

-
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Fig. 1.

ing populations are similarly paired.

Each population was divided into five

variance of y proportional to x** while

population 2 has var(y) o x*. The remain-

Scatterplots of 200 units from each of the six simulation study populations.

strata, after sorting units in ascending order
on x, with N, =400 (h = 1,...,95). The
main goal in strata formation here was to
create enough strata so that the piecewise
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Fig. 2. Square roots of empirical mean squared errors for the separate ratio and regression
estimators for 1000 samples from each of six populations. Separate lines are shown for
stratified simple random samples (RAN) and stratified systematic samples (S YS). Triangles

denote samples of n = 25. Ovals denote samples of n = 100.
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linear model in (1) was reasonable even
though E.( y) was generated as a quadratic
function of x. Creation of strata with equal
numbers of units is one choice considered by
Royall and Herson (1973, Theorem 2) for
achieving optimality under a particular
model when stratified balanced sampling is
used and the same number of sample units is
allocated to each stratum. Other methods of
stratification, based on design variance con-
siderations, such as the cumulative square
root rule (Cochran 1977, p. 127), are also
often used. The preceding theory relies on
model (1) being a useful approximation, a
condition that would hold for many stratifi-
cation algorithms in the populations studied
here.

From each population four sets of 1000
samples were selected: (1) 1000 stratified
simple random samples of size n = 25
(n, = 5 for all k), (2) 1000 STSRS’s of n =
100 (n, = 20), (3) 1000 STSYS’s of n = 25
(n, = 5), and (4) 1000 STSYS’s of n = 100
(n, = 20). All simple random samples were
selected without replacement and all system-
atic samples were selected with separate
random starts in each stratum after sorting
units in ascending order on x.

Figure 2 is a plot of root mean squared
errors (RMSE’s) for the separate ratio
and regression estimators over the sets
of 1000 samples. The RMSE of the separate
ratio estimator, for example, is defined as
[Z7_1(Frs: — [S]? where jrg is the
estimate from sample i and S = 1000. For
each population separate lines are given in
Figure 2 for stratified random samples and
for stratified systematic samples. Triangles
represent the RMSE’s for samples of 25 and
ovals give the RMSE’s for n = 100. Results
for the combined estimators are omitted to
conserve space. We emphasize unconditional
comparisons, i.e., ones over all 1000 sam-
ples, because conditional properties under
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STSRS have been examined elsewhere
(Valliant 1987a) and because systematic
sampling virtually eliminates conditional
differences in the estimators studied here.

Based on the theory for model (1), the
conditional (model) bias of jz5 can make a
substantial contribution to the RMSE over
all samples when an STSRS plan is used.
Stratified systematic sampling should
remove the model bias component of the
RMSE. This effect is clearly manifested in
Figure 2 in the lower variance populations
(populations 1, 3, 5) where the separate ratio
estimator has a considerably lower RMSE
at either sample size under systematic sam-
pling than under random sampling. For
populations 1, 3, and 5, for example, the
exact ratios, (RMSE under STSRS) +
(RMSE under STSYS), for jyrs when
n = 100 are 1.27, 1.83, and 1.48. In the
higher variance populations (2, 4, 6), on the
other hand, differences in the RMSE’s of j
are smaller under the two sampling plans.
For populations 2, 4, and 6 the ratios,
(RMSE under STSRS) = (RMSE under
STSYS), for yrg when n = 100 are 1.06,
0.85, and 0.96.

The separate regression estimator is
unbiased under model (1) and, based on
approximation (6), little difference is antici-
pated theoretically between STSRS and
STSYS in large samples. When n = 100 in
Figure 2, the RMSE’s of j ¢ conform to
theory, having similar values under random
and systematic sampling with the exception
of population 4 where STSRS is actually
more precise. However, when n = 25, the
separate regression estimator is more precise
for all populations under STSYS than under
STSRS, indicating some small sample dif-
ferences not apparent in (6). There are
noticeable differences between the RMSE’s
of yrs and y, s under random sampling, par-
ticularly for n = 25 in the higher variance



124 Journal of Official Statistics

Pop 1 ron o
sys -
Pop 2 ran
sys
Pop 3 ran o
sys -
Pop 4 ron 4
sys -
Pop 5 ran 4
sys -
Pop 6 ran 4. . .
Bys g G
0.7 1.0 1.3 1.6 1.9
Ratio to Root Mean Square Error

VRS2

Pop 1 ran 4 -
SyS o -
Pop 2 ron 4 -
By® o o
Pop 3 ron o -
sys o
Pop 4 ron 4
sys -
Pop 5 ran 4
Pop 6 ron 4. . -
sys o oo W R o oieve e L S S S B
0.7 1.0 1.3 1.6 1.9
Ratio to Root Mean Square Error

V RSJ

Pop 1 ran 4
sys -

Pop 2 ran 4 -
sys -

Pop 3 ran 4
sys

Pop 4 ron 4
sys

Pop 5 ran 4
sys

Pop 6 ran 4
SyS <

0.7

1.3 1.6 1.9
Ratio to Root Mean Square Error

Fig. 3. Ratios of square roots of average values of variance estimators to empirical root
mean squared errors, x5 | RMSE( Frs) (j = 0,2,J), for the separate ratio estimator for sets
of 1000 samples from each of six populations. Separate lines are shown for stratified simple
random samples (RAN ) and stratified systematic samples (SYS). Triangles denote samples
of n = 25. Ovals denote samples of n = 100. -
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Fig. 4. Ratios of square roots of average values of variance estimators to empirical root
mean squared errors, ¥}/s;,/RMSE( 3,5) (j = 0, 2, J), for the separate regression estimator
for sets of 1000 samples from each of six populations. Separate lines are shown for stratified
simple random samples (RAN) and stratified systematic samples (SYS). Triangles denote

samples of n = 25. Ovals denote samples of n = 100. -
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populations where ygg is more precise. How-
ever, in the systematic samples the RMSE’s
of the separate ratio and regression estimates
are similar, especially at the larger sample
size. This is in accord with the theoretical
observation in Section 2 that jzg and yg
differ from each other only by a term of
order n~' under STSYS.

Figures 3 and 4 plot the ratio of the
square roots of average variance estimates
to the RMSE’s for the separate ratio and
regression estimates. The ratios plotted in
Figure 3, for example, are 93,/ RMSE( jigs),
(j = 0,2,J), where Ops; = Z7_ vgg;/S and
Vgs;i 18 the value of vgg; in sample i. As in
Figure 2, separate lines are given in the
figures for each population and selection
method with triangles and ovals denoting
results for the two sample sizes. Ratios of 1
indicate unbiasedness; ratios less than 1
correspond to underestimation; and ratios
greater than 1 are cases of overestimation.
Figure 3 includes ratios for vggy, Vs, and
vrsy While Figure 4 includes the correspond-
ing variance estimators for j 5. The choice
vps1(vLs1) had ratios intermediate between
Vrso aNd Vger (V5o and v1g,) and is omitted.

First, consider the STSRS results. The
usual design-based theory predicts that in
large STSRS’s, all choices in Figures 3 and
4 should be approximately unbiased over all
samples. In these STSRS simulations each
of vgs, (g = 0, 2) are generally moderate to
small underestimates at either sample size in
Figure 3. The jackknife v, is somewhat of
an overestimate in STSRS. For the regression
estimator y;5 the asymptotic properties of
variance estimators in random sampling do
not appear to apply as quickly as for the
variance estimators for jps. Each v,
(g = 0,2) is a severe underestimate in
Figure 4 for (STSRS, n = 25) with the
problem being less severe but still present at
n = 100. (For STSRS, n = 25) the jack-
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knife v, 5, has especially wild behavior, over-
estimating in all populations with some of
the worst cases being the high variance
populations (2, 4, 6). For (STSRS,n = 100)
the jackknife for y,g is the best performer,
being a slight overestimate in all popu-
lations while the other choices tend to be
underestimates.

With systematic sampling the picture
changes. Recalling (7), vgsy, Urs2, and vggy
are expected to be overestimates in the low
variance populations under STSYS. This is
clearly illustrated in Figure 3 for popu-
lations 1, 3, and 5 where each variance esti-
mator is an overestimate in STSYS at both
sample sizes. Results for populations 3 and
5, where the ratios for all variance estimates
are about 1.9 and 1.5 when n = 100, are
especially striking. On the other hand, in the
high variance populations (2, 4, 6) the pat-
tern of consistent overestimation of the
RMSE of jRs does not hold. For population
4 with (STSYS, n = 100) the RMSE is
underestimated by about 15%. In Figure 4,
the performance of the variance estimators
for the separate regression estimator is sub-
stantially better under STSYS than STSRS.
Except in population 4, the degree of under-
estimation by v;g, and o, is reduced or
eliminated atn = 25and atn = 100is rela-
tively minor where present. For (STSYS,
n = 100) the best performer in Figure 4 in
terms of bias is v, by a slight margin.

Table 2 gives empirical standard devi-
ations (s.d.’s) of the variance estimates. In
either random or systematic sampling there
are differences in precision among the vyg,
and among the vy g, but the differences are of
no great consequence. The most dramatic
numbers in Table 2 are for the jackknife for
separate regression estimator which has
enormous s.d.’s for (STSRS, n = 25) a find-
ing similar to that of Andersson, Forsman,
and Wretman (1987) in the context-of price
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Table 2. Standard deviations of variance estimates for the separate ratio and separate linear
regression estimators in sets of 1000 stratified simple random and systematic samples from six

populations

Population Sample

Standard deviations in 1000 samples

Type
n URrso Ursi Urs2 Urss ULso ULsi ULs2 ULss
1 ran 25 82.7 89.8 122 231 85.2 85.9 88.0 1387
100 9.2 9.4 10.0 10.1 8.8 8.8 8.8 12.9
sys 25 85.2 86.0 87.4 88.7 89.8 89.9 90.4 161
100 9.0 9.1 9.1 9.1 8.9 9.0 9.0 9.7
2 ran 25 1028 1033 1060 1169 1165 1173 1202 41971
100 114 114 115 115 109 109 111 152
Sys 25 1033 1026 1023 1034 1182 1182 1185 2081
100 126 127 128 128 119 120 121 122
3 ran 25 224 223 240 345 70.9 67.7 66.1 1675
100 24.8 24.5 24.9 25.5 7.3 7.1 7.1 10.8
sys 25 173 169 167 176 53.3 53.3 53.5 115
100 17.7 17.7 17.8 18.0 7.4 7.4 7.5 8.2
4 ran 25 1725 1708 1725 1789 1691 1675 1691 31915
100 181 178 178 179 151 149 149 241
Sys 25 1799 1783 1775 1831 1837 1833 1836 3746
100 174 174 173 174 156 155 155 161
5 ran 25 193 196 223 621 93.6 92.9 94.0 1330
100 22.7 22.4 224 22.8 11.5 11.5 11.5 17.6
Sys 25 186 178 172 180 108 105 101 137
100 21.2 21.0 20.7 20.9 9.4 9.4 9.4 9.4
6 ran 25 1548 1543 1562 1627 1748 1743 1761 66736
100 163 162 163 163 163 162 163 256
Sys 25 1503 1506 1514 1546 1595 1603 1615 2592
100 157 157 157 157 157 156 156 160

index estimation. The potential for high
variability of the jackknife was also noted
by Wu (1986) in linear model analysis. The
extreme variability of the jackknife is
reduced by using systematic sampling,
particularly for n = 100.

Figure 5 gives empirical coverage prob-
abilities of normal approximation confi-
dence intervals which have nominal
coverage rates of 95%. The upper half of the
figure includes results using jis together
with vgg, and wvgs,. The lower half shows
results for y g together with v g, and vg,.

The choices vgs, and vgg, (75, and v;g;)
gave coverage percentages similar to wgg,
(vLso) and are not shown. First, examine the
results for the separate ratio estimator.
For populations 1, 3, and 5 the contrasts
between random and systematic sampling
when using s are evident. Under STSRS
coverage probabilities in Figure 5 using jgg
and its variance estimates are consistently
too low when n = 25 but are nearer the
nominal values when n = 100, though still
slightly low. The overestimation under
STSYS by the variance estimates for 7igs in
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Fig. 5. Empirical coverage probabilities in sets of 1000 samples of nominal 95% confidence
intervals based on the separate ratio estimator and two estimators of its variance and on the
separate regression estimator and two estimators of its variance. Separate lines are shown for
stratified simple random samples (RAN) and stratified systematic samples (SYS). Here 0
denotes Vg, OF V.5, and J denotes vgs, or v, ;. Vertical reference lines are drawn at 95% for
samples of n = 25 and n = 100.
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Figure 2 leads to wasteful overcoverage in
Figure 5 in populations 1, 3, and 5 at both
n = 25 and 100. On the other hand, in the
high variance populations 2, 4, and 6
coverage probabilities under STSYS are
most often somewhat less than the nominal
levels.

The separate regression estimator together
with its variance estimators generally
performs less erratically across the different
populations for confidence interval con-
struction under STSYS than does the
separate ratio estimator. The extreme over-
coverage under STSYS noted for ygg in
populations 1, 3, and 5 is not present for y; 5
in Figure 5. With (STSYS, n = 100) the
empirical coverages are reasonably close to
the nominal values except in population 4
where the undercoverage problem persists.
When n = 100 and the variance estimates
are more stable, v, g, appears to be the best
choice in both STSRS and STSYS. For the
smaller sample size, n = 25, the severe over-
estimation by v, in Figure 4 does not lead
to the same degree of overcoverage in
Figure 5.

General summary findings and recom-
mendations for (estimator, design) pairs,
based on the simulation and the theory
presented here and on previous work by
Kott (1986), Royall and Cumberland
(1981a, b), and Valliant (1987a), are as
follows:

® For (jrs, STSRS)
- In populations where a straight line
through the origin is a reasonable
model, either vgg, Or vgg, perform well
both conditionally or unconditionally.
- Jgs can have a substantial conditional
bias in populations where the relation-
ship of y to x is not well approximated
by a straight line through the origin.
If the number of strata is large, this
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problem will be reduced, but pgg is very
sensitive to departures from the model
E(yi) = BuXu-

® For (jRs, STSYS)
- The STSYS plan will often reduce
conditional bias.
- In low variance populations all vari-
ance estimators will be overestimates if
the model for y contains an intercept.
— In high variance populations the
jackknife may be preferable, but
results here are inconclusive.

® For (j.5, STSRS or STSYS)
- Conditional bias is less of a problem
than with ( jgs, STSRS).
- All variance estimators are poor in
small samples.
- In larger samples v, is preferable.

Although no combination studied here is
without flaw, the one which has the most to
recommend itself is ( s, STSYS) as long as
stratum sample sizes are moderately large.
The STSYS plan helps guard jy, ¢ against
conditional bias due to failure of model (1).
In sufficiently large samples vg,, in most
cases, successfully estimates the variance
even in systematic samples. The variance
estimators in the classes studied by Royall
and Cumberland (1978) should also perform
similarly to the jackknife for ( j.5, STSYS).

6. Conclusion

In populations where there is a reasonably
smooth relationship between a target vari-
able y and an auxiliary x, systematic sam-
pling is a defensive strategy. Systematic
sampling within strata from a frame sorted
by x protects stratified ratio and regression
estimators against certain kinds of model
biases by producing samples which are more
likely to be balanced on moments of x than
are simple random samples. However, that
bias protection does not always extend to
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variance estimators. The dispersion of y
about the regression line of y on x has a
major effect on the performance of variance
estimators. In populations where var,( y|x)
is relatively low, variance estimators for the
separate ratio estimator are subject to severe
overestimation in systematic samples which
persists even in large samples. In cases in
which strata are formed based on the size of
x and the regression of y on x can be
approximated as a straight line within each
stratum, the separate regression estimator is
a good choice for controlling model bias.
Systematic sampling will further protect the
separate regression estimator against bias
caused by departures from the straight line
model within each stratum. Additionally, in
the types of populations studied here, the
jackknife variance estimator for the
separate regression estimator performs well
in systematic samples as long as stratum
sample sizes are moderately large.
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