
Journal of Of®cial Statistics, Vol. 16, No. 1, 2000, pp. 1±13

Correcting the Bias in the Range of a Statistic Across
Small Areas

David R. Judkins1 and Jun Liu2

1. Introduction

Interest in state estimates has increased in the U.S. over the past years with the passage of

block grants to the states replacing certain welfare programs. Currently two federal demo-

graphic surveys are producing estimates for every state and more may follow. The Current

Population Survey (CPS) has been producing state estimates since the late 1970s, origin-

ally in response to the Comprehensive Employment Training Act of 1973 which required

accurate state-speci®c labor force data to distribute federal funds. The National Immuni-

zation Survey has been producing state estimates since 1994, in response to President

Clinton's immunization initiative. Other state speci®c surveys are under consideration

or partial implementation such as the Behavioral Risk Factor Surveillance System organ-

ized by the Centers for Disease Control and Prevention. As these surveys are analyzed, it

is frequently overlooked that the properties of an ensemble of statistics can be as impor-

tant as the properties of each speci®c state estimator. Important exceptions to this general

neglect include Louis (1984), Spjùtvoll and Thomsen (1987), Lahiri (1990), and Ghosh

(1992). Ghosh and Rao (1994) nicely summarized this earlier work in Section 7.2 of their

article. It is important to consider the properties of the ensemble since states at one

extreme are punished (through unfavorable publicity or lack of additional funds) while

states at the other extreme are rewarded. Some statistics that depend on the ensemble

include the rank ordering, the minimum, the maximum, the range, and percentiles. In

this article, we focus on the range. If there is a large range, then there will be calls for

action to address the range and debates on the reasons for the disparity among the states.

In small area estimation problems, there is usually a large number of areas for which simul-
taneous estimates are required for comparison purposes. Such a collection of statistics can be
called an ensemble estimator.

The properties of several ensemble estimators are compared. Design-based ensembles are
found to have too wide a range. Bayes and empirical Bayes ensembles are found to have too
narrow a range. Constrained empirical Bayes ensemble estimators appear to be best for some
purposes.
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Much the same thing can happen in an industrial plant where some output from different

sites is tested for quality in some way. Managers of sites with low quality ratings get

punished and those with high ratings get rewarded.

It would thus seem that although an argument can be made for publishing the best

possible estimate for each state considered individually, it might be better to compromise

the quality of individual state estimates in order to improve the properties of the ensemble.

In particular, we argue that ensemble estimates should be published that are expected to

have the correct range across the states or other domains of analytic interest. Concern

over the range was ®rst voiced to one of the authors in the early 1980s by Barbara Bailar,

then an Associate Director at the U.S. Bureau of the Census. When sample sizes are large

for each state, the range of the sample means is approximately correct for the range of the

true parameters. However, when the sample sizes per state are small and the natural varia-

bility among the states is small, the range in the sample means can be seriously positively

biased. Beverly Causey developed an unpublished proof that this was true, but a solution to

the problem eluded statisticians at the Bureau.

Some years later, it is clear that the solution lies in constrained hierarchical Bayesian

or constrained empirical Bayesian methods, as coined by Ghosh (1992). Pure design-based

methods do not admit a solution to this problem. In this article, we ®rst review the basic

results that the design-based estimate of the dispersion across states can be severely posi-

tively biased, that Bayes and Empirical Bayes estimates of the dispersion under standard

loss functions can be severely negatively biased and how the constrained Bayes methods

can strike the appropriate compromise between these opposing methods. We reason that

if the dispersion is over- or under-estimated, then the same must be true for the range.

In this review, we focus on the problem of estimating state means of normal characteristics

since the results are easier to derive. Binary characteristics are of more interest for most

demographic surveys, but there do not appear to be closed form expressions for the bias

of the Bayes and Empirical Bayes procedures for binary characteristics. We then give

the results from a small simulation study for a binary characteristic. Finally, we apply

the constrained empirical Bayes method to the original CPS problem.

2. Review of Theory

Let v � �v1; . . . ; vL) be the vector of true state means for the characteristic of interest at a

particular point in time. Examples would include state per capita incomes, unemployment

rates, poverty rates, immunization rates, substance abuse rates, and so on. Assume that the

process giving rise to these true means at different points in time is a stochastic process.

While it is impossible to verify whether the process is deterministic or stochastic, viewing

the process as stochastic and making some further assumptions about the distribution gov-

erning the process allows us to use Bayesian methods to make stronger inferences about

the state means than is possible through design-based methods. It also allows us to make

inferences about the characteristics of any ensemble of estimates for v; something that is

impossible with design-based methods.

Assume that the process giving rise to the true state means is independent across the

states with common mean m and variance j2. If interest focuses on a binary characteristic,

it is necessary to make the additional restriction that j2 < m�1 ÿ m�. Assume that a sample
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of size ni was drawn from the i-th state. Let ÃvD
i be a design-unbiased estimate of vi. Let

ÃvD be the simple average of the design-unbiased estimates across the states. Then the

expected dispersion of the design-based estimates with respect to both the sample design

and the model is

EMED

1

L ÿ 1

XL

i� 1

�ÃvD
i ÿ ÃvD

: �
2
�

1

L

XL

i� 1

EMVarD�
ÃvD

i jvi� � j2

where EM denotes expectation with respect to the model and ED denotes expectation with

respect to the design. Note that the ®rst term on the right is the expected measurement

variance while the second term is the true process variance. This may be rewritten as

EMEDS2
D � J2

� j2

Since the measurement variance is strictly positive, the sample means are expected to be

more dispersed than the true state means. With higher dispersion, it is clear that the range

of the estimated state means will be positively biased. Of course, if the measurement

variance is negligible, then the bias in the range will also be negligible.

If the characteristic is binary, then this expected dispersion of the design-based

estimates is

EMEDS2
D �

m�1 ÿ m� ÿ j2

Än
� j2

where Än is the harmonic mean of the state sample sizes. So the relative bias of design-

based estimates of the dispersion across the states is

RB�S2
D� �

m�1 ÿ m�

j2
ÿ 1

Än
�

1 ÿ r

Änr

where r � j2=�m�1 ÿ m�� is the intrastate correlation for the characteristic.

Table 1 shows examples of the magnitude of overestimation for different intrastate

correlations and state sample sizes. This bias is trivial when the intrastate correlation

is high and the state sample sizes are large. For small intrastate correlation and small

state sample sizes, the bias can be very large. Generally, intrastate correlations tend to

be quite small for large geographic classes. For example, the intrastate correlation (at
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Table 1. Relative bias in design-based estimates of the dispersion across states

State sample size Intrastate correlation

0.001 0.005 0.01 0.025 0.05 0.1 0.125

30 3 330% 663% 330% 130% 63% 30% 23%
40 2 498% 498% 248% 98% 48% 23% 18%
50 1 998% 398% 198% 78% 38% 18% 14%

100 999% 199% 99% 39% 19% 9% 7%
200 500% 100% 50% 20% 10% 5% 4%
400 250% 50% 25% 10% 5% 2% 2%
800 125% 25% 12% 5% 2% 1% 1%

1,600 62% 12% 6% 2% 1% 1% 0%
3,200 31% 6% 3% 1% 1% 0% 0%
6,400 16% 3% 2% 1% 0% 0% 0%



the state level) was just 0.008 for the percent of the total population age 16 and older that

was employed in 1994. The intrastate correlation for the unemployment rate in 1993 was

just 0.003. This suggests that the dispersion across the states will not be reasonably esti-

mated by design-based estimators based on fewer than several thousand interviews per

state. When high measurement variance is present (due to small sample sizes in the states),

then many turn to model-based or Bayesian estimation procedures to estimate the state

means. This is the ®eld known as small area estimation.

However, Louis (1984) noticed that Bayesian estimates of the state means compress

the variation too much. We may infer from this that the range of the Bayesian estimates

is negatively biased. Louis (1984) dealt with the simple case where the distribution of

the state means is normal with known variance and, given a set of realized state means,

each state sample is a simple random sample from a normal distribution with known

variance. In this case, the conditional distribution of ÃvD
i given vi is N�vi;w

2
i �, the prior

distribution for vi is N�m; j2
�, m, fw2

i g and j2 are all ®xed and known, and the loss function

is SL
i� 1�

Ãvi ÿ vi�
2. It is well known that for this model, the standard Bayes estimate of vi is

ÃvB
i � �1 ÿ gi�m � gi

ÃvD
i

where

gi � j2=�w2
i � j2

�

Assume further that the state measurement variances are all equal. In this case, J2 ; w2
i

and g ; gi. Louis (1984) showed that under these conditions, the actual dispersion in

the estimates is

S2
B � g2S2

D

Combining this result with the earlier result, we have that

EMEDS2
B � g2

�J2
� j2

� � gj2

Using the new symbol g, we note that the expected dispersion of the design-based

estimates is

EMEDS2
D � J2

� j2
�

j2

g

So the design-based and Bayesian methods both mis-estimate the expected dispersion

across the states by a factor of g. The design-based estimate of the dispersion is too

high by a factor of 1=g, while the Bayesian method is too low by a factor of g. Louis

(1984) then proposed a constrained Bayesian estimator with the correct expected dis-

persion across the states.

Spjùtvoll and Thomsen (1987) did similar work for a binary outcome variable. They

developed an estimator by using design-based estimates of the measurement variance,

and then subtracting this from the total observed weighted dispersion among the states

to estimate the true variance among the states. They then used the components of variance

to adjust the state estimates. Lahiri (1990) followed a similar approach but with some

slight changes was able to develop an estimator with nice consistency properties. Ghosh

(1992) developed a more general approach to the entire problem that relaxes some of

Lahiri's assumptions.
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Lahiri's estimators work ®ne if a prior for the state means can be found such that

the posterior expected values of the state means can be expressed as a linear function

of the state sample means. When the characteristic of interest is binary, such linearity

in the posterior estimates cannot usually be achieved. The only admissible priors are those

that yield state means in the range of 0 to 1. The most common priors for the means of

binary variables are the beta distribution, the logit-normal distribution, the probit-normal

distribution, and the truncated normal distribution. The logit-normal is the most popular

since it allows the speci®cation of ®xed and random effects on the same scale (Zeger

and Karim (1991), Breslow and Clayton (1993), McCulloch (1997), among others). For

these priors, the posterior expected state means can only be found by numerically inten-

sive iterative methods. It appears that a combination of these methods with Ghosh's

adjustment to correct the dispersion would constitute a very promising line of research.

Unfortunately, these combinations would be very dif®cult to program and apply to

many applications. We thus thought it useful to apply Spjùtvoll and Thomsen's and

Lahiri's simple estimators to some simulated populations where the assumptions do not

apply exactly to determine if these simple methods yield useful improvements over the

design-based estimates.

3. Spjùtvoll-Thomsen Estimator

There appears to be a typographical error in Spjùtvoll and Thomsen's estimator of the

process variance. Their estimator of the true process variance is given as

Ãj2
ST � max 0;

X ni

n
� Åyi ÿ ÅÅy�2 ÿ �Snÿ1

i �ÅÅy�1 ÿ ÅÅy�

L ÿ
X

nÿ1
i

8<:
9=;

where ÅÅy �
P

Åyini=n. In every application we tried, this resulted in an estimated zero

process variance. They state that this estimator was obtained from Copas (1972). Our

review of Copas found the unweighted estimator:

Ãj2
Copas � max 0;

X
� Åyi ÿ Åy:�

2
ÿ �Snÿ1

i �Åy:�1 ÿ Åy:�

L ÿ
X

nÿ1
i

( )
where Åy: �

P
Åyi=L. Copas mentioned that one might wish to consider weighting when

there are severe differences among the sample sizes, but in this case, it is necessary to

renorm the ®rst sum of squares. Perhaps Spjùtvoll and Thomsen meant to write:

Ãj2
ST � max 0;

L S
ni

n
� Åyi ÿ ÅÅy�2 ÿ �Snÿ1

i �ÅÅy�1 ÿ ÅÅy�

L ÿ Snÿ1
i

8<:
9=;

The latter gives reasonable results, but we used the estimator of j2 suggested by Lahiri

as described in the next section. Spjùtvoll and Thomsen then estimated the measurement

variance as

ÃJ2
i �

ÅÅy�1 ÿ ÅÅy� ÿ Ãj2
ST

ni
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They then de®ne a compositing factor of

ai �

������������������
Ãj2

ST

ÃJ2
i � Ãj2

ST

s
and an estimator for the i-th state of

ÃvST
i � ai Åyi � �1 ÿ ai�ÅÅy

where

ÅÅy �
1

n
Sini Åyi

4. Lahiri Estimator

Rather than working with the design-based estimates, Lahiri ®rst derives empirical Bayes

estimates of the state means under the linearity assumption and then adjusts the empirical

Bayes estimates by expanding their dispersion. Although Lahiri calls these estimates,

``adjusted empirical Bayes estimates,'' the label of Ghosh seems more appropriate. Hence,

we call them ``constrained empirical Bayes (CEB) estimator.'' Lahiri de®nes t2 as the

expected variance given a single observation. Thus,

J2
i � t2=ni

He then estimates

Ãt2
�

1
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X
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8>>><>>>:
The constrained empirical Bayes estimates are then given by

ÃvCEB
i � ÃvEB

: � �ÃvEB
i ÿ ÃvEB

: �F

Note that since the factor F is larger than one, the constrained empirical Bayes estimate for
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a particular state will be further distant from the average of the empirical Bayes estimates

than the empirical Bayes estimate for that same state.

It may be demonstrated that for equal sample sizes in the states, F <
��������
gÿ1

i

p
for all i

and from this that Lahiri's and Spjùtvoll and Thomsen's estimators are very similar for

this special case.

5. Simulation Studies

Although our purpose is to correct the bias in the range estimator, our discussions above

mainly rely on the results on the dispersion estimators. We also pointed out that it is not

very clear how Lahiri's `posterior linearity' assumption can be veri®ed in practical situa-

tions. To gather some empirical experience as the assumption and performance of the esti-

mators we have discussed, a simulation study has been carried out. The simulation is

intended to

· Examine the ``posterior linearity'' assumption;

· Verify conclusions on the range estimator;

· Compare performance of competing estimators.

We used a truncated-normal model to generate true state means for our simulation. We

knew that the performance of the range estimators would depend upon the state sample

sizes and on the intrastate correlation. In order to simplify the presentation of the results,

we restricted our attention to a scenario where every state has the same sample size.

Across the two-dimensional space de®ned by sample size and intrastate correlation, we

reduced the size of the simulation study by examining behavior of the estimators on

two lines, the ®rst de®ned by a ®xed sample size of 30 observations per state, the second

by a ®xed intraclass correlation of 0.05. These values were chosen as reasonable and

instructive. A total of 500 superpopulations were examined along each line.

For each superpopulation model, we generated 100 populations and then drew 200

samples from each population for a total of 20,000 samples per superpopulation.

For each sample, two estimators were calculated. The ®rst was calculated assuming

that the variance components are unknown and thus need to be estimated from the sample.

The second was calculated assuming that the variance components were known. Although

it would be rare to encounter an application with known components of variance, the

second set of estimates are shown so that one can easily see the effect of the estimation

of variance components on the performance of the range estimators themselves.

The results of holding the state sample size ®xed and varying the intrastate correlation

are shown in Figure 1. As one can see from the relative bias in the estimated range, the

design-based estimator of the range was always biased upward, and the standard empirical

Bayes estimator (EB) estimator of the range was always biased downward. The con-

strained empirical Bayes estimator (CEB) of Lahiri and the Spjùtvoll-Thomsen estimator

(ST) did well until r was very small. When r was very small, the relative biases and the

relative root mean squared errors of all estimators under consideration became unaccept-

ably large. This suggests that a state sample size of 30 is too small unless there is good

prior evidence that the intrastate correlation is at least 0.015, a fairly large value.

Comparing the estimator based on the known variance components with that based on
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Table 2. Response bias by state from the CPS reinterview (1978±1981)

Relative bias on unemployment

State Response bias on Sample Standard error Average proportion of Approximate Constrained
percent of CNP16� size on estimated CNP16� unemployed Design-based empirical empirical
that is unemployed response bias (1978±80) estimate Bayes estimate Bayes estimate
(design-based) (Lahiri) (Lahiri)

AL ÿ0.0038 2,360 0.0016 0.043
AK ÿ0.0071 1,692 0.0032 0.069
AZ ÿ0.0015 1,366 0.0018 0.036
AR 0.0012 1,667 0.0019 0.039
CA ÿ0.0035 11,819 0.0008 0.044
CO ÿ0.0019 2,054 0.0017 0.037
CT ÿ0.0017 1,725 0.0015 0.036
DE ÿ0.0050 1,003 0.0030 0.05
DC ÿ0.0162 678 0.0057 0.051
FL ÿ0.0027 4,458 0.0011 0.035
GA ÿ0.0052 2,858 0.0019 0.037
HI ÿ0.0028 1,082 0.0031 0.041
ID 0.0006 1,619 0.0024 0.042
IL ÿ0.0014 5,586 0.0011 0.043
IN ÿ0.0028 2,815 0.0019 0.048
IA ÿ0.0005 2,103 0.0011 0.031
KS 0.0006 1,789 0.0017 0.024
KY ÿ0.0026 1,902 0.0020 0.039
LA ÿ0.0038 2,340 0.0020 0.04
ME 0.0000 1,719 0.0018 0.043
MD ÿ0.0022 2,235 0.0017 0.04
MA ÿ0.0003 2,880 0.0013 0.028
MI ÿ0.0040 5,046 0.0016 0.057
MN ÿ0.0024 2,456 0.0012 0.032
MS ÿ0.0050 1,805 0.0018 0.04

ÿ8.9% ÿ7.7% ÿ8.3%
ÿ10.4% ÿ6.8% ÿ8.0%
ÿ4.1% ÿ6.2% ÿ5.6%

3.1% ÿ2.6% ÿ0.7%
ÿ7.9% ÿ7.7% ÿ8.3%
ÿ5.3% ÿ6.4% ÿ5.9%
ÿ4.8% ÿ6.4% ÿ5.8%

ÿ10.0% ÿ7.0% ÿ7.6%
ÿ32.3% ÿ11.9% ÿ14.7%
ÿ7.7% ÿ7.8% ÿ7.7%

ÿ14.3% ÿ11.4% ÿ13.0%
ÿ6.8% ÿ6.7% ÿ6.8%

1.5% ÿ3.1% ÿ1.6%
ÿ3.3% ÿ4.2% ÿ3.2%
ÿ5.9% ÿ5.9% ÿ5.9%
ÿ1.5% ÿ5.2% ÿ3.6%

2.3% ÿ5.1% ÿ2.4%
ÿ6.8% ÿ6.9% ÿ6.9%
ÿ9.7% ÿ8.3% ÿ9.0%

0.0% ÿ3.5% ÿ2.3%
ÿ5.6% ÿ6.2% ÿ5.9%
ÿ1.2% ÿ4.9% ÿ2.8%
ÿ7.0% ÿ6.3% ÿ7.0%
ÿ7.7% ÿ8.1% ÿ7.9%

ÿ12.5% ÿ9.5% ÿ10.6%
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MO ÿ0.0043 2,546 0.0015 0.034
MT ÿ0.0058 1,728 0.0027 0.037
NE ÿ0.0027 1,485 0.0019 0.023
NV ÿ0.0015 1,301 0.0011 0.037
NH ÿ0.0048 1,256 0.0019 0.027
NJ ÿ0.0091 3,839 0.0017 0.045
NM 0.0034 1,456 0.0025 0.04
NY ÿ0.0046 8,935 0.0010 0.044
NC ÿ0.0048 2,930 0.0014 0.035
ND 0.0012 1,636 0.0015 0.028
OH ÿ0.0036 5,826 0.0010 0.041
OK ÿ0.0025 1,195 0.0019 0.025
OR ÿ0.0032 1,556 0.0021 0.046
PA ÿ0.0033 6,310 0.0010 0.043
RI ÿ0.0010 1,040 0.0017 0.043
SC ÿ0.0062 1,457 0.0027 0.037
SD 0.0011 1,795 0.0011 0.025
TN ÿ0.0012 2,503 0.0016 0.038
TX ÿ0.0049 6,720 0.0012 0.031
UT ÿ0.0015 2,000 0.0013 0.031
VT 0.0008 1,179 0.0028 0.039
VA ÿ0.0033 2,696 0.0014 0.033
WA 0.0022 1,834 0.0015 0.047
WV ÿ0.0007 1,430 0.0019 0.04
WI ÿ0.0021 2,412 0.0015 0.038
WY ÿ0.0008 1,310 0.0017 0.023
US Total ÿ0.0030 135,433 0.0000 0.04

Range 0.0197

ÿ12.8% ÿ10.6% ÿ11.7%
ÿ15.7% ÿ11.2% ÿ12.8%
ÿ11.7% ÿ11.9% ÿ11.8%
ÿ4.2% ÿ6.2% ÿ5.7%

ÿ17.8% ÿ13.0% ÿ14.2%
ÿ20.4% ÿ15.3% ÿ19.3%

8.6% ÿ0.6% 2.1%
ÿ10.5% ÿ9.7% ÿ11.1%
ÿ13.7% ÿ11.3% ÿ12.7%

4.4% ÿ3.6% ÿ1.0%
ÿ8.8% ÿ8.3% ÿ8.9%

ÿ10.1% ÿ10.7% ÿ10.5%
ÿ7.0% ÿ6.4% ÿ6.6%
ÿ7.8% ÿ7.4% ÿ7.9%
ÿ2.2% ÿ5.0% ÿ4.4%

ÿ16.8% ÿ11.3% ÿ12.9%
4.5% ÿ3.9% ÿ0.9%

ÿ3.2% ÿ5.0% ÿ4.1%
ÿ15.9% ÿ14.2% ÿ16.5%
ÿ4.8% ÿ6.9% ÿ6.1%

2.2% ÿ3.7% ÿ2.3%
ÿ10.1% ÿ9.4% ÿ9.8%

4.6% ÿ1.0% 1.1%
ÿ1.7% ÿ4.8% ÿ3.9%
ÿ5.5% ÿ6.3% ÿ5.9%
ÿ3.3% ÿ8.7% ÿ7.2%
ÿ7.6% ÿ6.9% ÿ6.9%

40.9% 14.8% 21.4%



estimated variance components reveals some interesting phenomena. The Bayes estimator

was as biased as the EB estimator. When r was small, the difference between EB and CEB

estimators was more pronounced when the variance components were known. Estimators

CEB and ST also seemed more robust against small r values.

Another interesting observation is that CEB and ST were almost indistinguishable

for most part of the r range, although ST was much simpler and easier to compute.

When r was small, ST, which became more heavily in¯uenced by the overall mean

estimator ÅÅy in its formula, behaved more like the design-based estimator DB.

The results of holding the intrastate correlation ®xed at 0.005 and varying the state

sample size are shown in Figure 2. As expected, the bias of the estimators became larger

as the sample size shrank. CEB and ST were clearly less biased than the design-based and

empirical Bayes (when variance components are estimated) or the Bayes (when variance

components were known) estimators.

6. Application to CPS Reinterview Data by State

Data from the reinterview of the Current Population Survey between April of 1978 and

December of 1981 indicated a large variation in the response bias on the percent of popu-

lation that is unemployed across the states. These response biases were calculated as net

difference rates between the original and the reinterview, where the reinterview was done

by a more experienced interviewer and the differences between the two interviews were

discussed with the respondent by the second interviewer. The data in Table 2 show the

results after reconciliation. No weights were used since the reinterview subsample is a

sample of convenience. The variances were calculated using the formula

var
ci ÿ bi

ni

� �
�

ci � bi

ni�ni ÿ 1�
ÿ

�ci ÿ bi�
2

n2
i �ni ÿ 1�

where ci is the count for the i-th state of people who switched from unemployed to some-

thing else and bi is the count for the i-th state of people who switched from something else

to unemployed.

Although these response biases may appear small, if they are expressed as relative

biases on the unemployment rate, they are quite large, ranging from ÿ32:3 per cent for

Washington, DC to �8:6 percent for New Mexico. Using Lahiri's approximate empirical

Bayes estimator with the formula for measurement variance given above, the range shrinks

from 41 points to just 15 points. This is probably an overshrinkage for the reasons dis-

cussed above. Lahiri's approximate constrained empirical Bayes estimate partially

reverses the shrinkage to give a range of 21 points. At the time, the CPS estimates were

being used to allocate federal funds for training and other services for the unemployed.

Clearly, a range of 21 points in the bias is disturbing, but nowhere near as disturbing as

a range of 41 points.

7. Conclusions

The range across the states of design-based estimates can be seriously positively biased

when either the state sample sizes are small or the intrastate correlation is small. Such

biases can affect policy discussions. Constrained empirical Bayes estimators have been

12 Journal of Of®cial Statistics



proposed that can substantially reduce the bias. Incorporating Ghosh's (1992) adjust-

ments to PQL estimators (Breslow and Clayton 1993) and to Gibbs sampling (Zeger

and Karim 1991) looks like a promising avenue for further research.
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