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Con®dentiality, Uniqueness, and Disclosure Limitation for
Categorical Data1

Stephen E. Fienberg2 and Udi E. Makov3

1. Introduction and Background

Suppose a population of individuals is cross-classi®ed according to several categorical

variables yielding a cell with an entry of ``1.'' Then we say that the individual correspond-

ing to that ``1'' is unique in the population for these variables, or more succinctly is a

population unique. Note that, in principle, if we use enough variables everyone in the

population may be unique. Thus we presume that the data collection agency has been

somewhat careful in its choice of a set of p variables to collect and the total number of

cells in the resulting cross-classi®cation, K, is suf®ciently less than the population size,

N, to make the problem of identifying population uniques statistically interesting.

When does the existence of a population unique lead to a data disclosure problem

related to a pledge of con®dentiality, e.g., not to release information collected from

respondents in identi®able form? If a data release displays the information for an indivi-

dual unique in the population, then an intruder will know that such an individual was

included in the data base. An intruder who possesses matching data about a population

unique has the potential to match his or her records against those in the data. This would

lead to a formal violation of con®dentiality. Further, if a subset of variables lead to unique-

ness in the population then by matching records the intruder may actually learn some

additional information about the unique individual beyond that already in his or her ®les.

When an agency releases data on individuals that are categorical in nature, the possible iden-
ti®cation of those who are unique or rare in the population is a concern because identity dis-
closure is deemed to be a violation of promises of con®dentiality. We review relationships
among uniqueness in a sample, uniqueness in the population, and notions of disclosure,
and then turn to methods for assessing disclosure potential as a result of sample uniqueness,
especially using log-linear models.

Key words: Contingency tables; data disclosure; imputation; loglinear models; population
uniqueness; sample uniqueness; exact distribution.
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Most agencies attempt to protect the con®dentiality of population data by releasing (and

possibly only collecting) a sample from that population. For the same p variables we have

a sample cross-classi®cation and we can identify those cells containing individuals corre-

sponding to counts of ``1'' who are thus unique in the sample. Every person who is unique

in the population is unique in the sample if selected, but being a sample unique does not

necessarily mean that such an individual is also a population unique (e.g., see Bethlehem

et al. 1990). Most papers in the literature attempt to work from the frequency of occurrence

of sample uniques to that for population uniques, e.g., see the references in Fienberg and

Makov (1996) and Chen and Keller-McNulty (1998).

Note that we may also be able to infer something about cells with population uniques

from sample data and cells containing counts of ``0.'' If the intruder possesses data on

a known individual whose characteristics correspond to a zero cell and if it is possible

to infer that he or she is a population unique then a breach of con®dentiality may take

place. For instance, if this target individual is included in a future released sample,

disclosure will be inevitable. Further, if we think of disclosure as a probabilistic pheno-

menon, it may also occur when the population contains cells with counts larger than

``1.'' For example, a count of ``2'' may allow someone with a set of almost unique char-

acteristics to identify the only other person in the population with these characteristics.

And a release of ``3'' in the absence of other knowledge, allows someone else to be linked

to an intruder's data base containing these same variables, with probability of either 1/2 or

1/3 depending on whether the intruder possesses such characteristics.

In this article, we focus on using uniqueness in the sample to learn about uniqueness in

the population, but same simple modi®cations to our approach easily allow us to explore

the implications of small counts in sample cross-classi®cations for data disclosure. In Sec-

tion 2, we outline an approach to this problem that has emerged over the past decade. In

Section 3, we propose a new approach based on log-linear models for cross-classi®cations

and imputation from the sample to the population. In Section 4, we discuss the new

approach using an example based on a 3 ´ 3 ´ 2 contingency table, and then, in Section

5, we explain how it can be extended to account for model uncertainty using a Bayesian

model averaging approach.

2. Notation and Setup

We presume that a disclosure occurs if an intruder succeeds in linking a target individual

to a microdata record and is able to verify with high probability that this link is correct and,

in the case of sample data, unique. We con®ne our attention to the case where there is no

measurement error, so that veri®cation is straightforward. Then, once the key variable

values for the target individual match those of the microdata exactly, disclosure is certain

if no other individual in the population (except, perhaps, the intruder him- or herself )

shares identical values for these key variables. This population uniqueness results in

sample uniqueness, but the reverse is not necessarily true.

The existence of sample uniques and population uniques in actual data ®les naturally

increases the likelihood of disclosure and hence both the agency and the intruder focus

their attention on these cases, the former for disclosure limitation, the latter for achieving

disclosure. An agency can take several measures to eliminate sample uniques altogether
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(e.g., cell suppression or controlled rounding). These, however, reduce the applicability of

the released data provided it can verify that the intruder is unlikely to establish population

uniqueness (see the discussion below). Once the intruder has linked a target variable to a

sample unique, he or she must assess the probability that the relevant sample unique is also

a population unique before using the results of the match.

We use the following notation: N is the size of the population; M is the size of the sam-

ple held by the agency; and n is the size of the released sample. Typically, n � M < N, i.e.,

the agency releases the entire sample data, but an option which is always available is

n < M < N, i.e., the agency releases only part of the collected data. Let K be the maximum

variety of individuals as de®ned by the key variables. Since we assume that the variables

are categorical, K is equal to the number of cells in the corresponding multiway contin-

gency table, with cell probabilities, pi, i � l; 2; . . . ;K. Finally, we let Fi and fi,

i � 1; . . . ;K, denote the counts in the cells of a multiway table summarizing the entire

population and the sample, respectively.

The evaluation of P�Fij fi� is of cardinal importance for both the agency and the intruder

since

XK

i�1

P�Fi � 1j fi � 1� �1�

is a crucial measure of the vulnerability of the released data. In the spirit of the previous

section, we can extend Equation 1 to refer to a broader de®nition of uniqueness such asX
i

�P�Fi [ �1; 2�j fi � 1� � P�Fi � 2j fi � 2�� �2�

Most prior attempts to model P�Fij fi� or to estimate the number of population uniques

are based on the assumption that the probabilities associated with cell frequencies in the

population are a realization from a superpopulation, e.g.,

Fijpi , Poisson�Npi�

fijpi , Poisson�npi�

npi , Gamma�a; b�

�3�

As Bethlehem et al. (1990), Skinner et al.(1994), and others show, this structure results in

P(population unique) � �1 � Nb�ÿ�1�a�
�4�

The underlying assumption here is that the fpig are the realization of a single density,

i.e., the fpig are assumed to be exchangeable and thus they do not re¯ect any underlying

structure that is at the root of the model that generated the data. This approach is often

referred to as one based on the frequency of frequencies (Good, 1953; Bishop, Fienberg,

and Holland 1975, Chapter 9). Indeed, estimating the extent of population uniques in

real data commonly resulted in unsatisfactory results, e.g., see Bethlehem, Keller, and

Pannekoek (1990). This led Skinner et al. (1994, p. 48) to conclude ``it seems therefore

that the Poisson-gamma model itself must be questioned.''

Skinner and Holmes (1998) also argue against the use of (3), because it is constant

across records which are sample uniques. Instead they suggest modeling pi as a log-linear
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model, having a regression structure which re¯ects the particular characteristics of the ith

cell:

log�pi� � g�ui� � « �5�

where « , N�0; j2
� and the ui's are loglinear model parameters similar to those in the

model we work with below. The ui's and j are unknown parameters.

Samuels (1998) proposes an innovative alternative approach based on statistical estima-

tion in the context of species sampling and population genetics, and he reanalyzed a data

set from Chen and Keller-McNulty (1998).

3. Proposed Approach

Suppose that a released sample of n observations is drawn from a population of size N with

cell probabilities fp�N�
i g. Suppose further that the fp�N�

i g follow a log-linear model includ-

ing various terms such as main effects interactions (see Bishop et al. 1975 or Fienberg

1980) of the form

log�p�N�
i � � gN�ui� �6�

Given a sample of size n, we propose to select a log-linear model, ®t it to the observed

counts ffig, and thus produce estimated cell probabilities f Ãp�n�
i g. These may differ from

fp�N�
i g because the ®tted model differs from (6) or because the estimates of the parameters

in (6) differ from their population values.

We proceed as if we have reasonably precise estimates of the fp�N�
i g based on the sam-

ple data, i.e., f Ãp�n�
i g differs from fp�N�

i g only as a consequence of the sampling error asso-

ciated with the estimates of the margins corresponding to the highest order terms in the

model of Expression 6. The estimated probabilities of the cell counts are no longer

exchangeable.

Given the formal statistical model-based approach which we have pursued to this point,

one might try to develop analytical formulae for the estimation of P�Fi � 1j fi � 1�.

Because many of the loglinear models that might result from the estimation process

will not have closed-form representations in terms of the marginal minimal suf®cient sta-

tistics (see, e.g., Bishop et al. 1975), at best we would have to do so using some form of

iteration or analytical approximation (cf. Skinner and Holmes 1998). Instead we have

opted for a simulation-like approach.

To estimate P�Fi � 1j fi � 1�, we propose the following. Use the records on the n indi-

viduals in the sample x1; . . . ; xn to generate from f Ãp�n�
i g �N ÿ n� ´ H records, resulting in H

populations of size N, where in each �N ÿ n� ``new'' records are obtained by some form of

imputation (e.g., see Little and Rubin l987) or multiple imputation from a posterior distri-

bution (e.g., see Rubin l987). Thus we have H sets of records of the form:

x1; . . . ; xn; xn�1;1; . . . ; xN;1

. . .

x1; . . . ; xn; xn�1;H ; . . . ; xN;H

There are many ways to generate the H replicates or ``populations.'' One possibility is

to use the estimated probabilities, f Ãp�n�
i g, to draw a series of H independent multinomial

samples of size �N ÿ n�, proceeding as if the f Ãp�n�
i g are the correct cell probabilities. If we
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formally include model uncertainty in a Bayesian approach, the replicates become a ver-

sion of multiple imputation. In another approach, demonstrated in the next section, we can

generate the imputed records from the exact distribution associated with the released con-

tingency table given a set of ®xed margins that are the minimal suf®cient statistics of a log

linear model.

Let ÅFi�j� � ÅFi�x1; . . . ; xN;j� be the count in cell i, based on the jth imputed population.

Similarly, let Åfi �
Åfi�x1; . . . ; xn� be the count of the ith cell given the released data. Clearly

Åfi Þ 1 ) ÅFi�j� Þ 1. What is of interest, however, is whether

� ÅFi�j� � 1� Ç �Åfi � 1� Þ 0 �7�

We can estimate P�population unique ÿ sample unique� byXK

i�1

ÃP�Fi � 1j fi � 1� �
XK

i�1

XH

j�1

d� ÅFi�j��1�Ç�Åfi�1�Þ0

H
�8�

where da � 1 if condition a is met, and da � 0, otherwise.

The intruder can evaluate Equation (8) and, if this estimated probability proves to be

very small, should conclude that disclosure is unlikely. Actually, a disclosure takes place

if the following occurs: (A) the records of the target individual are released by the agency;

(B) the record of the target individual constitutes a sample unique; and (C) this sample

unique is also a population unique. The probability of disclosure is equal to

P�A�P�BjA�P�CjA;B� and this needs to be evaluated (e.g., see Skinner et al. 1994). Clearly,

an agency has to control the size of this product by releasing a small sample or by taking

other measures to reduce the likelihood of identifying population uniques and, ultimately,

by perturbing the released records.

Since Equation 8 is likely to decrease as �N ÿ n� increases, the agency is motivated to

reduce n such that Equation 8 indicates that disclosure is infeasible. i.e., when considering

the release of a sample of size n, the agency can impute the population and evaluate Equa-

tion (8) as a means of assessing the vulnerability of the released data. To aid in this assess-

ment process we might want an estimate of the standard error for the estimated

probabilities associated with Equation 8. This estimate would need to come from the repli-

cates of the exact distribution used in the simulation process, but we do not attempt to esti-

mate it here. What seems clear, however, is that this standard error should be smaller than

those that would come from other, less-constrained simulation approaches. Finally, the

agency also must weigh the tradeoffs between increased con®dentiality protection and

the increased uncertainty in the released data.

Actually, if we return to Equation 8 and remove the summation over the cells as indexed

by the subscript i, we obtain a cell-speci®c measure of disclose risk. This is, in fact, the

approach we adopt in the following example.

4. Example

In this section we apply an approach of imputing the ``missing records'' by generating the

exact distribution associated with a contingency table given a set of ®xed margins that are

the minimal suf®cient statistics of a loglinear model. The methods are based on an

approach in Diaconis and Sturmfels (1998) and implemented and described in further
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detail by Fienberg et al. (1997). Appendix 1 provides further simulation details. The data,

reproduced here in Table l, form a 3 ´ 3 ´ 2 table giving counts for Race by Income Group

by Gender.

We ran a simulation based on draws from the exact distribution of the data in Table 1

under the no 2nd-order interaction model. No simpler loglinear model appears appropriate

for this example, thus simplifying the complex problem of model selection and its impli-

cations. Our goal was to estimate the probability of a unique cell in the population given a

unique cell in the sample. Using the released table as a base set of cell counts, we gener-

ated 500 tables before picking a table and adding its cell counts to the original table. The

resulting table could be regarded as a population table if our sample was a 50% sample of

the population. (We walked through 500 tables in order to reduce potential correlation.) In

a similar way we then repeatedly selected tables at 500 table intervals during the random

walk to create similar population tables for sample sizes 20%, 10%, and 5%. We obtained

100,000 of these tables for each of the four sampling fractions.
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Table 1. Three-way cross-classi®cation of gender, race, and income for a selected U.S. census tract. (Source:

1990 Census Public Use Microdata Files)

Gender�Male
Income level

Race # $10;000 > $10;000 and # $25;000 > $25;000 Total

White 96 72 161 329
Black 10 7 6 23
Chinese 1a 1a 2b 4
Total 107 80 169 356

Gender = Female
Income level

Race # $10;000 > $10;000 and # $25;000 > $25;000 Total

White 186 127 51 364
Black 11 7 3 21
Chinese 0 1a 0 1
Total 197 135 54 386

Note: aentries correspond to sample uniques; bentry corresponds to a ``near'' unique.

Table 2. Number of uniques in the population (100,000)

cell count sample fraction

50% 20% 10% 5%

(3,1,1) 1 31,098 929 3 0
2 68,902 8,330 56 0

(3,2,1) 1 0 0 0 0
2 58,234 0 0 0

(3,3,1) 1 0 0 0 0
2 0 0 0 0

(3,2,2) 1 41,766 3,108 43 0
2 58,234 17,184 493 0
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Fig. 1. ÃP�CjA;B� for different sample fractions

Fig. 2. ÃP�CjA;B� for different sample fractions, by cell



5. Discussion and Extensions

The method proposed in this article is linked to the ®tting and estimation of a loglinear

model to counts in a multi-way contingency table and it does not directly account for pos-

sible model mis-speci®cation or added uncertainty associated with model choice or selec-

tion. The Bayesian framework allows a natural way to do this via an approach called

model averaging and we outline here elements of the relevant methodology. We follow

the general strategies described in Clyde (1998).

Suppose we need to consider Q possible hierarchical loglinear models, which we

denote by M1;M2; . . . ;MQ. Then the posterior distribution of disclosure (in the sense of

Equation 1) is given byXQ

j�1

XK

i�1

P�Fi � 1j fi � 1;D�P�MjjD� �9�
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Table 3. ÃP�CjA;B� for zero cells in the released sample

cell sample fraction

50% 20% 10% 5%

(3,1,2) 0.311 0.0682 0.0398 0.036
(3,3,2) 0.107 0.369 0.578 0.55

Fig. 3. Estimated probabilities of population uniques for zero cells



which is an average of the posterior probability of population uniques under each of the

models, weighted by the respective posterior model probabilities. Here D is the available

data and P�MjjD� is the posterior probability of the jth model, given by

P�MjjD� �
P�DjMj�P�Mj�PQ
j�1 P�DjMj�P�Mj�

�10�

where

P�DjMj� �

�
P�Djvj;Mj�P�vjjMj�dvj �11�

is the marginal likelihood of model Mj; vj is a vector of parameters characterizing the jth

model, P�vjjMj� is the prior distribution of vj and P�Mj� is the prior probability of model j.

This formulation requires the speci®cation of vj which is missing from this article as we

adopted an alternative approach based on the exact distribution. For Bayesian inference

in multidimensional contingency tables, where v is incorporated into the analysis, see

Epstein and Fienberg (1991).

A major dif®culty in implementing Bayesian model averaging arises when the number

of potential models Q becomes too excessive. Clyde (1998) outlines two possible

approaches: a deterministic search suggested by Madigan and Raftery (1994) and a

non-deterministic search based on Markov chain Monte Carlo (MCMC) methods. In par-

ticular, a reversible jump MCMC can be adopted in which sampling is carried out from the

posterior distributions of both parameters fvjg and models fMjg. See Clyde (1998) for

further information and relevant references.

In our example, fortunately, we did not have a major set of issues to explore regarding

modelling error. There are only eight possible unsaturated hierarchical models for a three-

way table, and in our example none of the other seven models seemed at all appropriate.

We expect that had we implemented the program just outlined, we would have ended up

with most of the posterior probability on the no 2nd-order interaction model and the satu-

rated model.

We plan to implement the approach outlined here for k-way tables with k $ 4 in the near

future and apply the methodology to an actual contingency table for which there is interest

in disclosure limitation.

Appendix 1: Simulation Methodology Details

The basic algorithm used for generating possible populations from a given sample is as

follows:

Read table, moves, list of interesting cells, population size indices

into respective structures

for i :� 1 to �number of iterations ´ 500 ´ max�1=X�ÿ1�

total table :� original table

for j :� 1 to max�1=X� ÿ 1

ctr :� 0

while ctr < 500

r1 :� randomly generated number from 1 to number of moves
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temporarily make move r1 to find table probability

r2 :� randomly generated number from Unif[0,1]

if table probability > r2 and move creates no negative cells

then make the move permanently

else do not make the move permanently

ctr :� ctr � 1

end while

total table :� total table� current table

if j is in population size index list

print interesting cells from the current table

next j

next i

This algorithm is a little more complex than the one described in the appendix to Fien-

berg, Meyer, Steele, and Makov (1997). Using the same logic as they use and following

Diaconis and Sturmfels (1998), for each table we want to generate, we need to generate

500 so that they will be relatively uncorrelated. For each set of populations that we

want to generate (a set includes one population apiece for the 5%, 10%, 20%, and 50%

samples) we need to generate 1=X ÿ 1 tables where X equals the sample proportion we

are working with. But, if we reuse the population we generate for a 50% sample when

making the 20% sample, we can reduce the number of tables we need to generate for a

single iteration to 500 ´ the maximum �1=X� over all X that we want to generate. In order

to save space, the algorithm also permits users to select cells to display at all levels of

sampling. Note that the main part of the algorithm that handles the theory mentioned in

Diaconis and Sturmfels is exactly the same as the main part of the ®rst algorithm.

Appendix 2: Detailed Simulation Results

Table 4. Estimating population distribution for cells with small sample entries, for different sampling fractions.

(The ®rst entry is the population cell count and the second is the frequency obtained in 100,000 imputations)

Cell (3,1,1)

50% 1 2
31,098 68,902

20% 1 2 3 4 5
929 8,330 27,656 40,569 22,516

10% 1 2 3 4 5 6 7 8 9 10
3 56 485 2,572 8,334 18,330 26,973 25,675 14,091 3,481

5% 5 6 7 8 9 10 11 12 13 14
16 60 327 1,023 2,827 6,035 11,195 16,274 19,548 18,374

15 16 17 18 19 20
1 13,288 7,351 2,895 701 85
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Cell (3,2,1)

50% 2 3
58,234 41,766

20% 5 6 7 8 9
11,351 32,727 35,630 17,184 3,108

10% 10 11 12 13 14 15 16 17 18 19
792 4,844 13,972 23,622 25,891 18,560 8,979 2,804 493 43

5% 20 21 22 23 24 25 26 27 28 29
4 60 291 1,164 3,432 7,386 12,569 16,651 18,289 16,273

30 31 32 33 34 35 36
11,606 7,095 3,470 1,241 364 93 12

Cell (3,3,1)

50% 3 4
10,668 89,332

20% 6 7 8 9 10
17 439 5,604 30,791 63,149

10% 13 14 15 16 17 18 19 20
1 6 100 1,005 5,349 18,828 38,933 35,778

5% 31 32 33 34 35 36 37 38 39 40
3 45 219 956 3,493 9,496 19,441 28,586 26,380 11,381

Cell (3,1,2)

50% 0 1
68,902 31,098

20% 0 1 2 3 4
22,516 40,569 27,656 8,330 929

10% 0 1 2 3 4 5 6 7 8 9
3,481 14,091 25,675 26,973 18,330 8,334 2,572 485 56 3

5% 0 1 2 3 4 5 6 7 8 9
85 701 2,895 7,351 13,288 18,374 19,548 16,274 11,195 6,035

10 11 12 13 14 15
2,827 1,023 327 60 16 1

Cell (3,2,2)

50% 1 2
41,766 58,234

20% 1 2 3 4 5
3,108 17,184 35,630 32,727 11,351

10% 1 2 3 4 5 6 7 8 9 10
43 493 2,804 8,979 18,560 25,891 23,622 13,972 4,844 792

5% 4 5 6 7 8 9 10 11 12 13
12 93 364 1,241 3,470 7,095 11,606 16,273 18,289 16,651

14 15 16 17 18 19 20
12,569 7,386 3,432 1,164 291 60 4
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Cell (3,2,3)

50% 0 1
89,332 10,668

20% 0 1 2 3 4
63,149 30,791 5,604 439 17

10% 0 1 2 3 4 5 6 7
35,778 38,933 18,828 5,349 1,005 100 6 1

5% 0 1 2 3 4 5 6 7 8 9
11,381 26,380 28,586 19,441 9,496 3,493 956 219 45 3
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