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Calibration makes the generalized regression (GREG) estimator under Poisson sampling
practical when there are a number of items of interest. The question becomes how to estimate
mean squared errors in an equally practical manner. When all the selection probabilities
are small, and the GREG is expressible in projection form, an appropriately defined
delete-a-group jackknife variance estimator can have desirable asymptotic properties making
it a useful measure in many applications.
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squared error.

1. Introduction

Poisson sampling is perhaps the simplest form of unequal probability selection. Its

application often leads to inefficient estimation, which is why it is not more widely used.

As noted by Särndal (1996), however, when combined with a regression-type estimator the

advantages of Poisson sampling can be realized. This is one reason why the U.S. National

Agricultural Statistics Service (NASS) has overhauled its major crop survey program and

adopted Poisson sampling. Another is the usefulness of Poisson sampling in coordinating

surveys. For that, see Kott and Bailey (2000).

This article reviews the theory supporting Poisson sampling coupled with a generalized

regression (GREG) estimator. It then shows when a delete-a-group jackknife variance

estimator may be used with this estimation strategy. Section 2 introduces the strategy, and

Section 3 discusses its properties. Section 4 discusses delete-a-group jackknife variance

estimation, while Section 5 investigates three modest empirical examples, the first based

on real data. Section 6 provides some concluding remarks. New proofs have been

relegated to the Appendix.

2. Background

Suppose we want to estimate a population (U) total, T ¼
P

U yk based on a sample (S) of

y-values. If the probability that population unit k is in the sample is pk . 0; then

the expansion estimator for T is t ¼
P

S yk=pk: Another useful way to render t is as

t ¼
P

U ykIk=pk; where Ik is a random variable equal to 1 when k [ S and 0 otherwise.

The simple expansion estimator is a randomization-unbiased estimator of T; that is,
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EpðtÞ ¼ T ; where the subscript p denotes the expectation with respect to the Ik (this is a

convention; the p derives from “probability”).

Under Poisson sampling (see for example, Särndal, Swensson, and Wretman 1992,

pp. 85–87), each unit k is sampled independently of every other unit in the population. The

randomization variance of t is

VarpðtÞ ¼
k[U

X
ð yk=pkÞ

2ðpk 2 p2
kÞ ¼

k[U

X
ðy2k=pkÞð12 pkÞ

which has a simple unbiased estimator:

varpðtÞ ¼
k[S

X
ð yk=pkÞ

2ð12 pkÞ

Using Poisson sampling with t, can lead to a larger-than-necessary randomization

variance because the sample size is random. This problem vanishes when Poisson

sampling is coupled with the GREG estimator:

tR ¼ t þ
k[U

X
xk 2

k[S

X
p21
k xk

0
@

1
A

k[S

X
ckp

21
k x0kxk

0
@

1
A

21

k[S

X
ckp

21
k x0kyk ð1Þ

where xk ¼ ðxk1; : : : ; xkQÞ is a row vector of values known for all S, ck is a constant,P
U xk is known, and

P
S ckp

21
k x 0kxk is invertible. Some authors force ck to be related to a

parameter of an assumed model in their definition of the GREG estimator (see for

example, Montanari and Ranalli 2002). That is not the case here.

The GREG estimator can be rewritten as tR ¼
P

S wkyk; where wk is the regression

weight of k:

wk ¼ p21
k þ

i[U

X
xi 2

i[S

X
p21
i xi

0
@

1
A

i[S

X
cip

21
i x 0kxk

0
@

1
A

21

ckp
21
k x0k ð2Þ

It is well-known (and easy to see) that the wk satisfy the calibration equation:P
S wkxk ¼

P
U xk (Deville and Särndal, 1992).

3. Properties of the Estimation Strategy

The GREG estimator in Equation (1) has well-known randomization-based and model-

based properties under mild conditions. We will review them briefly below.

3.1. Randomization-based Properties

The randomization-based properties of tR are asymptotic (we use the more accurate

modifier “randomization” in place of the often-used “design”). That is to say, they depend

on the expected sample size, say n*; being large. A sufficient condition for an estimation

strategy (an estimator coupled with a sampling design) to be randomization consistent is

that its relative mean squared error should approach 0 as n* grows arbitrarily large.
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In what follows, we assume N21ð
P

U ckx
0
kxkÞ is invertible, where N is the size of U. Let

B ¼ ð
P

U ckx
0
kxkÞ

21
P

U ckx
0
kyk; and ek ¼ yk 2 xkB; so that

P
U cix

0
iei ¼ 0: We assume

further that the population values are such that
P

S cip
21
i x 0iei and

P
S p

21
k xk 2

P
U xk are

OPðN=
p
n*Þ: We can express the error of tR as tR 2 T ¼

P
S ei=pi 2

P
U ei þ OpðN=n*Þ:

The derivation of this equality relies on the equality
P

U cix
0
iei ¼ 0 rather than, as often

asserted in the literature, the asymptotic identity of each wi with its corresponding 1=pi:

See Kott (2004).

3.2. Model-based Properties

Suppose the yk were random variables that satisfied the following model:

yk ¼ xkbþ 1k ð3Þ

where b is an unknown column vector, Eð1kjxk; IkÞ ¼ Eð1k1gjxk; xg; Ik; IgÞ ¼ 0 for k – g;

and Eð12kjIkÞ ¼ s 2
k : The s 2

k need not be known.

It is easy to see that as long as the regression weights satisfy the calibration equation,P
S wkxk ¼

P
U xk; tR will be model unbiased in the sense that E1ðtR 2 TÞ ¼ 0:Moreover,

its model variance is E1½ðtR 2 TÞ2� ¼ E1½ð
P

S wi1i 2
P

U 1iÞ
2� ¼

P
S w

2
i s

2
i 2

2
P

S wis
2
i þ

P
U s 2

i <
P

S w
2
i s

2
i 2

P
S wis

2
i : The final near equality is exact when

s 2
i has the form xih for a non-necessarily-specified vector h. See Kott (2004) for an

alternative justification.

3.3. Simultaneous Variance Estimation

Särndal (1996) proposed the following estimator for both the model variance and

randomization mean squared error of tR :

vS ¼
i[S

X
w2
i ð12 piÞr

2
i ð4Þ

where ri ¼ yi 2 xib; and b ¼ ð
P

S ckp
21
k x 0kxkÞ

21
P

S ckp
21
k x 0kyk: When the pi are

ignorably small so that almost all w2
i .. wi; vS is nearly equal to v0 ¼

P
SðwiriÞ

2:

4. Delete-a-Group Variance Estimation

Many surveys have multiple variables of interest. The problem with vS in Equation (4) is

that is requires rk to be calculated separately for each such variable, even when a common

regressor vector, xk; is employed. That is one reason why a delete-a-group jackknife

variance estimator can prove helpful in practice. The term can be found in Kott (2001),

while the variance estimator itself in some form has long been used, not always with

theoretical justification. A NASS research report, Kott (1998), discusses a wide variety of

uses for the delete-a-group jackknife.

In this section, we assume that all the pk are ignorably small for variance estimation

purposes. This means the model variance of tR; E1½ðtR 2 TÞ2� <
P

S w
2
i s

2
i 2

P
S wis

2
i ; is

approximately V0 ¼
P

S w
2
i s

2
i :

Let the Poisson sample be randomly divided into G mutally exclusive replicate groups,

denoted S1; S2; : : : ; SG (some groups can have one more member than others). The
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complement of each Sg is called the jackknife replicate group SðgÞ ¼ S2 Sg:Aset of replicate

weights is computed for each replicate group. For the gth set: wiðgÞ ¼ 0 when i [ Sg; and

wiðgÞ ¼½G=ðG2 1Þ�wi þ
k[U

X
xk 2

k[SðgÞ

X
½G=ðG2 1Þ�wkxk

0
@

1
A

k[SðgÞ

X
ckp

21
k x 0kxk

0
@

1
A

21

cip
21
i x 0i

ð5Þ

otherwise. The wiðgÞ have been computed to be reasonably close to the corresponding

½G=ðG2 1Þ�wi for i [ SðgÞ and to satisfy the calibration equation
P

S wkðgÞxk ¼
P

U xk for

all g.

The delete-a-group variance estimator for tR is:

vJ ¼ ðG2 1=GÞ
XG
g¼1 i[S

X
wiðgÞyi 2 tR

0
@

1
A

2

ð6Þ

which WESVAR (Westat, 1997) calls JK1. In the appendix, we show that vJ is an

asymptotically model unbiased estimator for V0 ¼
P

S w
2
i s

2
i and asymptotically

indistinguishable from v0 ¼
P

SðwiriÞ
2 when ci ¼ 1=ðxigÞ for some vector g. It can have a

slight upwardbias otherwise.The condition that ci ¼ 1=ðxigÞ for somevectorg assures tR can

be put into projection form: tR ¼ ð
P

U xkÞbc; where bc ¼ ð
P

S ckp
21
k x 0kxkÞ

21 �P
S ckp

21
k x 0kyk: Särndal, Swensson, and Wretman (1992, p. 231) make a similar point.

5. A Modest Empirical Example

Farm data from the 1997 Census of Agriculture in Puerto Rico were used to study the

delete-a-group jackknife’s applicability given a GREG estimator under a Poisson sample.

The cash from coffee production for farm k was used as yk in Equation (1), while xk was

the total land on farm k, a scalar value. Each farm’s selection probability was set at

pk ¼ 200
p
xk=

P
U

ffiffiffiffi
xi

p
; where U was the set of 19,951 records in the population. That

meant pk was proportional to
p
xk; and the average sample size was 200.

Two estimators were considered. One had ck ¼ 1=xk; and collapsed into the standard

ratio estimator: trat ¼ ð
P

U xkÞbrat;where brat ¼ ½
P

Sð yk=pkÞ=
P

Sðxk=pkÞ�:The other, the

optimal estimator (see Rao 1994), had ck ¼ ð12 pkÞ=pk; so that topt ¼
P

Sð yk=pkÞ þ

½
P

U xk 2
P

Sðxk=pkÞ�bopt; where bopt ¼
P

S ykð12 pkÞ=½
P

S xkð12 pkÞ�: The optimal

estimator gets its name from b* ¼
P

U ykð12 pkÞpk=½
P

U xkð12 pkÞpk� ¼

{Varp½
P

Sðxk=pkÞ�}
21Covp½

P
Sðxk=pkÞ;

P
Sð yk=pkÞ�; the probability limit of bopt: The

choice b ¼ b* minimizes the randomization variance among all estimators of the form:

t ¼
P

Sð yk=pkÞ þ ½
P

U xk 2
P

Sðxk=pkÞ�b: Montanari and Ranalli (2002) provide a

penetrating discussion of the relationships between the GREG and optimal estimators in a

more general context.

Returning to the empirical example at hand, the ratio estimator is already in projection

form. The optimal estimator, by contrast, cannot be put in projection form.
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The use of 15 replicate groups was investigated since that is what NASS uses in its

applications. The results of 10,000 simulations are summarized in Table 1. Both estimators

appear to be virtually unbiased and have small (empirical) relative mean squared errors.

The optimal estimator is slightly more efficient. This small difference in efficiency appears

to be real since, over the 10,000 simulations, the value of ½ðtR 2 TÞ=T�2 has a standard

deviation of roughly 0.02 for either estimator.

Most of the variance/mean-squared-error (MSE) estimators displayed appear to have

small absolute biases (less than 5%). The biggest exception is the delete-a-group jackknife

under the optimal estimator, which has a negative bias of 7.8%, in contrast to the very

slight positive bias in v0 (0.2%). This negative bias is what our theory predicts when the

model, yx ¼ bxk þ 1k; where Eð1kjxkÞ ¼ 0; fails. In contrast to that, the theory predicts

that vS should be (asymptotically) unbiased, and the remaining variance/MSE estimators

slightly biased upward since not all the pk are ignorably small.

Nominal two-sided 95% coverage intervals were computed for the two jackknives using

14 degrees of freedom since they were based on only 15 replicates. The other coverage

intervals were computed using the 60 degrees of freedom corresponding to the ad hoc use

of two-standard-error intervals. The delete-a-group jackknife covered a bit worse than v0
for both estimators. It covered slightly better for the ratio estimator than for the optimal

estimator. All coverages were between 90 and 95%, indicating a slight imperfection in the

asymptotic theory.

A second and third set of 1,600 simulations were conducted to try to uncover the origin

of the imperfection. In the second, each yk was generated as a multiple of farm land, xk plusp
xk times an independent and identically distributed normal error term. All the

variance/MSE measures had an absolute relative bias of less than 2%, with vS having an

absolute relative bias of less than 0.5% for both estimators. The nominal 95% coverages

were all between 94.8 and 95.4%, suggesting the nonnormality in the Census of

Agriculture data was a key source of the modest undercoverage in the original set of

simulations. Note that in this set of simulations, the model fit the data exactly. As a

consequence, the delete-a-group jackknife produced a good measure of the relative

squared error for the optimal estimator, as our theory predicted.

In the third set of simulations, coffee sales were first regressed on an intercept and farm

land using all the Census of Agriculture data. The two coefficients, call them a and b;were

Table 1. Variance summaries for the Puerto Rico data (10,500 simulations) T normalized to equal 1

The ratio estimator The optimal estimator

Averages over the simulations:
RE ¼ t2 T .0043 .0026
MSE ¼ ðt2 TÞ2 .0355 .0334
ðv0 2MSEÞ=MSE 2 .0115 .0023
ðvS 2MSEÞ=MSE 2 .0132 2 .0181
ðvJ 2MSEÞ=MSE 2 .0340 2 .0781

Nominal 95% coverage rates:
v0 ð60 df Þ 93.2 92.2
vS ð60 df Þ 92.9 92.0
vJ ð14 df Þ 92.7 91.2
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both significantly positive at the .001 level, but the R2 was less than 0.03. The fitted sales

values, aþ bxk; were then used as the yk in computing the ratio and optimal estimators

from 1,600 Poisson samples. The errors in the ratio and optimal estimators for T resulted

fully from the failure of the intercept-free linear model implicit in their construction.

Although the intercept is a design-balanced variable (Montanari and Ranalli 2002) for the

optimal estimator under stratified simple random sampling, it is not one under the unequal-

probability Poisson design used in the simulations.

The optimal estimator lived up to its name and was more efficient than the ratio

estimator. The empirical relative mean squared error of the optimal estimator was .0046 as

opposed to .0073 for the ratio.

The delete-a-group jackknife had a negative bias of 27.9% for the optimal estimator, but

only 0.1% for the ratio, which conformed to our theory. The variance/MSE estimator v0
had a slight positive bias of 2.6 and 1.8% for the optimal and ratio estimators, respectively.

A surprise came in the nominal 95% coverage intervals, where using v0 lead to an

average coverage of 89.9% for the optimal estimator, but 95.7% for the ratio. The delete-a-

group jackknife covered the ratio estimator well, at 94.9%. That is gratifying, but the

relatively poor coverage of v0 for the optimal estimator is a bit mystifying (the delete-a-

group jackknife covered even worse, at 84.1%). This poor coverage may result from

topt 2 T < a½
P

S 1=pk 2 N� being far from normally distributed.

6. Concluding Remarks

When both n and N are large, but N is so large that all the pk are ignorably small for

variance estimation purposes, the delete-a-group jackknife variance estimator (vJ in

Equation (6)) can be used to estimate both the model variance and randomization mean

squared error of the GREG estimator (tR in Equation (1)). The asymptotic unbiasedness of

the latter requires an additional assumption: ci ¼ 1=ðxigÞ for some vector g, which means

the estimator can be put into projection form. This usually rules out the asymptotically

efficient optimal estimator. If ci ¼ 1=ðxigÞ and the pk are not all ignorably small, then the

delete-a-group jackknife can be asymptotically biased upward.

Had the sample been drawn with probability-proportional-to-pk with replacement, the

pk; redefined to be the expected number of times k is selected for the sample, need not be

small. Moreover, a quick look at Equation (A.4) in the appendix (translated to allow the

same unit to be in S more than once) reveals that the delete-a-group jackknife is an

asymptotically unbiased estimator for the randomization mean squared error of tR whether

or not the GREG is expressible in projection form.

Finally, the construction of the jackknife replicate weights for i [ SðgÞ in Equation (5)

was nonstandard. The interested reader can verify that using the formulation:

WiðgÞ ¼½G=ðG2 1Þ�p21
i þ

 
k[U

X
xk 2

k[SðgÞ

X
½G=ðG2 1Þ�p21

k xk

!

£

 
k[SðgÞ

X
ck½G=ðG2 1Þ�p21

k x 0kxk

!21

ci½G=ðG2 1Þ�p21
i x 0i

ð5 0Þ

does not change the asymptotic results.
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Appendix: The Asymptotic Properties of vJ

The delete-a-group jackknife in Equation (6) can be re-expressed as

vJ ¼ ðG2 1=GÞ�
XG
g¼1 i[S

X
wiðgÞui 2

i[S

X
wiui

0
@

1
A

2

where ui may be either 1i or ei depending on whether we are interested in model-based or

randomization-based properties.

We assume for this appendix that all the pi are Oðn*=NÞ; so each wi is OpðN=n*Þ:

Without loss of generality, we assume each n=G equals an integer, d. To do otherwise

complicates the derivation of the subsequent formulae without adding insight. We also

assume that ðn*=N 2ÞV0 and ðn*=N 2ÞEPðvSÞ each converge to a positive constant and thatP
U ckx

0
kxk=N converges to a positive definite matrix as n * grows arbitrarily large.

The sets Sg and SðgÞ can be viewed as simple random subsamples of S. With this in mind,

we will assume that
P

Sg wixi 2
P

S wixi=G is OPð½N=n*�
p
dÞ: Since dG ¼ n; either d or

G (or both) must grow arbitrarily large, in probability, with n*: Remembering thatP
S wixi ¼

P
U xi; we have:

i[S

X
wiðgÞui2

i[S

X
wiui¼½G=ðG21Þ� 2

i[Sg

X
wiui2

i[S

X
wiui=G

0
@

1
A

8<
:

þ
i[Sg

X
wixi2

i[S

X
wixi=G

0
@

1
A

i[SðgÞ

X
ckp

21
k x 0kxk

0
@

1
A

21

i[SðgÞ

X
ckp

21
k x 0kui

9=
;

¼2½G=ðG21Þ�
i[Sg

X
wiui2

i[S

X
wiui=G

8<
:

9=
;

þOð1£qÞpð
p
d=½n*2d�Þ

i[SðgÞ

X
cip

21
i x 0iui ðA:1Þ

Consequently,

E1

i[S

X
wiðgÞ1i2

i[S

X
wi1i

0
@

1
A

22
4

3
5¼

i[Sg

X
w2
i s

2
i ð12½2=G�Þ

þ
i[S

X
w2
i s

2
i =G

2þOpð½N=n
*�2d=½n*2d�Þ

¼
X

w2
i s

2
i ð12½2=G�Þþ

X
w2
i s

2
i =G

2

þOpð½N=n
*�2=½G21�Þ
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From this, and Equation (6), we can see that the delete-a-group is an asymptotically

model unbiased estimator for V0 ¼
P

S w
2
i s

2
i :

E1ðvJÞ ¼
XG
g¼1 i[Sg

X
w2
i s

2
i þ Opð½N=n*�2Þ

Establishing the asymptotic randomization-based properties of vJ is a bit more difficult.

From Equation (A.1):

i[S

X
wiðgÞei 2

i[S

X
wiei ¼2 ½G=ðG2 1Þ�

i[Sg

X
wiei 2

i[S

X
wiei=G

8<
:

9=
;

þ Oð1£qÞpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=½n* 2 d�Þ

p X
SðgÞ

cip
21
i x 0iei

¼2 ½G=ðG2 1Þ�
i[Sg

X
wiei 2

i[S

X
wiei=G

8<
:

9=
;

þ Opð½N=n*�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=½n* 2 d�Þ

p
¼2 ½G=ðG2 1Þ�

X
wiei 2

X
wiei=G

n o

þ Opð½N=n*�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½G2 1�Þ

p
ðA:2Þ

We can combine Equations (6) and (A.2). Thus

vJ ¼ ½G=ðG2 1Þ�
XG
g¼1 i[Sg

X
wiei 2

i[S

X
wiei=G

8<
:

9=
;

2

þOpð½N=n*�2Þ ðA:3Þ

We now turn our attention to the randomization expectation of vJ under the random

subsampling of sample S in creating Sg: Note that E2{ð
P

Sg wiei=d 2
P

S wiei=nÞ
2} ¼

{ð12 ½d=n�Þ=d}{
P

SðwieiÞ
2 2 ð

P
S wieiÞ

2=n}=ðn2 1Þ; where the subscript 2 refers to the

subsampling. As a result,

E2ðv
2
JÞ ¼

i[S

X
ðwieiÞ

2 2
i[S

X
wiei

0
@

1
A

2

=n

8<
:

9=
;þ Opð½N=n*�2Þ ðA:4Þ

We need an additional assumption; namely, ci ¼ 1=ðxigÞ for some vector g. Under this

assumption,
P

U ei ¼
P

U y0x0iciei ¼ y0
P

U cix
0
iei ¼ 0: From which we can conclude

E2ðvJÞ ¼
P

SðwieiÞ
2 þ Opð½N=n*�2Þ; which is asymptotically indistinguishable from v0 ¼P

SðwiriÞ
2:
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From the derivation of Equation (A.4), we see that when ci – 1=ðxigÞ; so thatP
S wiei – OpðN=

p
n*Þ; vJ can have an downward bias as an estimator of the

randomization mean squared error of tR:
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