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Small area estimators associated with M-quantile regression methods have been recently
proposed by Chambers and Tzavidis (2006). These estimators do not rely on normality or
other distributional assumptions, do not require explicit modelling of the random components
of the model and are robust with respect to outliers and influential observations. In this article
we consider two remaining problems which are relevant to practical applications. The first is
benchmarking, that is the consistency of a collection of small area estimates with a reliable
estimate obtained according to ordinary design-based methods for the union of the areas. The
second is the correction of the under/over-shrinkage of small area estimators. In fact, it is often
the case that, if we consider a collection of small area estimates, they misrepresent the
variability of the underlying “ensemble” of population parameters. We propose benchmarked
M-quantile estimators to solve the first problem, while for the second we propose an algorithm
that is quite similar to the one used to obtain Constrained Empirical Bayes estimators, but that,
consistently with the principles of M-estimation, does not make use of distributional
assumptions and tries to achieve robustness with respect to the presence of outliers. The article
is essentially about point estimation; we also introduce estimators of the mean squared error,
but we do not deal with interval estimation.
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1. Introduction

In statistical inference about a finite population, estimates of population descriptive

quantities for a target variable y are usually needed for the population as a whole and

for different collections of subpopulations (domains or areas). A small area estimation

problem arises when the available samples are not large enough to allow for reliable

estimation using standard design-based methods for all or most of the domains (areas)

being considered. A large and growing literature is devoted to this subject; see Rao (2003)

and Jiang and Lahiri (2006) for general introduction and recent reviews of the literature.
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All small area estimation methods are based on the availability of population-level

auxiliary information to improve the precision of the estimation. They have their own

specificity in the way of linking auxiliary information and target variable and in the

properties of the obtained small area predictors.

When the samples available for each area are very small, model-based predictors are

popular. Among these methods, Best and Empirical Best (EB) predictors have become the

“standard of the industry” estimators. Let’s suppose for simplicity’s sake, that a linear

model linking the target variable y to a set of auxiliary variables x is plausible. EB predictors

are based on the assumption of a linear mixed model in which random effects are

introduced to account for the correlation of residuals within the same area. Common

criticisms of the EB based on linear mixedmodels are that they require explicit assumptions

on the random effects and that the estimation of the parameters relying on normality or on

least squares is sensitive to the presence of outliers or influential observations in the data, a

situation that is likely to occur in the analysis of survey data. This limitation can be

overcome using Robust EB (Sinha and Rao 2009). Nonetheless, here we prefer to focus on

the alternative approach based on M-quantile regression.

Small area estimation based on linear quantile regression and M-estimation has been

recently proposed by Chambers and Tzavidis (2006). M-quantile estimation is based on the

assumption of a linear relationship between y and x at each quantile of the yjx distribution,

but is free of any distributional assumption, is robust with respect to the presence of outliers

and influential observations and does not require explicit specification of the random part of

the model. How M-quantile regression may be used to obtain small area predictors is

reviewed in Section 2.

Model-based methods may not satisfy coherence properties, that may be relevant to final

users of small area estimates. In this article we focus on two of these properties. The first is

“benchmarking,” while the second may be labelled as “neutral shrinkage”. Let the small

areas be a partition of a larger area. A set of estimates is said to be benchmarking if the

estimated totals of y for the small areas sum to the total estimated for the larger area

(typically using design unbiased or design consistent methods). The EB predictors do not

fulfill the benchmarking property (see Rao 2003, Section 7.2.7 for a discussion of this

problem and also of adjusted predictors). As may be expected, this is true also for

M-quantile regression based estimators; in fact they are model-based and do not

incorporate the sampling weights. We propose a modification of the M-quantile (MQ)

predictors estimation algorithm to obtain benchmarked estimates. Formally they will be

constrained optimal MQ estimators and will be referred to as “benchmarked MQ” (BMQ).

The second coherence property we consider is “neutral shrinkage”, which is a special

“ensemble” property, that means a property related to the estimation of a functional of an

ensemble of parameters (Frey and Cressie 2003). Specifically, we focus on the estimation

of the variance of the underlying population means or totals of y pertaining to an ensemble

of small areas, a problem often considered in the literature (see, for instance, Ghosh 1992;

Judkins and Liu 2000; Ugarte et al. 2009). An ensemble of estimators has neutral shrinkage

if the variance of the ensemble of the parameters can be unbiasedly estimated by the

variance of the ensemble of the estimators.

Design-based estimates are typically over-dispersed (they are more spread than the actual

population parameters), while EB predictors are under-dispersed, that is they over-shrink.
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The behaviour ofMQpredictors in this respect has not been studied in the literature. Bymeans

of simulations, it may be easily shown that they can either over- or under-shrink depending

on the actual distribution of the underlying parameters, as will be made clear in later sections.

In the article we propose an adjustment of the benchmarked MQ predictors in order to

obtain estimators with approximately neutral shrinkage. This adjustment parallels the one

used to adjust EB predictors (Rao 2003, Section 9.6).

The structure of the article is as follows. In Section 2 MQ estimators are reviewed; in

Section 3 we propose benchmarked MQ estimators and benchmarked MQ estimators with

approximately neutral shrinkage. A simulation exercise is introduced and its results

discussed in Section 4. Section 5 is devoted to the description of the application of the

method to a well-known data set, which will test the method also in the presence of outliers.

Concluding remarks are contained in Section 6.

2. Small Area Estimators Based on M-quantile Methods

Let us suppose that a population U of size N is divided into m nonoverlapping subsets

(domains or areas of interest) of size Ni; i ¼ 1; : : : ;m. We are interested in a target

variable y and more specifically in estimating the area level means

�Yi ¼ N21
i

XNi

j¼1

yij

Suppose that a random sample is drawn from the population, so that area-specific samples of

size ni . 0 are available. It may also be the case that ni ¼ 0 for some areas. The problem

of estimation (and benchmarking) for these areas will be addressed at the end of Section 3.1.

Values of y are known only for sampled values, but we assume that a vector of p auxiliary

variables xij is known for each unit in the population. We use subscript of i to denote

restriction to small area i, so that si (ri) denotes the set of sample (nonsample) population units

from area i, and Ui ¼ si < ri denotes the set of population units making up the small area i.

A recently proposed approach to small area estimation is based on the use of M-quantile

models (see Chambers and Tzavidis 2006, Section 4). Since much of the development in

this article is based on the application of linear quantile/M-quantile regression, we now give

a brief definition of these concepts.

Ordinary linear regression is based on the idea of modelling the expected value of the

dependent variable as a function of the regressors; that is, in our notation, on the assumption

that Eð yijjxijÞ ¼ xTijb. In quantile regression it is the qth quantile that is assumed to be a

linear function of the auxiliary information, i.e.,

Qqð yijjxijÞ ¼ xTijbðqÞ q [ ð0; 1Þ

This means that a distinct (hyper)plane is fitted to the data for each q [ ð0; 1Þ according to

quantile-specific regression coefficients bðqÞ. See Koenker and Bassett (1978) for a general

introduction to quantile regression. The vector of bðqÞmay be estimated according to some

minimization criterion such as least absolute deviations considered in Koenker and D’Orey

(1987). Breckling and Chambers (1988) introduced the application of robust M-estimation

to quantile regression. M-quantile regression provides a “quantile-like” generalization of
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regression based on influence functions. For specified q and influence function c, an

estimate of the vector of the regression parameters bcðqÞ may then be obtained by solving

the following normal equationsXm
i¼1

Xni
j¼1

cq yij 2 xTijbcðqÞ
� �

xij ¼ 0

in bcðqÞ, where cqðrÞ ¼ 2cðs21rÞ{qIðr . 0Þ þ ð12 qÞIðr # 0Þ} and r ¼ ðrijÞ ¼ yij2

xTijbcðqÞ. The influence function cð�Þmay for instance be chosen to be the Huber proposal

2, i.e., cðuÞ ¼ uIð2c # u # cÞ þ c; sgn ðuÞIðjuj . cÞ, u [ R, as we have done in the

application in Sections 4 and 5; in this case c is a tuning constant assumed to be bounded

away from 0. Consistently with most applications, we set c ¼ 1:345. This value gives

reasonably high efficiency in the normal case; more specifically, it produces 95% efficiency

when the errors are normal and still offers protection against outliers (Huber 1981).

The quantity s in the definition of cqðrÞ is a robust estimate of the scale of the data such as

the mean absolute deviation s ¼ medjrj=0:6745. For specified q an estimate b̂cðqÞ of bcðqÞ

is then obtained via iterative reweighted least squares.

Following Chambers and Tzavidis (2006), an alternative to random effects for

characterizing the variability across the population not accounted for by the regressors is to

use the M-quantile coefficients of the population units. For unit j in area i, this coefficient

is the value uij such that Quij ð yijjxij;cÞ ¼ yij. If a hierarchical structure does explain part of

the variability in the population data, units within clusters (areas) defined by this hierarchy

are expected to have similar M-quantile coefficients. When the conditional M-quantiles

are assumed to follow a linear model, with bcðqÞ a sufficiently smooth function of q,

this suggests a predictor of �Yi of the form

�Ŷ
MQ

i ¼ N21
i

j[si

X
yij þ

j[ri

X
xTij b̂cðûiÞ þ

Ni 2 ni

ni j[si

X
yij 2 xTij b̂cðûiÞ
n o2

4
3
5 ð1Þ

(Tzavidis et al. 2010), where ûi ¼ n21
i

P
ûij is an estimate of the average value of the

M-quantile coefficients uij for units in area i. These ûij are obtained by solving

Q̂uij ð yijjxij;cÞ ¼ yij for uij with Q̂q denoting the estimated value of Qqð yijjxij;cÞ at q.

For possible alternative choices of ûi see Chambers and Tzavidis (2006).

Tzavidis et al. (2010) refer to Expression (1) as the bias adjusted M-quantile predictor of
�Yi, derived as the mean functional of the Chambers and Dunstan (1986) estimator of the

distribution function.

2.1. Failure of Benchmarking and Neutral Shrinkage Properties

TheMQpredictors do not satisfy the benchmarking property. To see this, note first that �Ŷ
MQ

i

has an interesting GREG-like representation:

�Ŷ
MQ

i ¼ N21
i

j[Ui

X
xTij b̂cðûiÞ þ n21

i
j[si

X
yij 2

j[si

X
xTij b̂cðûiÞ

8<
:

9=
;

¼ n21
i

j[si

X
yij þ N21

i
j[Ui

X
xTij 2 n21

i
j[si

X
xTij

8<
:

9=
;b̂cðûiÞ

ð2Þ
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Using amore compact notation (2) may be rewritten as �Ŷ
MQ

i ¼ �ŷi þ �X
T
i 2 �x̂

T

i

� �
b̂cðûiÞwith

�X
T
i ¼ N21

i

P
j[Ui

xTij , �x̂
T

i ¼ n21
i

P
j[si

xTij and �ŷi ¼ n21
i

P
j[si

yij

Let us assume, for simplicity, that we select a simple random sample from each area i and

let wi ¼ ni=n be the sampling fraction in area i with n ¼
P

i ni. The direct estimator of the

overall population mean �Y, �ŷ ¼ n21
Pm

i¼1

Pni
j¼1yij may be written as �ŷ ¼ n21

Pm
i¼1ni �ŷi,

which is the weighted average of small area mean estimators. This property is desirable

for all small area estimators, and it is, in this case, an alternative statement of the

benchmarking property. When the small area mean is estimated by �Ŷ
MQ

i we have that

n21
Xm
i¼1

ni �Ŷ
MQ

i ¼ �ŷ þ
Xm
i¼1

wi
�X
T
i 2 �x̂

T

i

� �
b̂cðûiÞ ð3Þ

fromwhich it is clear that the estimator is not benchmarked to the overall direct estimator of

the mean because, in general,
Pm

i¼1di ¼
Pm

i¼1 wi
�X
T
i 2 ^�x

T

i

� �
b̂cðûiÞ – 0. Futhermore, this

property will not be satisfied for general sampling designs and weighted estimators of the

overall mean �Y. About (3) we note that diwill be small for large ni; more precisely they will

beOpðn
21=2
i Þwhenever �X

T
i 2 �x̂

T

i

� �
¼ Opðn

21=2
i Þ,wi ¼ Opð1Þ and b̂c ¼ Opð1Þ, whereOpð Þ

denotes the ordinary of convergence in probability. Of course, as we are focusing on small

area estimation, large nis are not of special interest here.

As far as neutral shrinkage is concerned, we note that, assuming a normal linear

mixed model the set �Ŷ
MQ

i , i ¼ 1; : : : ;m is overdispersed with respect to the underlying

population parameters:

Xm
i¼1

wi
�Ŷ
MQ

i 2 �Ŷ
MQ

:

� �2
.
Xm
i¼1

wi
�Yi 2 �Y
� �2

ð4Þ

where �Ŷ
MQ

: ¼
Pm

i¼1wi
�Ŷ
MQ

i , as will be confirmed by the simulation results of Section 4.

The behaviour of M-quantile based predictors is then more similar to that of direct

estimators and in contrast with that of the over-shrinking EB predictors (see EURAREA

Consortium 2004 Section B.3). When outliers are present in the data and normality fails,

the over-shrinkage of EB predictors becomes severe and also the ensemble of �Ŷ
MQ

i exhibits

a variance smaller than the actual set of population parameters. This effect, detected by the

authors using simulations, will also be apparent when analysing the outlier affected data of

Section 5.

3. Modified M-quantile Small Area Estimators

In this section we introduce adjusted MQ estimators. We consider two alternative

approaches. The first is based on constraining M-quantile regression. It can be applied to

obtain benchmarking MQ small area estimates, but cannot be easily extended to the

correction of over/under-shrinkage as this would involve quadratic constraining that is very

difficult to manage. The second approach is based on an ex-post “first two moments”

matching procedure parallel to that commonly used to adjust the over-shrinkage of

EB estimators (Rao 2003, Section 9.6). The two approaches may be integrated as the

output of the benchmarking procedure may be used for the over/under shrinkage correction.
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In this case the output of the second procedure would be anMQ estimator benchmarked and

satisfying neutral shrinkage. In Section 3.1 we illustrate the method to obtain benchmarking

MQ estimators (denoted BMQ); in Section 3.2 we describe the procedure to achieve neutral

shrinkage.

3.1. Constrained M-estimation of Regression Parameters in Quantile Regression

The constrained robust regression model (Eddy and Kadane 1982) can be generalized to a

model for the M-quantile of order q of the conditional distribution of y given x. Let H be

a h £ p matrix and suppose we want the vector bc(q) to match

HbcðqÞ ¼ d ð5Þ

where d is an h £ 1 vector of values (d may be a vector of zeroes). For specified q, a

constrained estimate of the vector of the regression parameters bc(q) may then be obtained

by minimizing

Xm
i¼1

Xni
j¼1

rq yij 2 xTijbcðqÞ
� �

þ LT ðd2HbcðqÞÞ ð6Þ

where LT ¼ ðl1; l2; : : : ; lhÞ is a 1 £ h vector of Lagrange multipliers and rqð�Þ is a loss

function associated with the influence function cqð�Þ introduced in Section 2.

The constrained estimate of bc(q) may then be obtained by differentiating (6) with respect

to bc(q) and L, setting the derivatives equal to zero and solving the normal equations

Xm
i¼1

Xni
j¼1

cq yij 2 xTijbcðqÞ
� �

xij 2HTL ¼ 0 ð7Þ

Because (7) is a system of nonlinear equations, an iterative method is used for its solution.

LetwcðrÞ ¼ cqðrÞ=r andwcij ¼ wcðrijÞ, with rij ¼ yij 2 xTijbcðqÞ. Then (7) can bewritten as

Xm
i¼1

Xni
j¼1

wcij yij 2 xTijbcðqÞ
� �

xij 2HTL ¼ 0 ð8Þ

The steps of the iteratively reweighted least squares algorithm are as follows:

1. For specified q define an initial estimates bð0Þ
c ðqÞ.

2. At each iteration t, calculate the residuals rðt21Þ
ij ¼ yij 2 xTijb

ðt21Þ
c ðqÞ and associated

weights wðt21Þ
cij from the previous iteration.

3. Compute the new weighted least squares estimates subject to the constrained

HbcðqÞ ¼ d:

b̂
ðtÞ

c ðqÞ ¼ ½A21 2 A21HT ðHA21HT Þ21HA21�XTWðt21Þy

þ A21HT ðHA21HT Þ21d
ð9Þ

Here X is the matrix of order n £ p of sample x values and A ¼ XTWðt21ÞX, y is the

vector of n sample values for y. The matrix Wðt21Þ ¼ diagðwcijÞ is a diagonal matrix of

order n with entry corresponding to a particular sample observation set equal to the

weight wcij.
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4. Repeat Steps 1–3 until convergence. Convergence is achieved when the difference

between the estimated model parameters obtained from two successive iterations is

negligible. For details about the convergence of iterative reweighted least squares with

constraints see Dempster et al. (1980).

The algorithm has been used in the simulation experiments (Section 4) and in the

application (Section 5) and a satisfactory convergence has been obtained in 10 to 20

iterations. The R code that implements this algorithm is available from the authors.

The algorithm is applied to achieve benchmarking as follows. Assume simple random

sampling within the areas and also that we are interested in the consistency of the estimated

small area means with the estimate of the population mean using the overall sample.

We have the following benchmarking equation:

Xm
i¼1

wi
�Ŷ
MQ

i ¼
Xm
i¼1

wi �ŷ þ �X
T
i 2 �x̂

T

i

� �
b̂cðûiÞ

n o
¼ �ŷ

so, in view of (3) Equation (5) may be rewritten as:

Xm
i¼1

wi
�X
T
i 2 �x̂

T

i

� �
b̂cðûiÞ ¼ 0 ð10Þ

The benchmarking equation is expressed in terms of means, but it can be equivalently

written in terms of totals. To derive the benchmarked MQ predictors, for short �Ŷ
BMQ

i

n o
,

we have to consider that the constraint (10) acts simultaneously on all the area-specific

regression coefficients, so simultaneous constrained estimation of {b̂cðûiÞ; : : : ; b̂cðûmÞ}

for the m small areas is required. The size of the vector of the M-quantile regression

parameters becomes ðm £ pÞ £ 1 and consequently the solution of the system of normal

equations requires the inversion of a matrix of size ðn £ mÞ £ ðm £ pÞ. As a consequence,

obtaining these constrained estimates may be computationally demanding in applications

with a large number of areas.

Relaxing the assumption of simple random sampling and assuming more general

sampling designs we will have that �Ŷ ¼ N21
Pm

i¼1

Pni
j¼1gijyij with gij ¼ p21

ij or defined

in some more complex way but such that
Pm

i¼1

Pni
j¼1gij ¼ N. A popular direct estimator

is in this case given by �ŷiw ¼ g21
i

Pni
j¼1gijyij with gi ¼

Pni
j¼1gij. As a consequence �ŷ ¼

1=N
Pm

i¼1gi �ŷiw ¼
Pm

i¼1w
*
i �ŷiw with

Pm
i¼1w

*
i ¼ 1 as

Pm
i¼1gi ¼ N. The benchmarking

constraint is then expressed by this equation

Xm
i¼1

w**
i

�Ŷ
MQ

i ¼
Xm
i¼1

w*
i �ŷiw

Wemay define w**
i ¼ w*

i even if formally this is not necessary. If we want to avoid the use

of weights, we may keep w**
i ¼ ni=n or, if this information is available, w**

i ¼ Ni=N.

Anyway, we will have that
Pm

i¼1w
**
i �ŷi –

Pm
i¼1w

*
i �ŷiw so we need tomodify (10) as follows:

Xm
i¼1

w**
i

�X
T
i 2 �x̂

T

i

� �
b̂cðûiÞ ¼ d

with d ¼
Pm

i¼1w
*
i �ŷi 2

Pm
i¼1w

**
i �ŷi.
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For the set E ¼ {ijni ¼ 0} of the out of sample areas, i.e., areas where ni ¼ 0,

consistently with Chambers and Tzavidis (2006), we may define �Ŷ
MQ

i ¼ �X
T
i b̂cð0:5Þ. In the

benckmarking equationw*
i cannot be used since gi ¼ 0, i [ E. In this casew**

i ¼ Ni=N is a

more sensible option.

3.2. Adjusted M-quantile Small Area Estimators With Neutral Shrinkage

In order to obtain a set of modified MQ predictors that satisfies benchmarking and neutral

shrinkage (at least approximately), we propose a strategy that is similar to that of

Rao (2003, Section 9.6). More specifically, given a set of predictors
�
�Ŷ
*

i

�
1#i#m

of the small

area means, we look for a new set of estimators {ti}1#i#m that minimizesXm
i¼1

wi
�Ŷ
*

i 2 t1

� �2
and satisfies benchmarking and neutral shrinkage, i.e., is subject to the constraints:

1.
Pm

i¼1witi ¼ c1;

2.
Pm

i¼1wiðti 2 t:Þ
2 ¼ c2,

where wi ¼ ni=n or any other “weight” such that
Pm

i¼1wi ¼ 1, t: ¼
Pm

i¼1witi and c1 and c2
are known constants. The constant c1 will be a reliable estimator of the overall population

mean, typically ^�y or some other (possibly survey weighted) model-free estimator.

The constant c2, that can be rewritten as c2 ¼
Pm

i¼1wit
2
i þ c21, should be a suitable

measure of the variance “between” the areas. Note that constraint 1 is redundant when the

neutral shrinkage correction is applied to benchmarking estimators such as the BMQ of

Section 3.1. For nonbenchmarking estimators our procedure may be seen as a crude way to

attain the benchmarking property, that may be applied when the method of section 3.1 is

impractical because of its computational complexity.

It may be shown (see the Appendix) that:

t
opt
i ¼ c1 þ �Ŷ

*

i 2
�Ŷ
*
:

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Xm

i¼1
wi

�Ŷ
*

i 2
�Ŷ
*
:

� �2
vuut ð11Þ

If we set c1 ¼ �Ŷ
*
: with �Ŷ

*
: ¼

P
i wi

�Ŷ
*

i we will also have that

t
opt
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Xm

i¼1
wi

�Ŷ
*

i 2
�Ŷ
*
:

� �2
vuut �Ŷ

*

i þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Xm

i¼1
wi

�Ŷ
*

i 2
�Ŷ
*
:

� �2
vuut

0
BB@

1
CCA �Ŷ

*
:

In practice, in the calculation of (11) the problem is to find a reasonable value for c2.

Under a linear mixed model for the data, c2 is a measure of the variation between

unobservable area-specific model parameters that may be calculated using the estimates of

the variance components. Without recourse to an explicit model, we define the “ideal” c2 as

the unweighted variance between the area-specific population means, i.e.,

c*2 ¼
1

m2 1

Xm
i¼1

�Yi 2 �Y
� �2
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To estimate this quantity we cannot use ordinary design-based estimators of �Yi and �Y

since they are known to be over-dispersed when the sample sizes in the areas are small

(Fabrizi 2009).

Let’s write yij ¼ xTijbcð0:5Þ þ eij. It follows that:

�Yi ¼ N21
i

XNi

i¼1

yij ¼ �X
T
i bcð0:5Þ þ hi

The term hi ¼ N21
i

PNi

j¼1eij ¼
�Yi 2 �X

T
i bcð0:5Þ may be thought of as a “pseudo random

effect”, since it captures the average deviation of units in the same area from the median

regression plane. We have that �Y ¼ N21
Pm

i¼1Ni
�Yi ¼ �XTbcð0:5Þ þ �h with �h ¼

N21
Pm

i¼1Nihi and, as a consequence

c*2 ø bcð0:5Þ
TSXXbcð0:5Þ þ

1

m2 1

Xm
i¼1

ðhi 2 �hÞ2

where

SXX ¼
1

m2 1

Xm

i¼1
ð �Xi 2 �XÞð �Xi 2 �XÞT :

The equality is only approximate since, in developing the square, we omit the double

product term that can be shown to be negligible with respect to the two main addends.

We may estimate hi with ~hi ¼ n21
i

Pni
j¼1 yij 2 xTij b̂cð0:5Þ
� �

; the associated estimator of

the second term in c*2, i.e., ðm2 1Þ21
Pm

i¼1ð
~hi 2

~�hÞ2, with
~�h ¼ N21

Pm
i¼1Ni

~hi is likely to be

unstable and liable to the influence of outlying residuals. In line with the robust estimation

approach adopted in this article we then propose the following estimator of c*2:

ĉ
*

2 ø b̂cð0:5Þ
TSXXb̂cð0:5Þ þ

1

m2 1

Xm
i¼1

½cð~hi 2
~�hÞ�2 ð12Þ

where cð�Þ is an influence function such as the Huber proposal 2 already mentioned in

Section 2. This function depends on a tuning constant c that should be chosen in accordance

with the data at hand and the sizes of the area-specific samples on which the calculation of

the ~hi is based. The more the occurrence of the outliers is likely and the smaller the

area-specific sample sizes, the more pronounced the smoothing operated through cð�Þ is

expected to be (i.e.,the smaller c should be).

We denote the estimators obtained following this procedure �Ŷ
CBMQ

i . In Sections 4 and 5

they will be compared to the estimators obtained constraining the Empirical Best
n
�Ŷ
EB

i

o� �
according to the procedure illustrated in Rao (2003, Section 9.6) and that will be denoted

as �Ŷ
CEB

i

n o
.

3.3. MSE Estimation of MQ Estimators

Mean Squared Error (MSE) estimation of M-quantile based small area mean estimators

relies on the approach described in Chambers et al. (2008). Since the estimates b̂cðqÞ of the

M-quantile regression coefficients can be expressed as linear combinations of the sample
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y values, it follows that, for fixed ûi, the estimator of the area i, �Ŷ
MQ

i can be written as linear

combinations of these sample values; a first order approximation to its MSE can be

developed using the arguments in Royall and Cumberland (1978). Let {bij; j [ s} denote

the set of weights that define each of the M-quantile predictors. This approach then leads to

a MSE estimator of the form

mse �Ŷ
MQ

i

� �
¼

1

N2
i j[si

X
f 2ij þ

Ni 2 ni

ni 2 1

� 	
yij 2 xTij b̂cðûiÞ
� �2

þ
j[s\si

X
f 2ij yij 2 xTij b̂cðûiÞ
� �22

4
3
5
ð13Þ

with f ij ¼ bij 2 1 if j [ si and f ij ¼ bij otherwise. Since �Ŷ
MQ

i is an approximately unbiased

estimator of the small area mean, the squared bias will not significantly impact the MSE.

The main limitation of the MSE estimator is that it does not account for the variability

introduced in estimating the area specific ui’s.

The MSE estimator (14) can be used to formulate an estimator of the MSE of the

constrained estimators. Following (Rao 2003, p. 279) a measure of uncertainty associated

with �Ŷ
BMQ

i and �Ŷ
CBMQ

i can be obtained by

mse �Ŷ
BMQ=CBMQ

i


 �
¼ mse �Ŷ

MQ

i

� �
þ �Ŷ

MQ

i 2 �Ŷ
BMQ2CBMQ

i

� �2
ð14Þ

This is a somewhat crude method and an empirical alternative to the analytical estimator of

MSE may be represented by a bootstrap procedure. The definition and evaluation of such

procedure is an object of our current research.

4. A Simulation Study

In this section we present a Monte Carlo study for checking whether the adjustment

procedure illustrated in Section 3.2, including the proposed estimator for c2, effectively

works; we also aim at assessing the impact of the adjustment on theMSE and the bias of the

predictors. To do this we consider a population generated according to a normal linear

mixed model, for which we know that Empirical Best predictors are very efficient and CEB

predictors correct for over-shrinkage. We can then use them as sound terms of comparison.

We also investigate how the proposed MSE estimator (15) tracks the true MSE of the

CBMQ estimator. We consider a model-based simulation in which properties of the

traditional and proposed estimators are evaluated with respect to the process that generates

the finite population from which the samples are drawn.

Let { �Yi}1#i#m be the set of area-specific population means and
�
�Ŷ
*

i

�
1#i#m

the

corresponding predictors, with * ¼ DIR;EB;CEB;MQ;CBMQ; ĉ*2 defined in (13) is used

as a guess for c2.

At each Monte Carlo iteration, the values of the study variable y defined on a finite

population of size N ¼ k4; 200, where k is a positive integer number, are generated

according to the following Battese-Harter-Fuller model:

yij ¼ xTijbþ vi þ e ij

with i ¼ 1; : : : ;m ¼ 36, j ¼ 1; : : : ;Ni and Ni ranging from k50 to k200. To study the

behaviour of the estimators for growing sample sizes in a framework consistent with the
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ordinary asymptotic of finite populations (see Isaki and Fuller 1982) we consider sequences

of sample and population sizes setting k ¼ 2; 3; 5; 10; 20. The random components

are drawn from the following normal distributions: vi ind,Nð0;sv ¼ 16Þ and

e ij ind,N 0;s2
e ¼ 100

� �
. The auxiliary variables xTij ¼ ð1; xijÞ

T are generated only once and

held fixed for all Monte Carlo iterations. In particular xij ¼ xi þ uij with

xi ind,N mx ¼ 194;s2
x ¼ 2

� �
and uij ind,N 0;s2

u ¼ 25
� �

. This population structure reflects a

situation in favour of the application of linear mixed models as only a small part of the

difference among area means is explained by the auxiliary information, that attributable

to the unobservable random effect. This population is essentially the same as the one

considered in Torabi et al. (2009).

From the above population a stratified simple random sample is drawn, with strata given

by the areas. The allocation of the sample is assumed to be proportional to the population

size. Different total sample sizes with n ¼ k84 are considered; as a result of proportional

allocation area-specific sample sizes range from k1 to k4.

The predictors are compared in terms of:

1. their ability to estimate the actual descriptive variance of the “ensemble” of the area

means, i.e., calculating the ratio between the variance of the “ensemble” of the estimates,

and the same quantity defined on the set of the underlying population parameters:

AVR½{ �Ŷ
*}� ¼ R21

XR
r¼1

ðm2 1Þ21
Xm

i¼1
�Ŷ
*

i;r 2
�Ŷr

� �2
ðm2 1Þ21

Xm

i¼1
�Yi;r 2 �Yr
� �2 ð15Þ

2. their average bias:

AB½{ �Ŷ*}� ¼ R21
XR
r¼1

m21
Xm
i¼1

�Ŷ
*

i;r 2
�Yi;r

� �
ð16Þ

3. their average MSE:

AMSE½{ �Ŷ*}� ¼ R21
XR
r¼1

m21
Xm
i¼1

�Ŷ
*

i;r 2
�Yr

� �2
ð17Þ

The index r is the counter of Monte Carlo replications, whose total number, R, is set equal

to 5,000. Note that 2. and 3. are properties evaluated “on average” with respect to the set of

the small area being studied. Average evaluation of small area estimators is in line with

many simulation exercises in the current literature (see Rao 2003, Section 7.2.6).

The results of the simulation study are illustrated in Table 1 and Table 2. In Table 1 the

quantities reported within parentheses for the CBMQ estimators are those calculated using

the same guess for c2 as in the case of CEB.

Focusing on the ability of the predictors to achieve neutral shrinkage, we have that both

EB and MQ estimators converge to the value 1 of AVR as the average area-specific sample

sizes grow large, but from different sides. As expected, EB predictors “over-shrink” the

distribution; the estimates based on the quantile method are more dispersed than the actual

parameters, although not as much as the area-specific sample means. This overdispersion

may be attributed to the poor estimation of ui when area-specific samples are small; it

decreases as k grows; this should be expected in view of (1).
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Comparing the CEB and CBMQ estimates, the performances in terms of AVR are really

close whenever the same value of c2 is plugged into the constraining procedure. The use of

ĉ
*

2 is not as effective when k is small even if the impact goes in the right direction in all the

cases; anyway it should be noted that the simulation is conducted under the assumption

of the normal linear mixed model which favours the correction incorporated into the

CEB estimator.

The bias is moderate in all cases, with the one exception of the CBMQ predictor

when k ¼ 2 and k ¼ 3. This implies that the distributions of the “ensembles” of

the estimates based on both the EB and the MQ methods are centered about their

true means.

As regards the efficiency measured by AMSE, EB predictors are far more efficient than

MQ estimators when k is small. For larger sample sizes this difference dwindles. This

confirms the expectation that when the assumptions of EB predictors hold, as in this

simulation, they yield big gains in efficiency, especially when area-specific sample sizes

are very small. Methods based on robust modeling and weaker assumptions, such as the

M-quantile, become valid alternatives when more than a few units are observed in

each area.

Table 1. Model-based simulation results. Within parentheses the values of AVR, AB and AMSE computed using

the same values for c2 used for the CEB estimators

k n f �Y
*
i g AVR AB AMSE

2 168 DIR 2.57 20.08 57.22
2 168 EB 0.72 0.00 11.48
2 168 CEB 1.06 0.10 13.45
2 168 MQ 1.77 0.00 28.29
2 168 CBMQ 1.29 (1.06) 20.09 (20.21) 22.55 (19.81)

3 252 DIR 2.12 20.01 38.38
3 252 EB 0.76 20.01 9.07
3 252 CEB 1.06 0.08 10.44
3 252 MQ 1.55 0.00 19.00
3 252 CBMQ 1.14 (1.06) 20.10 (20.23) 15.28 (14.60)

5 420 DIR 1.70 0.00 23.11
5 420 EB 0.82 20.01 6.64
5 420 CEB 1.05 0.05 7.49
5 420 MQ 1.36 20.01 11.37
5 420 CBMQ 1.09 (1.04) 20.06 (20.06) 10.19 (9.56)

10 840 DIR 1.34 0.00 11.51
10 840 EB 0.88 0.00 4.14
10 840 CEB 1.04 0.06 4.73
10 840 MQ 1.17 0.00 5.70
10 840 CBMQ 1.04 (1.04) 20.03 (20.03) 5.61 (5.70)

20 1,680 DIR 1.17 0.00 5.69
20 1,680 EB 0.94 0.00 2.38
20 1,680 CEB 1.03 0.03 2.80
20 1,680 MQ 1.09 0.00 2.90
20 1,680 CBMQ 1.01 (1.03) 0.00 (20.01) 3.05 (3.23)
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Moreover the CBMQ predictors, less dispersed than their unconstrained counterparts,

show a lower AMSE. The gain in efficiency is not very big and depends on the amount of

under-shrinkage effectively corrected; for this reason it reduces when k grows. In any case,

this is in sharp contrast with the behaviour of the constrained EB predictors that are, by

construction, suboptimal in terms of MSE with respect to unconstrained EB predictors.

Intuitively, if we consider (11), wemay note that, because of the underdispersion of theMQ

predictors, the quantity under the square root is less than 1, thus leading to a variance

reduction that over-compensates the increase in the bias. As a consequence of this fact the

gap between constrained MQ and EB predictors is smaller than that between ordinary

(unconstrained) MQ and EB predictors.

To sum up, we found that M-quantile estimators are comparable to EB predictors even

when data are generated under a normal linear mixed model, provided that the area-specific

sample sizes are not too small. The over-shrinkage correction illustrated in the previous

section is effective under the same circumstances.

Table 2 shows key percentiles of the across area distributions of the area level true and

estimated root mean squared errors (the latter based on (14) and averaged over the

simulations) of the CBMQ predictor. In general the proposed MSE estimator (14) provides

a good approximation to the true MSE.

We also run simulations in which e ij ind,10=
ffiffiffi
3

p
t3 (a re-scaled Student’s twith 3 degrees of

freedom) instead of e ij ind,Nð0; 100Þ to check the robustness of the introduced constraining

methods to the presence of outliers. The performances of CBMQ and its MSE estimator are

still good. Anyway, about the latter there emerges a tendency to overestimate when the

average area-specific samples are very small (i.e., very small k). Detailed results are

available from the authors upon request.

We note that the aim of the simulation exercise of this section was not to compare the

efficiency of the various methods when outliers are present (concerning this, see Salvati

et al. 2011) as we may expect that M-quantile regression based methods do better than

Empirical Best predictors in this case, but to compare the effectiveness of the adjustments

needed to achieve neutral shrinkage and their impact in terms of efficiency.

Table 2. Across areas distribution of true (i.e., Monte Carlo) root mean squared errors (True RMSE) and area

averages of estimated root mean squared errors (Est. RMSE)

Percentile of across areas distribution

k Indicator 10 25 Median Mean 75 90

2 True RMSE 2.948 3.617 4.432 4.594 6.155 6.281
2 Est. RMSE 3.251 3.969 4.660 4.603 5.484 5.686

3 True RMSE 2.405 2.970 3.638 3.786 5.034 5.153
3 Est. RMSE 2.731 3.366 3.990 4.041 5.072 5.151

5 True RMSE 1.935 2.437 2.979 3.094 4.116 4.214
5 Est. RMSE 2.079 2.648 3.183 3.256 4.196 4.281

10 True RMSE 1.463 1.822 2.199 2.295 3.038 3.150
10 Est. RMSE 1.538 1.906 2.305 2.386 3.109 3.185

20 True RMSE 1.072 1.340 1.616 1.695 2.228 2.292
20 Est. RMSE 1.122 1.381 1.678 1.744 2.267 2.326
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5. An Application to Survey and Satellite Data

Battese et al. (1988) analyse survey and satellite data for corn and soybean in a part of Iowa.

Their objective is to predict the means of the areas under corn and soybean for twelve

counties (small areas) in North Central Iowa.

Data are from the 1978 June Enumerative Survey and include information on corn and

soybean areas at individual pixel and segment level. The data set contains the number of

segments in each county, the number of hectares of corn and soybean for each sample

segment, and the number of pixels per segment in each county classified as corn and

soybean. The linear mixedmodel used for the small area mean hectares of corn and soybean

per segment is described in the paper by Battese et al. (1988). We use this well-known data

set to compare the performances of EB, MQ predictors and their adjusted versions aimed at

achieving neutral shrinkage (CEB, CBMQ). The analysis of the soybean variable

represents a situation in which normality approximately holds, while for corn there is an

influential outlier (in Hardin county). The presence of an outlier in the data is a typical

departure from normality.We analyse the corn variable with and without the Hardin county

outlier, to evaluate its impact on the behaviour of the “ensemble” predictors.

Table 3 presents the EB, CEB, MQ, CBMQ estimates for the mean hectares of corn and

soybean per segment for each county. The procedure described in Section 3.2 involves the

unknown quantities c1 and c2. The first constant c1 is equal to the direct estimate of themean

hectares of crop (soybean) obtained for the union of the twelve counties, the second

constant c2 is estimated by (13) for the adjusting of MQ estimators and according to the

method described in Rao (2003, Section 9.6) for the EB predictors. The averages and the

between-areas variances of the small area estimates are reported in the last two rows of

Table 3. For CEB and CBMQ the results coincide with the c1 and c2 constraints.

The small area predictions from all these methods are somewhat similar for most

counties with a few exceptions. As may be expected, differences are larger for areas with

one or very few observations, smaller for the counties with somewhat larger sample sizes.

Moreover, we note that constraining the EB and MQ area predictors to known values for

planned domains reduces the influence of the outlying observation in both cases. In fact the

CEB and CBMQ predictors are similar for all the counties, Hardin included.

Under normality – soybean data – our results are in line with the results of the simulation

experiment in Section 4. The MQ estimator has a between-areas variance equal to 380.32

against a ĉ*2 of 335.36. The EB predictors tend to over-shrink the distribution (307.81) and

the CEB corrects this behaviour (ĉ2 ¼ 339:22).

As regards corn data, when the outlier is included EB predictors over-shrink the

distribution dramatically, but they are far less shrunken when the outlier is removed. The

estimates of c2 with and without the outlier are widely different. The reason for this lies in

the big impact that an outlier has on the estimation of variance components. MQ predictors,

although influenced to some extent by the presence of the outlier, are more robust in this

respect; in particular the estimates of c2 based on (12) with and without the outlier are

reasonably close. In a situation where normality does not hold, MQ estimators, differently

from the normal linear mixed model setting of previous sections, tend to over-shrink the

actual variance of area specific population parameters. So, differently from the EB

predictors that always over-shrink, theMQ predictors may over- or under-shrink depending
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Table 3. Predicted mean hectares of soybean and corn per segment

Soybean Corn Corn with outliers

County ni EB CEB MQ CBMQ EB CEB MQ CBMQ EB CEB MQ CBMQ

Cerro Gordo 1 78.6 76.3 74.0 73.8 122.3 122.0 127.8 126.9 122.2 122.2 129.7 130.2
Hamilton 1 94.4 92.9 100.8 99.0 126.1 126.1 133.2 132.1 123.2 123.5 133.8 134.7
Worth 1 87.3 85.5 80.7 80.2 107.4 105.4 93.0 92.8 114.0 112.2 84.1 79.9
Humboldt 2 81.2 79.0 82.1 81.4 108.9 107.0 109.0 108.5 115.5 114.0 110.5 109.0
Franklin 3 66.2 63.3 62.8 63.4 143.9 146.0 149.5 148.1 135.9 139.2 149.5 152.1
Pocahontas 3 113.8 113.2 113.4 110.9 111.9 110.3 116.7 116.0 108.3 105.2 116.9 116.1
Winnebago 3 97.8 96.4 101.5 99.7 113.6 112.2 110.9 110.3 117.1 116.1 112.4 111.1
Wright 3 112.3 111.7 113.6 111.1 122.0 121.6 123.6 122.8 122.6 122.8 124.0 123.9
Webster 4 109.8 109.0 109.3 107.0 115.1 113.9 117.6 116.9 110.9 108.4 117.4 116.7
Hancock 5 100.6 99.4 102.5 100.6 124.5 124.4 122.1 121.3 124.5 125.1 120.8 120.4
Kossuth 5 119.0 118.7 121.8 118.7 107.2 105.2 104.8 104.4 113.6 111.7 105.9 103.9
Hardin 5 (6) 74.8 72.3 71.8 71.8 142.8 144.7 143.0 141.8 131.3 133.5 131.5 132.1
m21

P
�Ŷ
*

i 96.74 95.34 97.52 95.34 121.68 121.26 120.93 121.26 120.65 120.38 120.81 120.38

ðm2 1Þ21
P

�Ŷ
*

i 2
�Ŷ
*

� �2
307.81 339.22 380.32 335.36 166.86 206.74 227.50 208.34 73.07 110.35 172.84 210.99
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on the actual distribution of the data. In other cases we have found that they tend to over-

shrink whenever the study variable has a skewed distribution.

6. Conclusions

The MQ based estimators are a recent and promising proposal in the small area literature

and the analysis of their properties is an area of active research. In this article we explored

the behaviour of MQ predictors with respect to two coherence properties, benchmarking

and neutral shrinkage that are of interest to final users of small area estimates. Since the

estimators introduced in Chambers and Tzavidis (2006) do not satisfy these properties, we

proposed modified estimators.

As regards benchmarking, our solution is consistent with the M-quantile regression

framework, thus it is theoretically more interesting than a simple ratio adjustment. It should

be noted that obtaining these benchmarked MQ estimators may be computationally

demanding when the (overall) sample size and the number of areas is large.

With respect to neutral shrinkage we found that the MQ estimators may under-shrink

(under normality) or over-shrink (when the distribution of actual small area parameters is

skewed); this behaviour is different from that of EB predictors, which always over-shrink.

The solution proposed to obtain MQ predictors adjusted in this sense suffers from some

limitations. Similarly to what is usually done for EB predictors, the correction is based on

the first two moments; so the focus is mainly on normal or close to normal situations, and

may not be sensible when the distribution of actual small area parameters is very skewed.

Anyway, we keep the correction based on the first twomoments as it represents the standard

in the literature and in practical applications.

A possible area of future research is represented by the consideration of other coherence

properties that are desirable to users, especially in official statistical agencies, and design

consistency of the M-quantile predictors in particular the specifying also their asymptotic

behaviour and the role of sampling weights.

Appendix

Proof of (11)

First note that

Xm
i¼1

wiðti 2 t:Þ
2 ¼

Xm
i¼1

wit
2
i þ t2:

Xm
i¼1

wi 2 2t:
Xm
i¼1

witi ¼
Xm
i¼1

wit
2
i 2 t2

We want to minimize

f ¼
Xm
i¼1

wi
�Ŷ
*

i 2 ti

� �2
2a1

Xm
i¼1

witi 2 c1

 !
2 a2

Xm
i¼1

wit
2
i 2 c2 2 c21

 !

The first partial derivative in ti is:

›f

›ti
¼ 22wi

�Ŷ
*

i 2 ti

� �
2 a1wi 2 2a2witi
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Equating this derivative to 0 and solving for ti we obtain

t
opt
i ¼

1

12 a2
�Ŷ
*

i þ
a1

2

� �
Imposing the first constraint

Pm
i¼1witi ¼ c1 and solving in a1=2 we obtain

a1

2
¼ c1ð12 a2Þ2 �Ŷ

*
:

leading to

t
opt
i ¼

1

12 a2
�Ŷ
*

i 2
�Ŷ
*
:

� �
þ c1

Imposing the second constraint
Pm

i¼1wiðti 2 t:Þ
2 ¼ c2 and solving in 1=ð12 a2Þ we obtain

1

12 a2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Xm

i¼1
wi

�Ŷ
*

i 2
�Ŷ
*
:

� �2
vuut

t
opt
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Xm

i¼1
wi

�Ŷ
*

i 2
�Ŷ
*
:

� �2
vuut �Ŷ

*

i 2
�Ŷ
*
:

� �
þ c1
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