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Cross-Classified Sampling

Esbjorn Ohlsson’

From a finite, two-dimensional population a sample of rows and a sample of columns are
drawn independently. A sample from the two-dimensional population is formed by
cross-classifying these samples. We call this procedure cross-classified sampling (CCS).
This article is concerned with the problem of calculating the variance of estimators based
on CCS samples. A general variance decomposition is presented. This decomposition leads
to our main result, which simplifies the variance derivation when the one-dimensional
samples are (separately) stratified. Finally, we apply the general results to the special case
with the Horvitz-Thompson estimator in unequal probability sampling. The results in this
article have been used to derive variance estimators for the Swedish Consumer Price Index.

Key words: Two-dimensional sampling; variance decomposition; variance estimation; Con-
sumer Price Index.

1. Introduction

We consider a finite, two-dimensional population where we refer to the two dimensions as
rows and columns, respectively. A sample of rows and a sample of columns are drawn
independently. The cross-classification of these samples is our sample from the two-
dimensional population, cf. Figure 1. We call this procedure cross-classified sampling
(CCS). Note that the design of the row sample, on the one hand, and the column sample,
on the other hand, may be arbitrarily complex here.

This article focuses on deriving a formula for the variance of an estimator based on a
CCS sample. In Section 1.1 we give a decomposition of the variance that is applicable
to any estimator with a CCS design. In Section 2 we consider the situation where each
of the one-dimensional samples of rows and columns is stratified, cf. Figure 1. The
cross-classification of these strata does not yield an independent stratification of the
two-dimensional population. Our main result shows how we can utilize the variance
decomposition of Section 1 to simplify variance calculations in the stratified case. It turns
out that, in spite of the dependence of the cross-classified strata, we do not have to bother
about any covariance terms. In Section 3 we specialize to the case with the Horvitz-
Thompson estimator in unequal probability sampling.

The background to our interest in CCS is that large parts of the Swedish Consumer Price
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Fig. 1. Schematic view of Cross-Classified Sampling. Arrows show the product sample and outlet sample,
respectively. Light plus signs indicate the two-dimensional population while bold crosses indicate the cross-
classified sample

Index (CPI) are based on price quotations from CCS samples. These are cross-classifications
of an outlet sample and a product sample. In Dalén and Ohlsson (1995) our general results
on CCS are used to derive variance estimators for various parts of the CPL The resulting
numerical estimates have been used both to improve sample allocation and to obtain con-
fidence intervals for the index.

Another application of our results is in the UK Retail Price Index, see Central Statistical
Office (1995). For references to other papers on the variance of price indexes see Dalén
and Ohlsson (1995).

In the particular case when the samples in both dimensions are drawn by simple random
sampling without replacement (srswor) the variance of the sample mean can be obtained
from the results in Vos (1964), though not explicitly given there. The outlet sample and the
product sample for the CPI are stratified and drawn with unequal probabilities within
strata. The starting point for the present work was a need to extend results derived from
Vos (1964) to the more complicated CPI design.

Much work on two-dimensional sampling is concerned with the problem of area
sampling (plane sampling). Quenouille (1949) deals with two-dimensional samples that
are obtained by using stratified simple random sampling or equal probability systematic
sampling in each dimension at a time; variances are derived under a superpopulation
model. In the terminology of Quenouille, CCS can be described as the case with aligned
samples in both dimensions. For references on extensions of this work, see Iachan
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(1982) and Ripley (1981). To the best of our knowledge, none of these results can be used
to solve the general CCS variance problem. Other articles on two-dimensional sampling
discuss sampling among the cells in the crossing of two stratifications. This typically leads
to ‘‘Latin square’’ type samples rather than CCS samples; for an overview and references
see Cochran (1978). '

1.1. Definition of CCS and a variance decomposition

We consider a two-dimensional population with M - N units, arranged in a matrix with N
rows and M columns. For each population unit we have a value of our target variable y;
these values form the matrix {y;;i=1,2....,N;j= 1,2,...,M}. A survey is carried
out with the object of estimating the population total

N M
=33 @
i=1j=1
To this end, a random sample S® of rows and a random sample S € of columns are drawn.

The sampling procedures for rows and columns are assumed to be independent; in all other
respects S R and € are arbitrary here.

Definition 1.1. A cross-classified sample S from a two-dimensional population, indexed by
{(i,j)} is the cross-classification of S¥ and S€, i.e., S = {(i,j):i € S¥, j € €}, where ¥
and S€ are independent samples from the rows and columns.

On the basis of the y-values for the units in the sample S, we form some estimator ¥ of Y.
The problem we focus on in this article is the derivation of an explicit formula for V(¥).

We now present a decomposition of V(Y), which will be useful in the further deriva-
tions. Let E® denote conditional expectation, given the outcome of SR. By the indepen-
dence of S® and €, ER is simply the expectation over column samples. Conditional
expectation given § € is denoted E€, while E is overall expectation. For variances we ana-
logously define VR vEand V. Let

YR=ERY) P =E°(¥) 1.2)

We call Y% the row estimator of Y. The reason for this is that ¥* depends solely on the
outcome of the row sample: ¥ is an estimator which could be used if the columns
were completely enumerated. Similarly, Y€ is the column estimator of Y. If ¥ is unbiased,
then obviously both the row and column estimators are, too.

Theorem 1.1. The variance of an estimator Y, which is based on a cross-classified sample,
can be decomposed as follows

V(¥)= VR4 VC + VRC (1.3)
where

VR=V{®, vc=vFE®, VRC=vF-¥R-¥6 (1.4)

=1

We call VR the row variance, VC the column variance and VRC the row and
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column interaction variance. Before proving the theorem we illustrate it in a simple
example.

Example 1.1. Suppose that S® is a simple random sample drawn without replacement
(srswor) and having size n, and that S € is an srswor of size m. Let

M N M M
Yi. =Zyij y~j=Z)’ij y.= Y=ZZ)’;‘; (1.5)
i=1 i=1

i=1j=1

i =vilM $;=y;IN 3.=y.INM (1.6)

The conventional unbiased estimator of Y is given by

. NM
P=Ys S (1.7)

ieskjesc

In this case the row and column estimators are readily found as

.z N e M
YR:;Z%‘ Yczzzy,j (1.8)
iesk jEese

Furthermore, let

j— 1 &
2 1 N A s o2
aR—N_I;()’,. 3. oc M—_I;(v.j $.)

1 1 N M
2 = = _ 2
ORC = NI M =1 ;;()’ij Y=y +3.) (1.9)

The variance of ¥ in (1.7) is given by (1.3) and

212
vr="M (1——3)01% (1.10)
n N
N*M? m\
ve=" (I—M)oc (1.11)
vre = VM (1—2)(1—ﬂ) 2 | (1.12)
T mm N M) °re ’

Note the similarity between the variances in (1.9) and the mean sums of squares in a two-
way analysis of variance table. This is one reason for using the terminology ‘‘row, column
and interaction variance.”’

Equations (1.10)—(1.12) are readily derived from Theorem 3.1 below; we omit the
details, though. The expression for V(¥) in the srswor case can alternatively be derived
by using the results in Vos (1964, Method C.1). Note that Vos (1964) cannot be used to
cover more general sampling procedures S R and S€; the need for a generaliZation from
srswor to pps and stratified samples was the starting point for the work reported here.
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Proof of Theorem 1.1. Let Z = ¥ — ¥® — ¥ so that
y=9R4+9+2 (1.13)

It is sufficient to prove that ¥ R Y€ and Z are mutually uncorrelated. From the indepen-
dence between S¥ and S€ it follows that C(¥ R I?C) = 0. Furthermore

CHR zZy=cR v -¥®—cqR ¥ =cd® ¥ -1% (1.14)
Let u = E(Y). From (1.2) we get
ER AR - @ - =@F - ER T - 781 =0 (1.15)

By taking expectations in (1.15) we find that C(IA/R, y—v8 =0, together with (1.14),
this yields C(¥*, Z) = 0, as desired. By symmetry, we also have C(Y€, ) =0, which
concludes the proof.

2. Cross-Classified Sampling and Stratification

If we imposed an ordinary two-way stratification on our two-dimensional population, sam-
pling independently in each cell, then the results of the preceding section could, of course,
be used inside each cell, and V(¥) could be found by simply adding the cell variances. In
the CPI case (and possibly others), however, the rows and columns are separately strati-
fied. The cross-classification of these stratifications yield cells in which the samples are
actually dependent. In this section we discuss the derivation of variances with the latter
type of stratification.

Let us assume, then, that the rows are divided into G strata of sizes Ny, N,,...,Ng. As
usual, S¥ is the union of independent samples from each of the strata. Similarly, the
columns are divided into H strata of sizes M, M,,...,My. We still assume S R and €
to be independent, and Theorem 1.1 is still valid.

By crossing the row-stratification and the column-stratification we get a division of the
population into G - H cells. Let Y, denote the population total of the y’s in cell (g, h), for
g=12,...,G;h=1,2,...,H. Then Y in (1.1) can be rewritten

G H
r=%% v, @1)
g=1lh=1
We assume that the estimator of Y is composed of some estimators I?gh of the cell totals
Y, o ie.,
G H
P=> T (2.2)

g=1h

Il
_

We assume that f’gh is computed from the sampled units in cell (g, /) only. In other
respects, the ¥, xS are arbitrary. Note that a pair of Y, h ’s are not independent if they are
from the same row or the same column. Hence, V(¥) cannot simply be calculated as
the sum of the V( gh) s, as with ordinary two-way stratification. On the contrary, we
have to add a number of covariance terms to the sum, making variance estimation very
cumbersome in practice. However, invoking the decomposition of Theorem 1.1 makes™
the situation much simpler, as we now see.
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Introduce the within-cell row and column estimators

V5 =E'F,) Y5=E°@w (2.3)
The within row stratum g (column stratum /) estimators are defined as
H G
SR cR o A
K= b =14 24)
h=1 g=1
Trivially, we have the following relations
. G G H H_ H c
ARSI AED NSNS 7B SES S P 4 (2.5)
g=1 g=1lh=1 h=1 g=1h=1

The within row stratum g (column stratum %) variance is defined as
VR, =V(F}) vC,=v{EL) (2.6)
We also define the within cell (g, &) interaction as

A

VRCy, = V(¥ — V5 — T3 2.7

Theorem 2.1. Suppose we have a CCS procedure where the row and column samples are
separately stratified. Then the variance of an estimator ¥, based on the CCS sample and
structured as in (2.2), is given by

V()= VR+VC+ VRC (2.8)
where VR, VC and VRC are defined in (1.4) and can be expanded as

G H
VR=>"VR, VC=> VG, 2.9)
g=1 h=1
H
VRC =" VRCy (2.10)
g=1h=1

Since VR and VC in (1.4) depend only on ordinary ‘‘one-dimensional’’ samples, it should
be no surprise that they can be expanded as simply as in (2.9). The significance of the
theorem lies in the fact that VRC can be equally simply expanded (without any covariance
terms). We find that the decomposition of Theorem 1.1 provides us with the means of
making the variance calculations with these dependent cells almost as simple as in the
independent case.

Proof of Theorem 2.1. Equation (2.8) follows directly from Theorem 1.1 and (2.9) is an
immediate consequence of the independence between the samples in different row
(column) strata, and (1.4), (2.5) and (2.6).

It remains to show that VRC, as defined in (1.4), can be expressed as in (2.10). To this end,
let pgy, = E(I?gh) and

-

Zp =V — V5 — V5 + ugn @2.11)
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Note that E(Zy;,) = 0. From (1.4), (2.2) and (2.5) we see that

VRC =V (Z Z ) (2.12)

g=1h=

We must show that the right-hand sides in (2.12) and (2.10) are equal. By definition (2.7),
VRC,), = V(Z,;,) and it is sufficient to show that the Z, on S are mutually uncorrelated. By
the independence of the sampling in different rows and column strata, it is immediate that

CZgh, Zgy) =0 g#gd h#HW (2.13)
Next we turn to the case when g = g’ and h # /. By the independence between S¥ and S,
we have E€ ( h) E(IA/gI;,) = pgn, Which together with the second equality in (2.3) yields

that ES(Z, ¢n) = 0. By the independence of the samples in the column strata 4 and 4’, we
have

EZgZge) = EC(Zg) - E“Zgy) = 0 (2.14)
By taking expectations in (2.14), we conclude that

CZgh, Zgw) = EZgpZyyw) =0 (2.15)
The case with ¢ # ¢’ and h = &’ follows by symmetry. The proof of Theorem 2.1 is
complete.
3. Cross-Classified Sampling and the Horvitz-Thompson Estimator

Here we discuss the important special case when ¥ is the unbiased Horvitz-Thompson esti-
mator (also called the 7-estimator). First we go back to the unstratified situation. Follow-
ing Sérndal et al. (1992) we introduce the following notation. For any i, i’, j and j/, set

7 = P(i € Sg) TN = P(i,i' € Sg)
Tl =P(GESc) 75 =P(,j' €Sc) (3.1)
AR =78 — aXaf A o= 7rJ/ - 7rf7rjg

where P denotes probability. Furthermore, let
5)_ Y ij Y, — y_l Y y 2

= Vo =% ¥
7r§7rjc YR 7er

By the independence of S® and S€, the two-dimensional inclusion probabilities are just
products of the one-dimensional ones. Hence, the Horvitz-Thompson estimator takes
the following form in the case of cross-classified sampling

P — Z 25)’1 3.2)

ieskjesc
The estimators in (1.2) take the form, in the notation of (1.5)

= % ¥O=3"y, (33)

iesk jESC
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Note that the row estimator ¥ ¥ is simply the Horvitz-Thompson estimator of Y in case the
columns are completely enumerated, and vice versa for Ye.

3.1. Variance decomposition

Next we specialize Theorem 1.1 to the Horvitz-Thompson case.

Theorem 3.1. The variance of the Horvitz-Thompson estimator in (3.2) is given by (1.3)
and

N
> ALy (3.4)

1/=

Mz

VR =

i

I

—

VC = XM: YZ‘J ASY.¥ |
= i Vi Vi (3.5)

i

j=l] =1

N N M M
VRC = ZZZZ llA]?/yljyl (36)

7

i=li=1j=1j=1

Note: In a typical application, exact or approximate formulas for one-dimensional
variances are available and can be applied directly to the one-dimensional estimators in
(3.3), yielding VR and VC. Hence, the practical use of Theorem 3.1 is mainly for
computation of VRC.

Proof. The formulas for VR and VC follow from well-known results for the one-dimen-
sional Horvitz-Thompson estimator, see e.g., Sarndal et al. (1992, p. 43), and we turn
to VRC. Let I® and ch be indicators of the events that i € Sk and j € Sc, respectively.
Then by (1.1), (1.5), (3.2) and (3.3)

1 O R ZZ(IR — aIE - 7)Yy 3.7

i=1j=
Furthermore, since ¥, ¥R and € all have expectation Y in this case, we have
VRC =V — ¥R 96 = E[(¥ — PR - PC 4+ V)1 (3.8)

By inserting (3.7) into the right-hand side of (3.8) we find
N M N M
VRC=E|Y" 33" Y U =7 — m)Uf = w7 — )5y (3.9)

Now take term-wise expectations in (3.9), use the independence of § R and S€ and note that
E[(R — 78 IF — 7)) = A% EL(f — 7)) — 7)) = Af . (310

This yields (3.6) and the proof is complete.
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3.2.  Comparison with the direct approach

Here we compare our approach to direct use of standard theory. The usual one-dimen-
sional expression for the variance of a Horvitz-Thompson estimator (Sirndal et al.
1992, p. 43) extends immediately to the two-dimensional case as follows

) N N M M
V(Y) = Z Z Z Z A jy, .0 Vi Ve (3.11)

i=1i=1j=1j=1

where
A j,a. iy = P(G.]) € $;(i'.j") € S) — P((i.)) € S)-P((,j) ES)
= ﬂ'ff i — 7rf1r§7rf1rjcz (3.12)
Since it may not be obvious that the approach of Theorem 3.1 is simpler than that of (3.11),

we provide a simple example.

Example 3.1. Suppose both the row and column samples are unstratified Poisson samples.
For a description of Poisson sampling see, e.g., Sirndal et al. (1992, p. 85-87), from which
we immediately get (recalling equations 3.3 and 1.4)

N M
1 1
VR=§ :<ﬁ_ 1>y,~2. VC = § j(F— 1>y,2j (3.13)
i=1 \"i j=1\"J

In this simple case we have

my =afal i#i af =alxl j#j (3.14)
so that
AR 1 —ah =i AC -7 j=j 3.15)
! 0 i# i v 0 j#j

From (3.6) and (3.15) we directly get

VRC = ZZ(—— 1)( 1)y,, (3.16)

i=1j=1
Putting (1.3), (3.13) and (3.16) together, we get
. y 1
R S EDERS 9 CET) RS 9) o AR IE YT
i=1 i=1j=1 J
(3.17)
We now turn to the direct approach using (3.11) and observe that, by (3.12) and (3.14)
il (1—7r,7rj) i=i,j=j
7r,-(1—1r,-)7rj j/ l=l/,]¢],
(1 —a)akal i#ij=j
0 i j#j

A,y = (3.18)
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By inserting (3.18) into (3.11) we get

m):;;(—wg—ﬁ )y,,+zzz( Yo

i i

+ ZZZ( )y,,y,, (3.19)

i#F

After a good deal of algebra, (3.19) reduces to the expression in (3.17).

This example shows that already in the very simple case of Poisson sampling, our
approach reduces the amount of algebra involved. We directly get the expression (3.17)
which is obviously preferable to (3.19). With a more complex sampling procedure we
can expect substantial gains by using Theorem 1.1 or its special case Theorem 3.1 instead
of the direct approach. See Dalén and Ohlsson (1995) for such a case.

However, the most important advantage of our approach is in the case of Section 2,
where rows and columns are separately stratified, yielding a cross-classification of cells
which are not independent strata. With the direct approach we must use the usual general
formula, recalling (2.2)

V(?):V(EZ)Q,) ZZZZC( e Vet (3.20)
g h

When g # g, h # I, the covariance is zero due to independence. We get the following
structure

V() = ZZV(th)+ZZZC(th,th/)+ZZEC( oo Vo) (321)

h#W g+g

In the next step the covariances must be calculated ‘‘from scratch’™ with sample member-
ship indicators and inclusion probabilities. We do not pursue this approach further since
our point is that this is unnecessarily complicated.

In contrast, by Theorem 2.1, we find the overall VR, VC and VRC simply by adding the
corresponding within cell expressions so that no new calculations are involved compared
to the unstratified case.

Furthermore, the variance structure of Theorem 2.1

VA =S VR + > VCi+ Y > VRCy, (3.22)
g h g h

is well-suited both for reporting and for sample allocation.

In the CPI case of Dalén and Ohlsson (1995), Theorems 1.1, 2.1 and 3.1 are applied to
the CPI environment where we have stratified unequal probability sampling in both
dimensions, using systematic 7ps selection (Sarndal et al. 1992, p. 96) of products and
sequential Poisson sampling (Ohlsson 1995a and 1995b) of outlets. Numerical variance
estimates are reported as sums of ‘‘product variance,’” ‘‘outlet variance’’ and ‘‘outlet
and product interaction variance.”” In this case, the use of (3.22) for allocation is simplified
by the fact that the first two terms tend to dominate over the interaction term.
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