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Constrained Inverse Adaptive Cluster Sampling

. 1
Emilia Rocco

Adaptive cluster sampling can be a useful design for sampling rare and clustered populations.
In this article a new adaptive cluster sampling, which is an extension of the classical one, is
suggested. It is denominated constrained inverse adaptive cluster sampling and its distinctive
characteristic is to make sure that the initial sample contains at least one unit satisfying the
condition for extra sampling. This is achieved by means of a sequential selection of the initial
sample. This sort of selection of the initial units introduces a bias into the estimators of the
mean of the population usually used in the adaptive cluster sampling. To overcome this
difficulty two new unbiased estimators of the mean of the population are suggested in the
article. The expressions of their variance and of their sample variance estimators are also
proposed. To study the properties of the proposed strategies a simulation study is carried out.

Key words: Rare and clustered populations; sequential selection.

1. Introduction

Informative sampling (also known as adaptive sampling) designs are those in which the
procedure for selecting units may depend on values of the variable of interest or on values
of any other variable observed during the survey. For rare and clustered populations, such
as populations examined in many environmental and natural resources studies, they can
produce gains in precision compared to conventional designs. For studies of hidden human
populations, such as injection drug users and others at risk of HIV transmission, adaptive
link-tracing designs often provide the only practical way to obtain a large enough sample.

A particular informative design, which is applicable in either case is the adaptive cluster
sampling first proposed by Thompson (1990, 1991a, 1991b, 1992).

In adaptive cluster sampling an initial sample of units is selected and, whenever the
value of the variable of interest satisfies a specified condition, neighbouring units are
added to the sample. The condition for extra sampling might be the presence of rare animal
or plant species, detection of ‘‘hot spots’’ in an environmental pollution study, infection
with a rare disease in an epidemiology study or observation of a rare characteristic of
interest in a household or business survey. The neighbourhood of a unit may be defined
by spatial proximity or, in the case of human populations, by social or genetic links or
other connections.

Different types of adaptive cluster sampling have been proposed (Thompson 1990,
1991a, 1991b, 1992, 1993, 1996, 1997, 1998; Thompson and Seber 1994, 1996;
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Thompson and Frank 1998; Brown 1994; Brown and Manly 1998; Smith, Conroy and
Brakhage 1995; Chao and Thompson 1997; Dryer and Thompson 1998; Roesh 1993;
Salehi and Seber 1997a, 1997b) and their advantages have been pointed out. However,
the possibility that no unit in the initial sample would satisfy the condition for extra sam-
pling is, according to our research, a problem that is, for the most part, untouched. If this
were to happen, the adaptive cluster sampling would coincide with the initial sample and
no information on the distribution of the relevant values of the variable of interest would
be gathered. Either taking a larger initial sample or setting a less restrictive condition for
extra sampling (but sufficient to discover the relevant cluster in the population, for exam-
ple to locate the areas in which a pollutant exceeds a dangerous threshold) would reduce
this drawback but not always avoid it. In this article, a new adaptive cluster design, which
is an extension of the adaptive cluster sampling of Thompson, is introduced. We denomi-
nated it constrained inverse adaptive cluster sampling (CIAC) and its aim is to ensure the
presence in the initial sample of at least one unit satisfying the condition for extra
sampling. This is achieved by a sequential selection of the initial sample. This kind of
selection of the initial units, explained in detail in the next section, introduces a bias
into the estimators of the population mean usually used in the adaptive cluster sampling.
To overcome this difficulty two new unbiased estimators of the population mean are sug-
gested in the article. In order to obtain unbiased estimators, however, it is not sufficient
to include in the initial sample one unit satisfying the condition for extra sampling. Rather
it is necessary to include at least two units. Thus, in practice, in the CIAC procedure the
initial selection process does not stop until the second relevant unit is included in the sample.

The expressions of the variance of the two estimators and of their sample variance esti-
mators are also proposed. Finally, the relative efficiency of the new strategy, compared to
simple random sampling and to inverse sampling, is empirically evaluated.

2. Sampling Scheme

The cluster adaptive sampling design proposed by Thompson can be briefly described as
follows. An initial probability sample of fixed size n is selected. For each selected unit the
variable of interest y is observed and if the observed value y; (i = 1, 2,..., n) satisfies a
condition of interest C, (specified a priori), additional units in the neighbourhood of the
ith unit are sampled. If the condition is met in any units of the i th neighbourhood, then
their neighbourhoods will be also sampled. This is repeated until the condition is not
met for any adaptively sampled units. The result is a sample of n clusters. Each cluster
has a core of units satisfying the condition C called network and a boundary of units
called ‘‘edge units’’ which do not satisfy C,. The units of the initial sample which do
not satisfy the condition C, are size-one clusters. Finally, any unit that does not satisfy
C, is defined as a network of size one (this means that any cluster of size one is a network
of size one and that any edge unit is also a network of size one).

The proposed sampling scheme is different from Thompson’s in the sampling design
used for the selection of the initial sample. It can be described as follows. Let y be the study
variable, let / denote a minimal size for the initial sample and let C, be the condition for
extra sampling. Assume / units are selected by simple random sampling. If among these
units at least two satisfy C,, then the procedure for selecting the initial sampling is stopped
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and what follows is identical to what happens in the adaptive cluster strategy proposed by
Thompson. Otherwise, the sampling is carried on in a sequential way — that is, one unit is
added to the initial sample at each step, until at least two units satisfying C, are selected.
The last unit, that is the second satisfying C, may either be retained or rejected from the
sample. Therefore, if the number of units selected in the initial sample is larger than [, we
can have two possible samples: the sample s” which does not include the last selected unit
and the sample s" !
using the same mechanism of adaptive addition of units used by Thompson, we can obtain

respectively the final samples s and sp' .

which includes all the selected units. From these initial samples,

3. Estimators

Let us consider the possible CIAC samples:

i) sy obtained from the initial sample s”

n+1

ii) syt obtained from the initial sample s" '

For each of them we shall define an unbiased estimator of the population mean. These will
be described respectively in Subsections 3.1 and 3.2.

3.1. Estimator related to sample s"

The initial sample s” can be thought of as a simple random sample without replacement of
[ units (the first [ selected units), with the possible addition of other units sequentially
selected. No additional units are selected if two or more units among the first / satisfy
Cy. Otherwise, the additional units are all the units selected before the second one that
satisfies C.

Let s denote the first / selected units and sk the adaptive cluster sample with initial sam-
ple s'.If T, is an unbiased estimator of the population mean for an adaptive cluster sample
obtained from an initial simple random sample, then

T'(sp) = To(s) (1)

is an unbiased estimator of the mean of the population for our sample s;. However, when
the size of s" is larger than [, T, (being calculated on the final sample obtained from the
initial sample formed by only the first / units selected) does not take into account the only
nonunitary network in s if this network is not intersected from one of the first [ selected
units. Therefore, we propose a new estimator that depends on the complete information in
s¢. This new estimator is obtained taking the expected value of Tj, conditional on a suitable
sufficient statistic. In other words, it is obtained by an application of the Rao-Blackwell
theorem to 7;) (Rao 1945, Blackwell 1947).
Let

d" = {3, y), i €s"} )

be the set of distinct data in the initial sample. This set is a function of the set of reduced
data associated to sp and since this last set is a minimal sufficient statistic for
0 = (y1,y2,...,yn), d" is a sufficient statistic for the same parameter. The new unbiased
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estimator is
T(s}) = E | To(sp)1d" 3)

Let n denote the size of the initial sample, s", and To(s},r) the value of T, when the
initial sample consists of the permutation 7 of the 7 units in s” (and then Ty is applied
to the first / units of this permutation). The number of permutations is n! and conditionally
on d" each of these is equally likely. Hence an explicit expression of T(sy) is

1
TGp) =— > Tolsks) )

Trell

where II is the set of all the permutations of s”. If T}, is invariant for the permutation (i.e.,
its value does not depend on the position of the initial sample units) the Expression (4) can
be written as follows:

T(5}) = e > Tolsre) 5)
( ) ceC

/

where C is the set of all possible combinations of / units from the » in the initial sample, ¢
is any of the possible combinations and To(slpc) the value of 7, when the initial sample is
the combination c. If we define

I _ b=l d [ =1-1 (6)
n=I[) — . an n - —In=
“=D7 0 iftn>1 >0 n=h

Expression (5) becomes
> c To(ske)
()
l
Also the expression of var|T(sr)| can be obtained by the Rao-Blackwell theorem. If
var[Ty] is the variance of 7;,, we have

T(sp) = Ip=1) To(SE) + Iin>1) @)

n [ \2
var[T(s})] = var[T,] — E FH [T<SF>n'— To(sF )] ] ©
and if 7y is invariant for the permutation
n I \12
var[T(sg)] = var[Ty] — E > c [T(sp) = To(sko)] ©

()
l
To find an unbiased estimator of var|T(sz)|, we need unbiased estimators of the two

terms in (9). If var[T,] denotes an unbiased estimator of var[7,], an unbiased estimator
of var|T(sy)] is

S (TGP — To(sp 1’

VAr[T(s})] = var[T,] — .

(10)
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and if 7|, is invariant for the permutation

> [T(sF) = To(sro)’
()
l
Since var[7Ty] is also a function of § and var[7,] denotes an unbiased estimator, we can
apply the Rao-Blackwell theorem once again to obtain another unbiased estimator of
var |T(sy)| with a smaller variance, namely
_ Son (A Ty(si)] + [T(s5) = To(sp)]”)

var'[T(s})] = . (12)

var[T(sg)] = var[Ty] —

1)

and if 7} is invariant for the permutation

R / n I \12
Var'[T(s1)] = > c (Var[To(spe)] ELST(SF) — To(sp)l)
l

It should be noted that both the estimators of the variance could produce negative
estimates with some samples in some data sets.

T can be calculated from any unbiased estimator of the population mean in the adaptive
cluster sampling with initial random sample without replacement. Two possible estimators
of this type are the modified version of the Horvitz-Thompson estimator and the modified
version of the Hansen-Hurvitz estimator proposed by S. K. Thompson (1990). For both
these estimators Thompson has proposed an expression of their variance and an unbiased
estimator of their sample estimate. The estimator T, used in the applications of Section 4 is
the modified version of the Horvitz-Thompson estimator proposed by S. K. Thompson.

13)

3.2.  Estimator related to the sample sf’;“

In contrast to s”, which does not include the last unit selected in the initial sample when
these are more than [, shtl always includes all the selected units. Note that when the units
in s" ! are more than [, two and only two units satisfy the condition C and one of the two
is necessarily the last unit. So, in contrast to the units in s” that are permutable in all ways,
the units in s"*! are not permutable in all ways. The last unit can be changed only if the
other satisfies C. But, after having made this change, we can again consider all the
possible permutations of the first n units. This observation can be used to define another
estimator of the population mean which is based on all the information in s" "1 and takes
into account the nonunitary network intersected by the second selected unit satisfying C,,
even when this unit is the last of the initial sample and is selected after the first /. This
estimator, as well as 7, is obtained by taking the expected value of T conditional on a
sufficient statistic. The subset of units in s" ! satisfying C, is denoted by séjl and the
statistic considered is

4 = {G,y),i€s"y ifn+1=1
{{(il’yi1)7"-’(in7yiln)}’ (in+]’yiln+])with l‘n_;'_]ESg*:l} 1fn+1>l
(14)

n+1 n+1

that is, the set of distinct and unordered data in s if the size of s is [, and the set of
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the distinct and unordered data in s" ™! but so that the last unit satisfies Cy, if the size of
s" ! is larger than . Furthermore d" ' is a function of the reduced data associated with
nt ' So it is also a sufficient statistic for 6 as well as being d". Then, the new estimator is

TM(s"“) = E[To(sp)d" "] (15)
When the size of s"*! is larger than /, the number of samples compatible with d nlis
2(n!), that is, all the permutations of the first n values including in turn one of the two units
satisfying C,. When the size of s" ' is equal to 7, s" ™! d" ' is equal to
d", and thus the number of possible permutations of data is I!. In either case each possible
permutation is equally likely. It follows that an explicit expression for T}, is

Ty(sk) VTo(shn) 4+ S To(Shn2)
TM(SF+ )—1(,1+1_I>ZH%+1@+1>1)EH oS g lzn‘ZH oS g 2 (16)

is equal to s" and

where, if n + 1 is equal to [, II is the set of all permutations of st If, instead, n + 1 is
larger than /, IT !and II? are the sets of the permutations of the first n terms of s"* : among
which there are, respectively, either the first or the second unit satisfying Cy.

If T, is invariant for the permutation, then
l l

Yoot Tolspe) + 02 To(spe2)

n

2(;)

/
where C' and C? are the sets of combinations corresponding to those of permutations '
and I1%. T, is obviously unbiased and its variance is

a7

1 I
Ty ) =Ly 1=0 To(sEe) + It 151

ar[Ty, (st = var[T,] —

#(H*) £\ Ttst™h - To(Szl%*))Z] (18)

where IT* denotes the set of possible permutations,

. II ifn+l1=1
I = 1 2 .
II"vIl* ifn+1>1

If T, is invariant for the permutation
var[Ty (sp " )] = varlTy] - #(C*) lz (Tu(st™) = To<séc*>>21 (19)

where C* is the set of possible combinations.
Two unbiased estimators of Var[TM] are

var[Ty, (spt H] = var[Ty] — #(H*) Z (Ty(sit - To(s,lvw*))2 (20)

Var[Ty, (spt ] =

n+1 i 2
m (H ;2 Z (VAr[To(spre)] = (Tyy(sE ") = To(spae))?) 1)
To obtain their expressions in the case in which 7}, is unchangeable for permutation, it is
sufficient to consider C* instead of II*.
It is easy to verify that 7j, is only the unweighted mean of the two estimators that we
denote with 7 and 7, and that they are equal to T if the units selected in the initial sample



Rocco: Constrained Inverse Adaptive Cluster Sampling 51

are /. Otherwise, if the units selected in the initial phase are more than [, T is the estimator

T applied to the part of s ! obtained from the first n selected units and 75 is the estimator

T applied to the part of s,’é“ obtained from the first n units of the initial sample after the
last unit (the second unit selected satisfying C) has been substituted with the first unit

selected satisfying Cy.

4. A Simulation Study

A simulation was used to study the properties of the CIAC. Ten patchy populations were
simulated using a Poisson cluster process model (Neyman 1939; Neyman and Scott 1958;
Cressie 1991) within a defined study site divided into 30 x 30 equal sized quadrants. The
number of clusters in the study site was a random variable from a Poisson distribution with
a mean equal to 4. Cluster centres were randomly located in the study site. The number of
individuals per cluster was a random variable from a Poisson distribution with a mean
equal to 90. Each individual was located at a radial unitary distance from the centre of
the cluster selected from a normal distribution uniformly distributed between 0° and
360°.

For each population, three Monte Carlo experiments were carried out in order to
compare the estimators related to the CIAC sampling with the sample mean related to
the simple random sampling and two other estimators related to the inverse sampling.
What we did is described in detail in the following three items:

i) Each population was sampled 10,000 times using constrained inverse adaptive
sampling. The condition for extra sampling was Cy: y > 0[...] and the minimal
size of the initial sample was 50. In detail, from each population 10,000 initial sam-
ples were selected using the design described in Section 2. Not including in the
initial sample the last selected unit when the selected units were more than 50,
we obtained the samples s” from which we had the final samples sx. From sz we
estimated the mean using the estimator 7. Including in the initial sample all the
selected units also when these were more than / we obtained the samples s"
from which we had the final samples s+ ' From s}”l we estimated the mean using
the estimator T),. The modified version of the Horvitz-Thompson estimator was
used as the starting estimator to calculate T, as well as T. At the end we had
10,000 samples sz and 10,000 samples sﬁ“. The sample size and the number of
sampled units satisfying the condition for extra sampling were also calculated for
each sample s and for each sample spt'.

ii) Each population was sampled 20,000 times using simple random sampling without
replacement. 10,000 simple random samples equal in size to the expected size
(empirically evaluated from the data described in the previous item and obviously
including all the units selected, not only those satisfying C, but also the edge units)
of the samples s, and a further 10,000 simple random samples equal in size to the
expected size of the samples s,’é“ were selected. The sample mean of the first
10,000 simple random samples was compared to the estimator 7', whilst the
sample mean of the other 10,000 simple random samples was compared to the
estimator T},.

iii) Each population was sampled 20,000 times using the inverse sampling without
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replacement. 10,000 inverse samples containing a number of units with relevant
values of the variable of interest (values satisfying the condition for extra sampling)
equal to the expected number of relevant values of the variable of interest in sg
(empirically evaluated from the data described in the first item). In addition
10,000 inverse samples containing a number of units with relevant values of the
variable of interest equal to the expected number of relevant values of the variable
;EH were selected. For each sample of the first 10,000 and for each
sample of the additional 10,000 the following two unbiased estimators of the means
were calculated:

of interest in s

1 n
Tiw == Y ¥i (22)
ni=
and
1 k
Tiont =7 D, Tinol51) (23)
k=1

where n 4 1 denotes the number of units selected and n the number of units con-
sidered in order to estimate the mean (just as the constrained inverse adaptive
sampling is not used to calculate 7, the last selected unit is not used to calculate
T0)- Tiopr Works with the same logic as Tj,. The last unit can be any of the units
satisfying the condition selected. Let k denote the number of units satisfying the
condition selected in the inverse sampling, and let s, denote the inverse sample
minus the Ath unit from which satisfying the condition for extra sampling. Then
T;,,m 1s nothing else than the unweighted mean of the k possible values of T,,.

2

Table 1 gives some properties of the ten populations, denoted by roman numerals from 1
to X. It gives the mean u, the size N, the number of nonunitary networks (n. net), the
number of units satisfying the condition for extra sampling (n. y; > 0), the total variance
(V1or1), the ratio between the variance within and the total variance (Vw/Vror). Table 2

provid

es some results of the Monte Carlo experiments for the population IV which is less

rare and that where the ratio between the variance within and the total variance is the high-
est. For the other populations, to avoid prolixity only the Monte Carlo-derived efficiency

Table 1. Some key characteristics of simulated populations

Populations U N n. net n.y; >0 Vror Vw/Vror
I 4 900 1 6 5116.4 0.5340
II 4 900 3 22 1030.8 0.3788
11T 4 900 4 42 585.37 0.4383
v 4 900 5 45 498.41 0.3884
\' 4 900 3 31 762.20 0.4100
VI 4 900 6 40 595.75 0.4175
VII 4 900 3 24 1057.4 0.4472
VIII 4 900 3 24 1066.9 0.4490
IX 4 900 1 9 2900.0 0.5559
X 4 900 4 41 571.8 0.4104
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Table 2. Population IV: empirical and theoretical results

VMSE[.] 7n VMSE [.]x7n n.y; >0 % irrelevant eff[T] eff[T),]

T 20874 94.37 196.99 20.18 0 1 0.9627
Ty  2.0822 98.27 204.62 2198 0 1.0387 1
o 2.1824 94 205.15 472 0.65 1.0414 —
2.1791 94 204.84 470 061
F*  2.1351 98  209.24 492 044 - 1.0226
2.1289 98  208.63 490 049
Tpo 0.9027 392.53 35434 20 0 1.7989 —
391.30 20 0
Tyonr 0.8864 392.53 347.94 20 0 17662 —
391.30 20 0
T, 08071 431.17 348.00 22 0 - 1.7007
430.43 22 0
T, 0.8953 431.17 34291 22 0 - 1.6758
430.43 22 0

indexes for the two proposed estimators 7 and 7T}, are provided in Table 3. Before studying
these tables, let us explain the notations used in them:

T: mean estimator related to the sample s
Ty, : mean estimator related to the sample s,’ffrl

y: sample mean of the simple random sample of size equal to the expected size of s
¥*: sample mean of the simple random sample of size equal to the expected size of s
T;,,: mean estimator that does not take into account the last unit selected related to the
inverse sample containing a number of relevant units equal to the expected number of
relevant units in sy

T .01 - Mean estimator that takes into account all the units selected related to the inverse
sample containing a number of relevant units equal to the expected number of relevant
units in sy

T;:,: mean estimator that does not take into account the last unit selected related to the
inverse sample containing a number of relevant units equal to the expected number of
relevant units in s+ !

T;:,n: Mean estimator that takes into account all the units selected related to the inverse
sample containing a number of relevant units equal to the expected number of relevant
units in s

+/MSE [.]: root square of the mean squared error of the corresponding estimator

n: expected size of the sample to which the estimator is related

v/MSE [.]* n: product of the mean squared error and expected size of the
corresponding sample

n.y; > 0: expected number of units satisfying the condition for extra sampling present
in the sample

% [ ...]irrelevant sample: percent of sample that do not contain any unit satisfying the
condition for extra sampling

eff[T']: efficiency of the estimator T evaluated as a ratio between /MSE [T] x 77 and

/MSE [.] %7, where [.] is in turn one of the estimators to which 7" is compared
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Table 3. Efficiency indexes for the two estimators, T and Ty, empirically evaluated and compared with all the
estimators used in the experiments

POPUIationS T TM y y * Tinv Tiin TiZ'v i:vM
I eff[T] 1 1 1.1994 - 1.1098 0.7750 - -
eff[Ty,] 1 1 - 1.1994 - - 1.1098 0.7750
11 eff[T] 1 1.0719 1.0450 - 1.8086 1.7529 - -
eff[T)] 0.9329 1 - 1.0258 - - 1.5864 1.5837
11T eff[T] 1 1.0503 1.1107 - 1.8563 1.8112 - -
eff[T),,] 0.9521 1 - 1.0780 - - 1.7480 1.7147
\" eff[T] 1 1.0699 1.1190 - 1.8759 1.8268 - -
eff[T)] 0.9346 1 - 1.0784 - - 1.6800 1.6253
VI eff[T] 1 1.0538 1.1189 - 1.8119 1.7734 - -
eff[T)] 0.9489 1 - 1.0902 - - 1.6735 1.6324
VII eff[T] 1 1.0666 1.1251 - 1.9421 1.8809 - -
eff[T),] 0.9376 1 - 1.0836 - - 1.8086 1.7419
VIII eff[T] 1 1.0706 1.0975 - 1.8984 1.8425 - -
eff[Ty] 0.9341 1 - 1.0597 - - 1.7194 1.6513
IX eff[T] 1 1 1.2955 - 1.0549 0.7718 - -
eff[T),] 1 1 - 1.2955 - - 1.0549 0.7718
X eff[T] 1 1.0534 1.0805 - 1.8229 1.7807 - -
eff[T)] 0.9493 1 - 1.0501 - - 1.7049 1.6642

eff[T),]: efficiency of the estimator T, evaluated as a ratio between /MSE [T),] * i
and \/MSE [.]* 7, where [.] is in turn one of the estimators to which T, is
compared.

Notice that Tables 2 and 3 do not include any reference to the expected values of the
estimators because they are all unbiased such that their expected values are approximately
equal to the mean of the population, which is given for each population in Table 1.

Two other important considerations regarding Tables 2 and 3 are the following:

i) for quantities for which it was possible we have considered the theoretical calculus
apart from the empirical. This can be found in italics under the corresponding
theoretical one;

ii) the estimator 7 is compared only to ¥ which shares its expected size, to T;,, and
T:nom Which share its expected number of units satisfying the condition for extra
sampling, and T,, which shares its initial sample. Equivalently, T, is compared
only to y* which shares its expected size, to Tjr, and Tjr,,, Which share its expected
number of units satisfying the condition for extra sampling, and to T which shares its
initial sample.

Table 4. Some characteristics of a population for which Ty, is more
efficient than T

U Size Variability
Population 4.4444 900 644.874
Network 1 26.6667 6 291.222

Network 2 133.714 28 3031.00
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5. Discussion

From Tables 2 and 3 it should be noted that, apart from populations I and IX, the most
efficient estimator is 7. The relative efficiency of an estimator in comparison to another
is evaluated using the ratio between the relative mean squared error multiplied by the
expected size of the corresponding sample (through variability for observation cost).

T is also more efficient than T, despite the fact that it is based on less information: it
does not consider the last unit selected in the initial sample and the corresponding network.
But the increase of the sample size as a result of their consideration is larger than the
decrease in the estimator variability obtained by using more information. It should be
noted, however, that 7 is not more efficient than 7, for all possible populations.
Table 4 gives some characteristics of a population for which T}, is more efficient than
T. For this population the Monte Carlo-derived efficiency index of 7, compared to T is
1.018.

A factor which could always make T), more efficient than T is the introduction of a cost
function which assigns a lower cost of observation to the units belonging to the same
network.

In relation to the comparison between 7" and ¥ it is clear that 7" is more efficient than y
for all the populations considered. This result is more evident for some populations than
for others because it is strictly related to the patchy structure of the considered population.
Apart from the variability by unit of observation another factor which makes the con-
strained inverse adaptive cluster sampling preferable to the simple random sampling is
the larger expected number of the relevant units selected (see Table 2).

In relation to the comparison between the CIAC sampling and the inverse sampling, it
should be noted that, apart from populations I and IX, the first is more efficient. Popula-
tions I and IX include only one network: since in the inverse sampling we want to select
the same number of relevant units as in the CIAC sampling, we are selecting almost all the
populations in order to capture the units of this network. As a consequence, the variability
of the two mean estimators is almost zero.

The relative efficiency of the estimators related to the CIAC sampling in comparison to
the sample mean related to the simple random sampling and to the estimators related to the
inverse sampling increases if we consider a cost function which assigns a lower cost of
observation to the units belonging to the same network.

We do not have to consider the comparison between the estimators associated to the
CIAC sampling and the estimators of the mean associated to the adaptive cluster sampling
of Thompson. The last are of course more efficient because the same elements work on the
variability of both with the exception that also the variability of the size of the initial sam-
ple works on the estimators related to the CIAC sampling. But the aim of this work was not
to find a strategy more efficient than the adaptive one proposed by Thompson, but to find a
strategy that permits us in every case to say something about the study variable. We deem
that the method proposed here fulfils this objective.
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