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Correction for Misclassification Using
Doubly Sampled Data

Anders Ekholm' and Juni Palmgren®

Abstract: In doubly sampled data the units of
a subsample are classified jointly by two
methods: (i) a fallible but inexpensive, and (ii)
a reliable but expensive. The rest of the units
are classified only by method (i). We propose
an extension of the generalized linear model
(Nelder and Wedderburn (1972)) for such
data. We model explicitly the nonsampling
errors, i.e., the probabilities of misclassifica-
tion. We then incorporate these into the model
for the dependence of the response on the
explanatory factors. There might be misclassi-
fications both in the response and in the ex-
planatory factors.

1. Introduction

We start with the fictitious example to convey
the idea of doubly sampled data and of our
method of analyzing it. The task is to estimate
the probability of a certain back disorder in
middle-aged men. There are two ways to diag-
nose this disease; by a very time consuming
medical examination or by using a question-
naire. The former method is fully reliable but
expensive, the latter is handy but error prone.
We have data from 1 000 men of which a ran-
dom subsample of 100 were subjected both to
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A car accident data set is analyzed in which
80 084 accidents were categorized only by the
police, and 1 796 accidents were categorized
both by the police and by personal interview
of the accident victims. Our model is more ex-
plicit concerning the nonsampling errors than
the models used for these data by Hochberg
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the medical examination and to the question-
naire, while the remaining 900 were required
to answer the questionnaire only. (See Table 1.)

There are at least two naive ways of estimat-
ing the probability of the disorder. Using only
the examination data (D), the estimate is 0.3,
with a standard error (s.e.) of 0.046. On the
other hand, using only the questionnaire
(D*), we compute the estimate as (33 + 298)/
(100 + 900) = 0.331 with ans.e. of 0.015. The
former estimate is free from bias due to non-
sampling error but suffers from a large stan-
dard error. The latter estimate is affected by
nonsampling error but has a much smaller
standard error. Neither method uses informa-
tion from the cross-classification of D and D*.

Our approach is to write down a saturated
model for the left hand 2 X 2 table in Table 1,
and to derive the probabilities of the right
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Table 1. Fictitious data concerning the occurence of back disorder among middle-aged men. D
refers to the medical examination, and D* to the questionnaire result. D—and D+ stand for nega-

tive and positive examination result respectively, and analogously for D*

Both examined and questioned

Only questioned

D+ D- Total
D*+ 24 9 33 298
D*- 6 ) 61 67 602
Total 30 70 100 900
Table 2. A model for the probabilities of the cells of Table 1
Both examined and questioned Only questioned
D+ D—
D*+ w(1-9) (1-m)e n(1-9) + (1-m)e
D*- d (1-m)(1-¢) nd+ (1-n)(1-¢)
Sum T 1-m 1

hand collapsed 2 X 1 table from this. Let &
represent the true probability of disorder, and
d and ¢ the probabilities of false negative and
false positive diagnosis respectively. That is

n=pr(D+), &=pr(D*~|D+),
e = pr(D*+|D-).

The probabilities for the cells of Table 1 are
shown in Table 2.

Table 1 contains six frequencies restricted
by the fixed sums 100 and 900. There are thus
four independent observations. Table 2 speci-
fies a model with three parameters for these
observations. We estimate the three param-
eters by maximum likelihood, and arrive at
the following estimates for 7, 8, and € respec-
tively, with the standard errors in parenthesis
0.3 (0.036), 0.2 (0.065), and 0.13 (0.033).

Note that we obtain maximum likelihood
estimates of the structural parameter & and of
the error probabilities, all based on the full data
set. In this simple example there is a single
structural parameter. In more realistic cases

we might want to fit a structural model to de-
scribe the effect of explanatory factors on a
categorical response. The presence of doubly
classified units makes it possible to model the
nonsampling errors jointly with the structural
model. We refer to the restrictions imposed on
the probabilities of errors as the misclassifica-
tion model. The complete model description
is the combination of the structural model and
the misclassification model. Large sample
goodness-of-fit tests are available for testing
the full model.

In Section 2 we show that the full model can
be regarded as an extension of the generalized
linear models. The estimation is, in fact, con-
veniently performed in GLIM (Payne (1985)).
In Section 3 we present a large doubly sam-
pled data set from highway safety research. In
Section 4 we analyze these data using the type
of model described above. In Section 5 we
briefly discuss the suitability of double sam-
pling for making structural inference from
data sets originally collected for administra-
tive purposes.
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2. Exponential Family Nonlinear Models

We shall give a condensed description of gener-
alized linear models as applied to multidi-
mensional contingency tables. McCullagh and
Nelder (1983, Ch. 6) give a sophisticated

" presentation, and Dobson (1983, Ch. 9) gives
an instructive introduction.

Let Y}, ... ,Y, denote the random counts in
the n cells of a multidimensional contingency
table. Their joint distribution is multinomial
if the grand total of the Ys is fixed, and prod-
uct multinomial if several subtotals are also
fixed. We treat subtotals as fixed, either be-
cause the data are collected keeping these sub-
totals fixed, or because we want to condition
the analysis on observed counts in the margin
formed by cross-classifying explanatory
factors.

In both the multinomial and the product
multinomial cases we treat, as a technical
simplification, the Ys as independent Poisson
variates. Palmgren (1981) shows that correct
large-sample maximum likelihood inference
about any structure on the probabilities in the
multinomial or product multinomial distri-
bution is obtained from the Poisson assump-
tion as long as the following condition is ful-
filled. The sum of the fitted counts for any
fixed margin must coincide with the corre-
sponding observed sum. The random variation
of the cell counts is then adequately described
by the Poisson distribution.

A generalized linear model for the systematic
variation of the cell probabilities expresses
In(E(Y;)) fori =1, ..., n as a sum of param-
eters. If, for example, the contingency table is
r X ¢, and we want to model independence be-
tween the classifying factors, then we write

In(E(Y))=a+B,+v,i=1,..,n
u=1,.,r;v=1,.,c,

where o denotes a parameter common for all
cells, and the B,s and v,s are sets of row and
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column main effects. Restrictions must be set
on the parameters to make the model identifi-
able. For tables with many dimensions and
several possible layers of interaction terms,
more parameters are included, but always by
simple addition.

In the terminology of the generalized linear
model, the transformation In() applied to the
expectation of the Ys is called the link func-
tion. The logarithm might be substituted by
some other monotonic and differentiable
function, but the link of the expectation is
always expressed as a linear function of the
parameters.

Now, consider Tables 1 and 2. There we
have a set of random counts modeled so that
their fitted values will coincide with the fixed
totals 100 and 900. The snag is that their ex-
pectations are expressed as products of the
parameters (in the left hand table) and sums of
products (in the right hand table). According-
ly, neither the logarithm nor any other regular
function applied to the expectations will give
us an expression which is a linear function of
the parameters.

Palmgren and Ekholm (1987) introduced a
class of models called exponential family non-
linear models. The random variation is mod-
eled in exactly the same way as for generalized
linear models. The model for the systematic
variation is, however, more general in two
ways: (i) the link function is defined separate-
ly for each cell of the table under study, (ii)
there is no requirement for any expression
which is a linear function of the parameters.
Ekholm et al. (1986) have written a set of
macros for fitting exponential family non-
linear models in GLIM. The user just has to
program the formula for his model in the
GLIM language. GLIM then finds maximum
likelihood estimates of the parameters, and
offers all its standard provisions. We illustrate
the usefulness of these for statistical analysis
in Section 4.
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3. The Seat Belt Data

To illustrate exponential family nonlinear
modeling of a structural relationship with sup-
erimposed misclassification, we reanalyze a
data set first presented and analyzed by Hoch-
berg (1977). He does not consider any restric-
tions for the misclassification probabilities.
Espeland and Odoroff (1985) reanalyzed
these data by a two stage EM-procedure. At
the first stage they identify a misclassification
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The singly classified sample consists of
80 084 accidents that were fully recorded by
the police in North Carolina during 1974. The
police records classify the accidents according
to the following four factors:

* = Driver’s seat beltusage; A* forno,
A* foryes,
B* = Driver’sinjury; B~ forno,
B*+ foryes,

C = Driver’ssex; C— for male and
model assuming a saturated structural model. C+ forfemale,
At the second stage they identify a nonsatu- D =Damage; D~ forlow, D+ forhigh.

rated structural model using the misclassifica-
tion model they found at the first stage. Chen
et al. (1984) added an artificial data set to the
original one, and then analyzed it as triply
sampled data. We restrict our attention to the
doubly sampled real data. There are two new
features of our analysis. (i) We formulate and
estimate one single model, which includes ex-

The doubly classified sample consists of
1 796 accidents recorded in the beginning of
1975 in North Carolina. These accidents are
classified by the police according to the four
factors above, and also according to two addi-
tional factors, which we shall refer to as:

> A = trueseatbeltusage; A- forno,
plicit parameters and restrictions for the error A+ foryes
probabilities. (ll) We use a qulckly converging B =true injury; B- forno, B+ for yes.

Newton-Raphson algorithm for maximum
likelihood estimation providing standard
errors and correlations for estimates of all the
parameters.

These “true” classifications are (Hochberg
(1977, p. 919)) based on intensive inquiries for
each individual case. The reliable classifiers

Table 3.  Number of road accidents in North Carolina classified according to year, driver’s sex
(C), seat belt usage (A* and A), injury (B* and B), and severity of damage (D). Seat belt usage and
injury are classified by police and by inquiries respectively. Fitted values from final model in

parentheses
Layer 1: C—, D —, (male, low damage)
1975 1974
A- A+
B- B+ B- B+
B* 407 45 62 7 22 536
A% - (408.0) (44.3) (58.3) 4.5) (22 530.7)
T B4 5 32 1 4 1 687
(5.6) (29.7) (0.8) (3.0) (1 708.7)
B* 6 1 47 6 3 006
A*4 - (7.9) 0.9) (55.6) 4.3) (3 000.5)
B*+ 0 1 1 2 199
(0.1) (0.6) (0.8) (2.8) (188,1)
497 130 27 428
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Layer 2: C—, D +, (male, high damage)
1975 1974
A- A+
B- B+ B- B+
B 299 59 20 9 17 476
e (276.3) (71.8) (20.9) (3.8) (17 448.8)
B*+ 11 118 2 5 6 746
(13.8) (121.7) (1.0) (6.5) (6 695.8)
Bt 4 1 30 6 2155
Art 5.4 (1.4) (32.9) (6.0) (2 137.0)
B*4 1 0 2 9 583
(0.3) (2.4) (1.6) (10.2) (678.5)
493 83 26 960
Layer 3: C +, D —, (female, low damage)
1975 1974
A- A+
B- B+ B- B+
B*— 206 37 18 5 11 199
A (201.9) 42.5) (14.1) 2.1) (11 329.5)
B+ 4 29 0 0 1422
(2.8) (28.5) (0.2) (1.4) (1428.2)
B 1 0 17 1 1262
A*y 3.9 (0.8) (18.4) 2.7 (1125.3)
B*4 3 1 0 0 117
(0.05) (0.6) (0.2) (1.8) (117.1)
281 41 14 000
Layer 4: C +, D +, (female, high damage)
1975 1974
A- A+
B- B+ B- B+
Bt 102 53 7 4 6 964
A (109.4) (45.8) (5.0) (1.5) (6 977.7)
T By 5 79 1 1 3707
(5.5) (77.7) 0.2) 2.5) (3 707.5)
B 2 1 6 3 728
A4 2.1) (0.9) (10.2) (3.0) (699.0)
B* 4 0 1 0 6 297
(0.1) (1.5) (0.5) (5.1) (311.8)
243 28 11 696

are denoted by a single letter, while the error
prone classifiers bear a star. The full data setis
reported in Table 3. We use the same frame-
work asin the introductory example; the num-
ber of doubly classified units in the left hand
side, and the collapsed data in the right hand

side. The bold numbers in Table 3 are the
totals in the three dimensional (A, C, D)
margin for the 1975 data and in the two dimen-
sional (C, D) margin for the 1974 data. We
will treat these totals as fixed numbers in the
analysis.
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The relevant structural question to ask
about these data is whether the use of seat belt
has any effect on the probability that the
driver is injured, adjusting for the driver’s sex
and the degree of damage. Thus the factors A,
C, and D are explanatory while B is a response.
In a technical sense we work with a three
dimensional 2 X 2 X 2 response (A*, B*, B).
In the substantive sense, however, B is the
single response contaminated by misclassifica-
tions, and A, C, and D are explanatory fac-
tors. The explanatory factor A is contaminat-
ed too. Treating the (A, C, D) margin as fixed
is equivalent to making inference conditionally
on the observed outcomes of the explanatory
factors, cf. Palmgren (1981).

First we neglect misclassification, and
concentrate on the 1975 data, where we have
access to the true classifications A and B.
Table 4 summarizes the seat belt effect by re-
porting the relative frequencies of injury for a
cross classification of sex, damage, and seat
belt usage. These figures are obtained from
the left hand parts of Table 3 by summing over
factors A* and B*. The first entry in Table 4 is
obtained as 79/497 = 0.16.
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Table 4. The relative frequencies of injury
for different cross classified levels of Sex (C),
Damage (D), and Seat belt usage (A)

A At
c D- 0.16 0.15
D+ 0.36 0.35
D- 0.24 0.15
C+ by 0.55 0.50

The relative frequencies of injury are con-
sistently lower for seat belt users, but this
effect is not statistically significant. We have
fitted a series of logit models to these data.
Four models are reported in Table 5.

A test statistic for the seat belt effect is the
difference in deviances between models 1 and
2, which is 1.08 on 1 degree of freedom and
not significant. Note that the same conclusion
is reached by comparing models 3 and 4.
Further, the estimate for the A-effect is the
same from models 1 and 4. If we stick to just
the true classifications, we must conclude that
the effect of using seat belts is negligible.

Table 5. Four logit models for the 1975 data marginalized over the police classifications of Seat

belt usage (A*) and Injury (B*)

Model Deviance df )4 Estimate of s.e.
A-effect

1. C+D+C.D+A 1.24 3 0.74 -0.16 0.157

2. C+D+C.D 2.32 4 0.68

3. C+D 4.10 5 0.54

4. C+D+A 3.09 4 0.54 -0.16 0.157

Comparing models 2 and_3 we find that
C.D, the interaction between C and D, is non-
significant. No further simplification can be
made without considerable misfit. The esti-
mates of the sex (C) and the damage (D) main
effects are (with standard errors in paren-

theses) respectively 0.63 (0.11) and 1.22
(0.11). The probability of injury is higher for
female than for male drivers, and higher when
the damage is high. The damage effect is easy
to understand, but we do not know the reason
for the sex effect.
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4. Misclassification and the Seat Belt Effect

We turn to the full data, and build a misclassi-
fication model on top of a logit model for the
probability of injury. To present this much
more complicated model we introduce some
new notation. Let a = + or — be a generic
symbol for the levels of factor A, and use c and
d analogously for the levels of factors Cand D.
Let & represent the structural probability of
injury, that s,

Teeq = pr(B+ |A=a, C=c, D=d).

Next, we define four different types of mis-
classification, which might be functions of the
levels of factors C and D:

Bi(c, d) =pr(B*+ | B-, C=c, D=d),
B.(c, d) = pr(B*~ |B+, C=c, D=d),
a,(c, d) =pr(A*+|A-, C=c, D=d),
ay(c, d) =pr(A*- |A+, C=c, D=d).

The reader will find it useful to have available
the following list of the four types of misclassi-
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fication associated with the above probabili-
ties:

B;: Police report injury, when inquiry re-
ports no injury,

f3,: Police report no injury, when inquiry
reports injury,

a,: Police report belt, when inquiry reports
no belt,

a,: Police report no belt, when inquiry re-
ports belt.

In Table 6 we present the expressions for
the cells of the left hand parts of Table 3. It will
suffice to do so for Layer 1, that is for C—, D-.
Since C and D are fixed, we suppress their
indices, and the index for A is + or —, as the
case may be. For example, n, denotes the
conditional probability of injury given that the
seat belt was used.

The individual probabilities in Table 6 are
derived by elementary rules of probability
calculus just like the probabilities in the intro-
ductory example. Consider the entry in row
A*~, B*+ and column A+, B-. The entry is
(1 - =) B0y, which is the conditional proba-
bility given that the belt was used, that no injury

Table 6. The expressions for the probabilities of the cells on the left side of Table 3
A- A+
B- B+ B- B+

e B*~ (- )(1-B)(1-oy)  7m_Py(1-ay) (1~ )(1-B1) o 74 Brat;

B*+ (1w )Bi(1-o) nt_(1-B,)(1-0) (1w )P0z 7, (1-Bo) o
s B*- (I )(1-B)ay 7_Bray (1= )(A-B)(-0r) 7, Bx(1-ar)

B*+ (I-m)Bioy (1B (1-m,)Bi(1-ar) 7, (1-B,) (1-05)
Sum 1-r_ T 1-r, T,
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occurred, but the police classified the accident
as “no belt and injury.” Note that the proba-
bilities in the A- half sum to 1, and so do the
probabilities in the A+ half. This implies that
the A- totals and the A+ totals of the fitted
frequencies will coincide with the observed fre-
quencies for each given level of sex and dam-
age. That is, the (4, C, D) marginal totals are
fixed at their observed values.

Next we calculate the probabilities for the
cells of the 1974 data, cf. Table 3. We sum the
probabilities in Table 6 across rows, weight-
ing the probabilities in the A— half and in the
A+ half by the respective proportions of the
A- and the A+ totals from the corresponding
layer in Table 3. For Layer 1 the weight for the
A- half is 497/(497 + 130), and the weight for
the A+ half is 130/627. This particular weight-
ing is just a further consequence of treating
the (A, C, D) margin as fixed. It follows that
the probabilities in each layer of the 1974 table
sum to 1, and the (C, D) totals of observed and
fitted frequencies coincide. The physical
meaning of the weighting we use is that we
assume that the true proportion of belt users is
the same in the 1974 and in the 1975 data.
There is no obvious reason to doubt this
assumption, if the 1975 accidents are a ran-
dom subsample of all the accidents.

Table 6 shows that there are six parameters
for each layer of Table 3. Having imposed a
structure for the parameters across layers, the
model is written in GLIM language, and
the procedure of Ekholm et al. (1986) is
applied. This is a straightforward exercise,
and we have, in fact, estimated a considerable
number of different models for these data.
There might, as always, be other well-fitting
models, but we have found no obvious con-
tender. )

The deviance of our best model is 58.91 on
52 degrees of freedom corresponding to a sig-
nificance level of 0.24. The Pearson test statis-
tic has the value 56.25. We report this model
in Tables 7 and 8.
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Table 7. The parameters of the structural
logit model for the data in Table 3. The first
level of each parameter is set to zero, and 1 is
the logit of the probability for A—, C-, D-

Parameter Estimate s.e.

1 -1.721 0.0775
C+ 0.6629 0.0571
D+ 1.316 0.0940
C+.D+ -0.1854 0.0695
A+ -0.3480 0.0799

The structural model is still expressed in
logit units in Table 7. The seat belt (A) effect is
now more than double compared to the one in
Table 5. It is clearly significant. No other
interactions except the one between sex and
damage (C. D) are significantly different from
zero. We comment further on the structural
part below, but first we discuss the error prob-
abilities. They are reported in Table 8.

Table 8. The estimated error probabilities
for the final model for the data in Table 3.
See page 425 for the symbols

Parameter Estimate s.e.

B(D-) 0.01 0.0037
Bi(D+) 0.05 0.0090
Bo(D-) 0.60 0.0247
Bo(D+) 0.37 0.0183
a, 0.02 0.0029
o,(C-,D-) 0.51 0.0139
a,(C+,D-) 0.43 0.0442
0,(C-,D+) 0.39 0.0222
a(C+,D+) 0.33 0.0338

Note: The a, parameters are not estimated inde-
pendently but using the following restrictions:

az(c+ ,D'—) = Olz(C—,D—) X%,
0,(C+,D+) = 0,(C-,D+) X %.
The parameters ay(C—,D-), 0,(C-,D+) and = are

estimated independently. The estimate of » is
0.8465 with s.e. 0.0580.
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The probabilities of police misclassification
have a striking feature. The police only rarely
report belt when there was no belt (a,), or
injury when there was no injury (B;). On the
other hand, the probability that the police
report no injury when, in fact, there was an
injury (B,) is very high. Similarly the probabil-
ity that the police report no belt when the belt
was used (0,) is high.

A second feature of the police misclassifica-
tion is that the error probabilities concerning
injury depend on the extent of the damage,
but not on the sex of the driver. It is under-
standable that the police work with more ac-
curacy concerning injury when the damage is
high. Injuries are, perhaps, more obvious
then. The probability that the police do not
notice belt usage depends on both damage and
sex. It is not intuitively clear why the under-
reporting of belt usage is less severe for female
drivers. The underreporting is for women only
85 % of what it is for men in the correspond-
ing damage category. The sex and the dam-
age effects on the errors are additive on a loga-
rithmic scale.

The following technical details about our
model are relevant. Three cells had to be ex-
cluded from the fit. Reading across rows of
Table 3, these are numbers 40, 55, and 56. The
fitted frequencies are given in parentheses in
Table 3. The fitted frequency for cell number
56 is only 0.05. Both the likelihood ratio and
the Pearson test statistics react excessively to
so small a denominator. The cell numbers
40 and 55 are more mysterious. They both be-
long to the 1974 data. Including them in the
estimation and testing changes the overall fit
to a poor one. The p-value drops from 0.24 to
0.09. They do not, however, change the
parameter estimates much, with the notable
exception of the estimate for the seat belt
effect (A), which moves from —0.35 (0.080) to
—0.49 (0.063). The basic structure of our model
is thus resistant to the influence of these cells.
We believe it is more reasonable to base in-
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ference on a well fitting model for 77 cells,
than on almost the same model with a poor
overall fit. We suspect data collection faults
for cell numbers 40 and 55. Note, from Table
3, that the other fourteen 1974 cells also have
large observed frequencies, and remarkably
close fits.

The degrees of freedom are calculated as
80 -8 -4 -13 -3 = 52. There are 80 cells in
Table 3, the numbers of fixed (4, C, D) and
(C, D) marginal totals are 8 and 4. The num-
ber of unrestricted parameters in Tables 7 and
8 is 13, and finally the three cells mentioned
above were excluded.

The structural part of the model is relatively
unaffected by the choice of error model.
There was virtually no trade-off between
modeling the errors more parsimoniously and
including more interaction terms in the struc-
tural model. In general the final model has low
correlations between the estimates. In parti-
cular the correlations between the structural
estimates and the error estimates are low. The
largest of the absolute values is 0.55 and the
median is 0.09.

We estimated many error models. Espeland
and Odoroff (1985, p. 667) suggest that there
might be a dependence between police re-
porting of injury and seat belt usage. To study
this we elaborated Table 6, letting the a, error
probabilities depend on B*, and letting the 3,
error probabilities depend on A*. All models
of this type were inferior to the one we report.
Actually, most models of this type were poor-
ly identified, with very flat likelihood func-
tions close to the maximum.

Having established that the model fits well,
we return to the interpretation of the struc-
tural part. From the estimates reported in Table
7 we calculate the corresponding probabilities
of true injury given seat belt usage (A), sex (C),
and damage (D). These are reported in Table
9, which should be compared to Table 4. It is
fair to characterize the figures in Table 9 as the
estimated probabilities of injury based on all
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Table 9. The estimates of the probability of
injury based on the data in Table 3, and adjust-
ed for misclassifications in accordance with the
fitted model. Cf. Table 4

A AT
c D- 0.15 0.11
D+ 0.40 0.32
D- 0.26 0.20
C+ by 0.52 0.43

the data in Table 3, and adjusted for the conta-
mination by misclassification of factors A
and B.

The similarity rather than the dissimilarity
between the figures in Tables 4 and 9 is strik-
ing. The belt effect (A) is significant in Table 9
while it was insignificant in Table 6. The same
is true for the interaction (C.D) between sex
and damage. On balance we dare say that the
benefit of having access to doubly sampled
data and a model for analyzing it is in this case
twofold.

i. The singly classified data adds enough
information to establish a significant seat
belt effect. The power of the doubly classi-
fied data alone is insufficient for this.

ii. The doubly classified data permits us to
model the probabilities of misclassifica-
tion. Some of these are high enough to
deserve serious attention.

5. Discussion

We want to call attention to a general feature
of the example analyzed in Sections 3 and 4.
The police report procedure is obviously set
up primarily for administrative purposes. The
question of whether the seat belt has an effect
on the probability of injury is best character-
ized as a structural inference 'problem. Statis-
tics collected for administrative purposes or as
an offspring to administrative measures can be
of great potential power for drawing structural
inference. One should, however, adjust for

Journal of Official Statistics

errors of classification of measurement, or in
general, nonsampling errors. The most natu-
ral way of finding information on the non-
sampling errors is to set up a double sampling
scheme.

Highway safety research is certainly not the
only field of study in which large administra-
tive registers are available and can be com-
bined with information from small intensive
surveys to improve accuracy. Public health,
mentioned in the introductory example,
criminology, and sociology are other fields for
potential fruitful use of double sampling
schemes. In fact, the idea of correcting official
registers by personal interviews is not new. In
Scandinavia population registers were estab-
lished long before census practices. For de-
cades, information from censuses has been
used to correct the population registers.

With a more widespread use of double sam-
pling the allocation problem needs attention.
For what proportion of the sample should
precise information be sought, when resources
are limited and precise information is ex-
pensive. Here the costs of different types of
information can be viewed broadly, including
time and inconvenience aspects. Tenenbein
(1970, 1972) discussed allocation rules for esti-
mating a single binomial probability, and the
probabilities of a multinomial distribution.
Palmgren (1987) treated double sampling allo-
cation for estimating the differences of pro-
portions on the logit scale in two populations.
The solution to the allocation problem is not
known for more complex problems. In gener-
al, the optimal allocation depends on the spe-
cific form of the model under study, and on
the true unknown values of the structural
parameters and error probabilities. In any
particular situation decisions could be based
on simulated data made to mimic the structure
to be investigated. It is worth noting that for
some combinations of error probabilities and
relative costs the solution is to devote all your
resources to obtain precise measurements.
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