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Design and Analysis of Experiments
Embedded in Sample Surveys

Jan van den Brakel and Robbert H. Renssen1

1. Introduction

Traditionally, the design and analysis of experiments and sampling theory form two separate

domains of applied statistics. These two ®elds, however, come together in situations where

experiments are performed in order to investigate possible improvements of a sample

survey process. Statistical methods used for the design and analysis of experiments are

highly appropriate for obtaining quantitative information on the effect of alternative

survey methodologies on response behavior and/or estimates of population parameters

of a survey. For example, at Statistics Netherlands, the effects of alternative questionnaire

designs, different approach strategies, or advance letters have been tested by means of

large-scale ®eld experiments embedded in ongoing surveys. Methods from experimental

designs can also support quality control of the survey process. For instance, the bias

and various variance components in total measurement error models (Forsman 1989
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and Biemer et al. 1991) can be estimated by using principles from the ®eld of experimental

designs.

Fienberg and Tanur (1987, 1988, 1989, 1996) reviewed the development of statistical

methods in random sampling and randomized experimentation by Fisher and Neyman in

the 1920s and 1930s. They discussed the parallels between the concepts in randomized

experiments and random sample surveys and emphasized that the statistical methodol-

ogy used in both ®elds is essentially the same. Based on these parallels, they emphasized

how random samples can be embedded in randomized experiments or vice versa in order

to increase the internal as well as the external validity of the conclusions drawn from

experiments.

In this article we describe how statistical methods from the theory of experimental

designs can support research aimed at improving the survey process. In Section 2, we

brie¯y review the principles of experimental designs and sampling theory. We distinguish

between small-scale experiments conducted in laboratory circumstances and large-scale

®eld experiments embedded in ongoing surveys. With respect to the large-scale ®eld

experiments we are mainly interested in effects on ®nite population parameters. We dis-

cuss how parallels between experimental designs and sampling theory can be used in the

design of ef®cient embedded experiments (Section 3) and illustrate this with a series of

practical examples of embedded experiments conducted at Statistics Netherlands (Section

4). For the analysis of large-scale ®eld experiments embedded in ongoing surveys, Fien-

berg and Tanur (1987, 1989) emphasize model-based estimation. As an alternative, we put

more emphasis on design-based methods in this article. In embedded experiments, if the

focus of interest is the effects of treatments on estimates of ®nite population parameters,

then we argue that the complexity of the sampling design should be taken into account by

relying on sampling theory (Section 5). Such a design-based method is proposed and

worked out for the analysis of the two-sample problem embedded in complex sampling

design (Section 6).

2. Concepts of Experimental Designs and Sampling Theory

2.1. Experimental designs

The objective of experimental designs is to obtain relevant quantitative information about

the effects of different treatments and their mutual interactions. The principles of experi-

mental designs, such as replication, randomization, local control for sources of variation

by skillful grouping of the experimental units (e.g., randomized block designs and row

and column designs), the use of factorial designs and covariance analysis, were developed

mainly on the basis of Fisher's work (1935).

A minimum number of replications of the treatments is required to discover statistically

signi®cant treatment effects if they exist. Randomization is used to prevent experimental

errors systematically distorting the measurement of the treatment effects, by ensuring

that each treatment has an equal probability of being favored or handicapped by an extra-

neous source of variation. Local control by means of randomized block designs, row and

column designs, or covariance analysis is applied to reduce sources of extraneous

variation in order to obtain more precise estimates of the treatment effects. Simultaneous
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testing ofdifferent treatmentsbymeans of factorial designs is applied to increase the ef®ciency

of experimentation and to test possible interactions between the different treatments.

Statistical methods from the theory of design and analysis of experiments are basically

model dependent. Often, the observations in an experiment, taken at different levels of dif-

ferent factors, are assumed to be the outcome of a stochastic variable, which is modeled

according to a linear regression model with the different levels (and possibly also covari-

ables) as explanatory variables. The disturbance terms are assumed to be identically and

independently distributed (IID) with expectation zero. The factors may concern treatment

variables as well as local control variables for sources of extraneous variation (e.g., block

variables, row and column variables or covariables). The disturbance terms concern the

extraneous variation insofar as it is not explained by local control and/or by the covariables.

An important question in the model assumption concerns whether the levels at which a factor

is measured are ®xed or whether they have to be considered as a random sample from a

large population. In the former case the effects are called ®xed, whereas in the latter

the effects are random. A set of effects is often considered ®xed when the statistical infer-

ence only concerns the levels included in the experiment, and as random when the infer-

ence extends to a population from which the levels were supposedly drawn.

The main purpose of experimental designs is to make statistical inferences about

the treatment effects. Statistical models play a central role in testing hypotheses about

the signi®cance of model parameters which are assumed to re¯ect the treatment effects

and their interactions, and in exploring relationships between variables. Based on the

regression model and its assumptions, ef®cient test statistics are derived in order to test

hypotheses concerning the corresponding regression parameters. When the regression

model is correctly speci®ed, the treatment effects are indeed re¯ected in the corresponding

regression parameters and the stated hypotheses concerning the regression parameters

also concern the treatment effects. Note that the principles of experimentation (such as

replication, randomization, local control and factorial experimentation) are applied to

ensure that observed treatment effects actually can be attributed to the parameters of

the statistical model. If the model is misspeci®ed, the validity of the conclusions with

respect to the treatment effects depends on the robustness of the test statistics against

the type of misspeci®cation involved. In general, conclusions based on ef®cient test

statistics derived under a speci®c model cannot be generalized to situations outside that

model. Kempthorne (1952) and Hinkelmann and Kempthorne (1994) suggested a

design-based approach for the analysis of experiments by elaborating on randomization

theory in a way similar to the approach in survey analysis.

To summarize, statistical methods of experimental designs are mainly intended to

guarantee a suf®cient internal validity of the experiment, and to estimate differences in

treatment effects as precisely as possible. The internal validity of an experiment is de®ned

as the extent to which the observed effects in an experiment can be attributed to the

differences in the treatments. It thus relates to the cause-effect relationship between the

treatments and the observed effects within the experiment itself.

2.2. Sampling theory

The purpose of sample surveys is to gather information about a certain ®nite population by
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estimating ®nite population parameters such as means, totals, and fractions. The concept

of random sampling has been developed, mainly on the basis of the work of Neyman

(1934), as a method to obtain valid estimators for ®nite population parameters based on

representative samples rather than on complete censuses. Neyman (1934) introduced ran-

dom sampling with unequal selection probabilities by treating optimal allocation in stra-

ti®ed sampling. The concept of random sampling with unequal selection probabilities has

been generalized by Hansen and Hurwitz (1943) for random sampling with replacement

and by Horvitz and Thompson (1952) for random sampling without replacement as a

method to improve the precision of population parameter estimates.

In sampling theory, observations obtained from the sampling units are regarded as ®xed.

The randomness is introduced because a probability sample is observed instead of the entire

target population. In random sampling, the concept of random selection is applied in order to

draw statistical inferences about ®nite population parameters and generalize results from the

observed sample to the ®nite target population from which the sample is drawn.

Statistical methods from sampling theory can be considered as distribution free, that is,

no assumptions are made regarding the frequency distribution of the ®nite population. A

proper combination of sampling design and estimation procedure (i.e., the sampling

strategy) should give unbiased or nearly unbiased estimates with a minimum variance

for the ®nite population parameters under consideration. An important tool to achieve

this is the use of auxiliary information. Such information can be utilized in the sampling

design and/or the estimation procedure. In the design stage, techniques like strati®cation

and lattice sampling are applied to increase the precision of the estimators by excluding the

variation between homogeneous groups in the ®nite population from the sampling error.

These techniques are similar to randomized block designs and row and column designs

from experimental designs. In the estimation procedure, auxiliary information is utilized

by means of the regression estimator (with poststrati®cation as a special case) to obtain

more precise estimators. This is equivalent to the technique of covariance analysis from

experimental designs.

Although auxiliary information was originally used in the design and estimation procedure

to improve the ef®ciency of sampling, nowadays it is an important tool to decrease the bias due

to selective nonresponse. Estimators using auxiliary information are generally more robust

against selective nonresponse than estimators that do not use auxiliary information (see,

e.g., SaÈrndal and Swenson 1987 and Bethlehem 1988).

Statistical models have traditionally played a minor role in the analysis of sample sur-

veys. In the model-assisted approach (see SaÈrndal et al. 1992) it is assumed that the value

of each element of the ®nite population with respect to a certain target variable is a reali-

zation of a stochastic variable. This stochastic variable is modeled, e.g., according to a lin-

ear regression model, with the values of the auxiliary variables as covariates. Based on the

assumed relationship between the target variable on the one hand and the auxiliary vari-

able on the other, a general regression estimator can be derived of which most well-known

estimators are special cases. After this estimator is derived, it is judged by its design-based

properties, such as design expectation and design variance. The derived formulas hold

irrespective of the validity of the model. If the regression model used to derive the estima-

tor does not hold for the ®nite population, this will result only in higher design variances;

not in invalid estimators.
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In conclusion, statistical methods from sampling theory are mainly intended to guarantee

a suf®cient external validity of a survey, i.e., the extent to which the results of the sample can

be generalized to the target population.

2.3. Comparison between design and analysis of experiments and sampling theory

Fienberg and Tanur (1987, 1988, 1989) and Van den Brakel and Renssen (1995) discussed

the parallels between the statistical methods from experimental designs and sampling the-

ory. Since we further elaborate on these parallels in this article, they are summarized in

Table 1.

Besides these parallels, there are also some typical differences between experimental

designs and sampling theory which are discussed in the previous sections and are summar-

ized in Table 2. See also Fienberg and Tanur (1987, 1988, 1989) and Van den Brakel and

Renssen (1995).

3. Design of Embedded Field Experiments

The conducting of small-scale experiments in laboratory settings is an appropriate and reg-

ularly used tool to develop questionnaire designs and interview procedures, or to investi-

gate nonsampling errors in survey processes more systematically (Fienberg and Tanur

1989). The advantage of laboratory experiments is the relative ease with which the

effects of a large number of factors can be tested with a high degree of internal validity.

The external validity of the results of such experiments, however, is generally not assured.

To test the generalization of signi®cant results obtained in such experiments to ®nite
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Table 1. Parallels between design and analysis of experiments and sampling theory

Experimental Designs Sampling Theory

randomization of experimental units random sampling of sampling units from a
to treatments ®nite population

replication of the treatments sample size

randomized block designs strati®ed sampling designs

row and column designs lattice sampling or deep strati®cation

split-plot designs two-stage sampling designs

covariance analysis the general regression estimator

Table 2. Differences between design and analysis of experiments and sampling theory

Experimental Designs Sampling Theory

stochasticity introduced because stochasticity introduced because a random
observations are assumed to be the sample is drawn from a ®nite population
outcome of a random variable

traditionally model dependent traditionally design-based

statistical methods mainly intended statistical methods mainly intended to
to guarantee a suf®cient internal validity guarantee a suf®cient external validity

inference about a hypothetical in®nite inference about a ®nite population
superpopulation



survey populations, large-scale ®eld experiments embedded in sample surveys are very

appropriate. Such experiments embedded in ongoing surveys are particularly appropriate

if interest is focused on the quanti®cation of the effect of alternative survey methodologies

on estimates of ®nite population parameters. The statistical methods from the theory of

experimental designs and sampling theory can be combined in a useful and natural way

in the design and analysis of the embedded experiments (see Fienberg and Tanur 1987,

1988). To ensure internal validity, parallels between the concepts of randomized experi-

ments and random sampling should be exploited in the design of embedded experiments

to improve the accuracy of estimated treatment effects and to draw correct conclusions

about the observed effects. Thus, the sampling design of the survey forms a prior framework

for the design of an embedded ®eld experiment. To ensure external validity, statistical

methods from sampling theory should support the analysis of these experiments. Because

experimental units are selected by means of a probability sample from a ®nite population,

it becomes possible to draw conclusions concerning population parameters. In Sections 5

and 6 we will address the technical aspects of such embedded experiments from the

design-based perspective.

3.1. Design of embedded experiments by simple random sampling designs

Suppose that ®eld experiments embedded in ongoing surveys are designed as split sample

experiments in order to test the effects of k treatments. In a split sample experiment the

sample is randomly divided into k similarly designed interpenetrating subsamples, not

necessarily of equal size. Each subsample can be considered as a probability sample

from the population and is assigned to one of the k treatments. Now, if the original sample

is simple random, then the experiment is in fact a completely randomized design (CRD)

(Cochran and Cox 1957, Chapter 4). Generally, this is not the most ef®cient design

available, because no advantage is taken of the possibilities of application of local control

for sources of extraneous variation.

An important source of extraneous variation is for example the interviewer effect. In

conducting an experiment, it should be avoided that treatments are systematically favored

or handicapped because only experienced or inexperienced interviewers are assigned to

one particular treatment. In a CRD, this is achieved by assigning the interviewers ran-

domly over the different treatments. It is likely that respondents interviewed by the

same interviewer produce more homogeneous answers than respondents interviewed by

different interviewers and therefore it is ef®cient to apply local control for interviewers

by means of randomized block designs (RBD) (Cochran and Cox 1957, Chapter 4) with

interviewers as block variables (Fienberg and Tanur 1988). When the statistical inference

concerning the interviewer effects has to be extended to a larger population from which the

interviewers are supposedly drawn, interviewers can be modeled as random components.

This leads to an RBD with blocks as random effects, which is equivalent to a split-plot

design.

3.2. Design of embedded experiments within more complex sampling designs

Sampling designs are usually more complex than simple random sampling. For instance

strati®ed sampling and two-stage or cluster sampling are frequently applied. In a strati®ed
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sampling design there are two ways to divide the sample into k subsamples. Firstly, the

whole sample is randomly divided into k subsamples, irrespective of the applied strati®ca-

tion. This may cause some differences in the frequency distribution of the experimental

units over the strata among the k subsamples. Secondly, the sample is randomly divided

into k subsamples in each stratum. Here the frequency distribution of the experimental

units over the strata can be held equal for the k subsamples insofar as this is not disturbed

by nonresponse. Disregarding the strati®cation in the applied sampling design, the ®rst

option leads to a CRD. Sampling units from the same stratum are generally more homo-

geneous than sampling units from different strata. Consequently, the second options

leads naturally to an RBD with strata as block variables (Fienberg and Tanur 1988).

Also crossings between two or more control variables can be used as block variables

(e.g., interviewers and strata). In the ®rst option, local control for the strati®cation can

be applied by means of covariance analysis.

In two-stage sampling designs, three different ways to divide the sample into k subsamples

can be distinguished. Firstly, ignoring the primary sampling units, the secondary sampling

units of the sample are divided into k subsamples. Secondly, the secondary sampling units

within each primary sampling unit are divided into k subsamples. Thirdly, the primary

sampling units are divided into k subsamples, and thus all secondary sampling units within

a primary sampling unit are assigned to the treatment concerned. Disregarding the struc-

ture of the sampling design, the ®rst option leads to a CRD where the secondary sampling

units are the experimental units. In the second approach the k treatments are randomly

assigned to the secondary sampling units within each primary sampling unit or cluster.

Consequently, this type of randomization naturally leads to a split-plot design. Primary

sampling units in the sampling design correspond to the whole plots of the split-plot design

and the secondary sampling units correspond to the split plots. Fienberg and Tanur (1988)

argue that this parallel can be used to design experiments embedded in two-stage samples

as split-plot designs in order to eliminate the variance between the whole plots (i.e., the

primary sampling units) from the analysis of the treatment effects. This approach is appro-

priate when sampling units from the same primary sampling units are more homogeneous

than sampling units from different primary sampling units. If in the case of the ®rst type of

randomization suf®cient secondary sampling units are assigned to each of the k treatments

within each primary sampling unit (large primary sampling units), then it is still possible to

apply local control for the primary sampling units by means of covariance analysis. The

third approach leads to a CRD with the primary sampling units as the experimental units.

This approach is appropriate if the variation within the primary sampling units is large and

the variation between the primary sampling units is small and/or if the primary sampling

units are small compared to the number of treatments.

3.3. Design of (double) blind experiments

Field experiments have the advantage that they are conducted in the natural setting of the

respondents who do not necessarily know that they are participating in an experiment. If

the experimental units or those who conduct the experiment (for instance the interviewers)

know that they are participating in an experiment, then the behavior of the experimental

units may be altered, perhaps even unconsciously. This type of biased results can be
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avoided by designing blind or double blind experiments. For example, in experiments

where the effects of different questions or different sequences of questions in a question-

naire are compared, skilful use can be made of the possibilities of computer assisted

interviewing. The alternative questions, or different orders of questions, can be implemented

in the supporting software package. If the routing of the questionnaire already depends on

the response of the respondent, interviewer and respondent do not have to know that they

are participating in an experiment. In many situations, however, it will be dif®cult or

even impossible to design (double) blind experiments due to the nature of the treatments.

The disadvantages of blocking of interviewers in such situations is that interviewers are

aware that they are participating in an experiment. Consequently there is a danger that

the interviewers will introduce a bias due to selective behavior. In such situations, the

experimenter is faced with the choice between a double blind experiment and an RBD

with interviewers as block variables but consequently not double blind. This choice

partially depends on the number and the type of treatments and the experience of the inter-

viewers. If the introduction of a substantial bias due to a systematic interviewer effect can

be expected because interviewers know that they are participating in an experiment, then a

double blind experiment where interviewers are randomly allotted over the treatments is

preferable. A less precise comparison is less harmful than a systematic in¯uence on one of

the treatments.

Conducting an embedded experiment not double blind involves the danger that the reg-

ular survey which besides publication purposes also serves as the control group, will

acquire priority above the experimental group and consequently distort the conclusions

of the experiment. This is illustrated by an experiment conducted by the U.S. Bureau of

Labor Statistics and the U.S. Bureau of the Census by the redesign of the U.S. Current

Population Survey (CPS) (O'Muircheartaigh 1997). In this experiment the new CPS

and the old CPS were run in parallel for some period. First, the new CPS was run in

parallel with the old CPS as the regular survey, indicating that the new CPS would lead

to an increase of the estimated level of unemployment. After the changeover the old

CPS was continued in parallel with the new CPS as the regular survey, as a further check

on the observed effect. Unfortunately, in this case the old CPS showed a higher estimate of

unemployment. O'Muircheartaigh attributes this to the extra effort going into the regular

survey on both occasions and to the fact that the interviewers were not blinded. Neverthe-

less it is a good methodological practice to run the two versions in parallel both before and

after the changeover.

4. Embedded Experiments Conducted at Statistics Netherlands

To illustrate the problems encountered by the design of embedded ®eld experiments, a

series of embedded ®eld experiments conducted at Statistics Netherlands are described

and discussed in the following sections. In these experiments, the sample of an ongoing

survey has been randomly divided into one relatively large subsample and one or more

smaller subsamples. The large subsample was in fact the regular survey and, besides

publication purposes, served as the standard methodology (treatment). The other sub-

samples were assigned to the alternative treatments so the experiment was conducted in

parallel with the regular survey.
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4.1. Labour Force Survey

Several ®eld experiments have been conducted to improve the data quality of the Dutch

Labour Force Survey (LFS). The LFS is based on a strati®ed two-stage sampling design

with households as the ultimate sampling units. The sample is self-weighted. At the ®rst

stage a strati®ed sample of municipalities is drawn, where strata are formed by geographic

areas. At the second stage a sample of addresses is drawn, from each selected municipality.

All households at a selected address (with a maximum of three) are included in the sample.

The data are collected from personal interviews with hand-held computers (CAPI).

Most of the information of the LFS is gathered by means of retrospective questions, the

answers to which are often biased by memory effects. An embedded experiment has been

conducted to investigate whether or not the quality of these retrospective data could be

improved in terms of consistency and completeness. In the experimental group, a personal

calendar indicating important events like festivals, holidays, birthdays, etc. was used

during the completion of the retrospective questionnaires. This is intended to give the

respondent a guideline for answering the questions, which should minimize memory

effects.

Each interviewer worked in a particular interview district. In the experiment, inter-

viewers were randomly allocated to a control group and an experimental group. The inter-

viewers in the experimental group received special instruction in the use of the calendar to

assist the completion of the questionnaires. Respondents in a particular interview district

were assigned to the group of the corresponding interviewer. So they were assigned to the

experimental group or control group, depending on the interviewer district they live in.

A signi®cant decrease of memory errors was observed in the experimental group. However,

due to the experimental design, it is unclear if this decrease was caused by the experimental

treatment or by an interviewer effect. The extra training of the interviewers in the experi-

mental group could have favored this group systematically, due to extra motivation or

attentiveness, and could consequently have distorted the analysis of this experiment. These

problems could have been avoided by randomizing households within interview districts

over the two different treatments, leading to an RBD with interviewers as block variables

or a split-plot design where interviewers correspond to the main plots and households to

the split plots. Moreover, if respondents from the same household were more homo-

geneous with respect to their target variables, then the precision of such an experiment

could have been improved by randomizing respondents within each household over the

two treatments. This would have led to a split-plot design with interviewers as (®xed)

block variables and whereby households correspond to the main plots and respondents

to the split plots or a split-plot design with three randomization levels.

4.2. National Travel Survey

The sample design of the Dutch National Travel Survey (NTS) is similar to the sampling

design of the LFS (a strati®ed two-stage sample design with households as the ultimate

sampling units). Only the geographical zoning of the applied strati®cation between the

two surveys is different.

The data are collected in a telephone interview as well as a journey diary sent by mail. A

few days after the sending of an advance letter, one of the members of the household is
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contacted by telephone and asked to provide some information about the household situa-

tion. Next, diaries are mailed to all household members. Each individual is asked to keep a

record of all his/her journeys for one day.

The journey diary has been adjusted several times, for example in order to gather more

detailed information concerning travel behavior or to measure carpool behavior. Before

new questions are added or other changes in the journey diary are implemented as a

standard, they are tested by means of embedded experiments if such changes result in

signi®cant differences in the response rates and the estimates of the population parameters

of the NTS. This enables us to explain and quantify trend changes in the time series of the

population parameter estimates. In another embedded experiment possible effects of the

implementation of an informed consent paragraph in the advance letter of the NTS on

response rates and estimates of population parameters have been tested (Van den Brakel,

Luppes, and Moritz 1995).

In each of these experiments households were randomly divided into a (large) control

group and a (small) experimental group. These experiments were carried out as double

blind experiments. This was easily achieved, because the experimental factors concern

adjustments in the journey diary (sent by mail) or in the advance letter. In the analysis

of the response rates, strata were incorporated as block variables and were found highly

signi®cant (Van den Brakel, Luppes, and Moritz 1995). In the carpool experiment, a

few respondents with extremely long distance travels were assigned to the experimental

group. Because the experimental group was relatively small, these outliers had quite a

large effect on the estimates of the population parameters and consequently resulted in

a highly signi®cant treatment effects, if the analysis is conducted with the t-test. In rando-

mized experiments, the concept of randomization ensures that each treatment has an equal

probability of being favored or handicapped by an extraneous source of variation, and con-

sequently the observed effects can be assigned to the experimental treatments; however,

there is always a small possibility that the results of an experiment are distorted due to

an unfavorable outcome of the randomization of the experimental units over the treatments

with respect to a covariate. If an experimenter believes that he/she is in this situation, the

best option might be to conduct another experiment, but usually this is not feasible due to

time and money constraints. As an alternative the two-sample test of Wilcoxon and the

two-sample Kolmogorov-Smirnov test were applied to analyze these experiments because

these tests are robust against outliers and violations of the normality assumption. These

tests could not ®nd a signi®cant difference between the estimates of the population para-

meters of the experimental group and the control group.

A third experiment was used to test whether two alternative calling schedules could

improve the response rates and affect estimates of population parameters of the NTS. In

the alternative calling schedules, the same number of calling attempts were more equally

spread over the weekdays and the times of day. Households were randomly allotted to one

control group and two experimental groups within interviewers. Consequently an RBD

with three treatments and with interviewers as block variables was obtained. Interviewer

effects turned out to be highly signi®cant with respect to the response rates. The imple-

mentation of the alternative calling schedules in the supporting computer system was quite

complicated. To preclude distortion of the experiment due to initial problems with

the computer system and the behavior of the interviewers in the new situation of the
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alternative treatments, one week of pretesting preceded the actual experiment. Many

unforseeable practical problems which arose during this pretesting could be solved and

consequently saved the experiment from systematic distortion of the experimental groups.

4.3. Justice and Security Survey

From 1980 until 1992, the Victim Survey (VS) was conducted in order to measure the

frequency of occurrence of particular types of crime. The survey was kept unchanged

as long as possible in order to construct crime trends. In 1993 the VS was transformed

into the Justice and Security Survey (JSS). In this new survey, several necessary and

unavoidable changes were simultaneously implemented (Huys and Rooduijn 1994).

The VS was originally based on a strati®ed three-stage sampling design with persons

as the ultimate sampling units. In the ®rst two stages, households were drawn in a manner

similar to the sampling design of the LFS. In the third stage one person was randomly

selected from the household. In the VS people were interviewed about events in the

preceding calendar year. Interviewing was carried out in January and February by means

of CAPI. In the JSS this survey approach was fundamentally changed. In the third stage of

the sample design of the JSS two persons (if possible) are now randomly selected. The JSS

is a continuing survey conducted every month. The ®gures to be published refer to the

twelve months preceding the interview month. The JSS covers more items than the VS,

and new topics. Finally, the wording of the questions has been modi®ed.

To maintain the possibility of constructing crime trends, the effects of the differences

between the JSS and the VS on parameter estimates were quanti®ed by means of an experi-

ment. During one year (1992), both surveys were conducted concurrently and treated as

regular surveys. In this experiment two separate samples were drawn for the JSS and

the VS, both with a sample size equal to the size of the regular VS sample in the past. Inter-

viewers were randomly allotted over the two treatments in order to conduct the experiment

double blind. Many estimates of the crime ®gures based on the JSS turned out to be

signi®cantly higher than in the VS. In this experiment, only the total effect of all the

changes introduced simultaneously could be quanti®ed. Simple indexations were derived

in order to keep the ®gures based on the VS and the JSS comparable. When the effects of

the separate changes and their possible interactions have to be quanti®ed, then a factorial

design should be applied.

5. Analysis of Embedded Field Experiments

In Section 4 we pointed out how the principles of experimental design can be applied in

order to design ef®cient embedded ®eld experiments. Here we will discuss how statistical

methods from sampling theory can be used to support the analysis of embedded experiments

if interest is focused on hypothesis testing concerning population parameters.

In embedded experiments, experimental units are selected by some complex sampling

design from a ®nite population. Statistical methods traditionally used in the analysis of

experimental designs are model-dependent and typically require IID observations. The

stochastic assumptions underlying these techniques, however, do not re¯ect the complexity

which is usually exhibited by the applied sampling design and the ®nite survey population

from which the experimental units have been drawn (Skinner et al. 1989, Chapter 1). In these
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cases the assumption that the observations are IID is usually not tenable. Skinner et al. (1989,

Chapter 3) have shown that the application of multivariate procedures based on the assump-

tion of IID observations in the analysis of data obtained from complex sampling designs can

lead to misleading results.

Fienberg and Tanur (1987, 1988, 1989) advocated a model-based approach for the ana-

lysis of embedded ®eld experiments. The internal validity is ensured by the application of

such fundamentals as randomization and local control on sampling structures such as

strata, clusters or interviewers in the design as well as in the analysis of the embedded

®eld experiment. The external validity is achieved by incorporating certain local control

variables, such as interviewers or clusters, as random components in a mixed model

analysis. Fienberg and Tanur (1988) showed, using statistical likelihood theory, that the

weights of the applied sampling design can be ignored in the analysis when the selection

of the sampling units depends only on prior variables conditioned on in the statistical

model and are independent of the target variables. If the experiment is analyzed under

the assumption of IID observations, then the analysis is performed conditional on the

drawn sample and inferences are made about the parameters of some hypothetical super-

population model and not about the ®nite population from which the sample is drawn. By

this approach, the observations are assumed to be identically and independently distributed

realizations of this superpopulation model. Under the postulated model it does not matter

which respondents provide the information to draw statistical inferences about the parameters

of this model. Skinner et al. (1989) propose various multivariate procedures for the analysis

of data obtained from complex surveys. These methods are based on model-dependent pro-

cedures which require IID observations. The asymptotic distribution of the test statistics used

to test hypotheses concerning model parameters is adjusted for the design effect of the sam-

pling design in order to incorporate the complexity of the sampling design in the analysis.

As the examples mentioned in Section 4 suggest, the purpose of the embedded ®eld

experiments can be viewed as testing or quantifying the effect of alternative treatments

on estimates of ®nite population parameters. The disadvantage of using the model-based

approach for such problems is that the inference concerns model parameters from some

superpopulation and not the estimates of the parameters of the ®nite survey population,

even if the external validity is guaranteed by the use of random or mixed models. Further-

more, the validity of the inference depends on model assumptions. It is unclear how robust

such an analysis is against, e.g., bias due to selective nonresponse. To cope with these dis-

advantages we explore a design-based approach. In embedded ®eld experiments a large

number of experimental units are selected from a ®nite population by means of a random

sampling design. As a result, it becomes possible to draw inferences on ®nite population

parameters that do depend on a probability structure imposed by the design of the survey

and not on model parameters from a superpopulation that depends on an assumed

probability distribution. To this end, the analysis can be based on the estimates of ®nite

population parameters. From the objective of the experiment, it is possible to formulate

sensible hypotheses about these ®nite population parameters and to construct ef®cient

test statistics. Statistical methods from sampling theory can be used by constructing

such test statistics, which take into account that experimental units are selected from a

®nite population by some complex sampling design with possibly unequal inclusion

probabilities and/or clustering. Furthermore, such a design-based approach makes it
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possible to use auxiliary information by means of the generalized regression estimator.

This not only increases the precision, but it also makes the analysis of embedded experi-

ments more robust against the negative effects of selective nonresponse. In the next section

we propose a method for the analysis of the two-sample problem to illustrate the possibility

of developing design-based methods for embedded experiments.

6. A Design-based Approach for the Analysis of the Two-sample Problem

Consider an embedded ®eld experiment designed to compare the effect of an alternative

survey methodology with respect to a standard survey methodology on a target parameter

of a survey. The population mean of a target parameter measured by using the standard

treatment is denoted by ÅX and the population mean of the same target parameter measured

by using the alternative treatment is denoted by ÅY . The objective of the experiment is to

investigate whether there is a signi®cant difference between the parameters ÅX and ÅY . From

this objective the following hypothesis can be derived:

H0 : ÅX � ÅY

H1a : ÅXÞ ÅY or H1b : ÅX > ÅY or H1c : ÅX < ÅY �1�

To test this hypothesis, a sample s of size n is drawn from the target population U of

size N by some complex sampling design with ®rst order inclusion expectations pi for

sampling unit i and second order inclusion expectations pi j for sampling units i and j.

Regardless of the structure of the sampling design, sample s is randomly divided into

two subsamples s1 and s2 of sizes n1 and n2, respectively. The subsamples are not

necessarily of equal size. The experimental units assigned to subsample s1 receive

the standard treatment and the experimental units assigned to subsample s2 the alterna-

tive treatment. The observations of the ®rst subsample are denoted by xi �i �

1; 2;¼; n1� and the observations of the second subsample by yi (i � 1; 2;¼; n2).

In many practical situations, s1 is relatively large compared with s2 because s1

serves as the regular survey for publication purposes and the control group in the

experiment.

To draw inferences about ®nite population parameters, the analysis should explicitly

take into account the probability structure of the applied complex sampling design used

to draw sample s (established by the ®rst and second order inclusion expectations pi

and pi j) as well as the randomization mechanism applied to divide sample s into two

subsamples. To this end it is proposed to replace the parameters of the t-statistic by their

corresponding Horvitz-Thompson estimator. The following test statistic for testing

hypothesis (1) is proposed:

Ät �
ÃÅXp1

ÿ ÃÅYp2������������������������������
ÃVar� ÃÅXp1

ÿ ÃÅYp2
�

q �2�

with ÃÅXp1
the Horvitz-Thompson estimator for ÅX based on the sampling units of subsample

s1, ÃÅYp2
the Horvitz-Thompaon estimator for ÅY based on the sampling units of s2,

and ÃVar� ÃÅXp1
ÿ ÃÅYp2

� an estimator for the variance of ( ÃÅXp1
ÿ ÃÅYp2

).

The ®rst order inclusion expectations for the sampling units in subsamples s1 and s2 are
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�n1=n�pi and �n2=n�pi, respectively (Van den Brakel and Renssen 1996b). Note that pi is

the ®rst order inclusion expectation of sample s. Because sample s is randomly divided

into two subsamples the n1=n and n2=n are introduced in the ®rst order inclusion expecta-

tions for the sampling units of s1 and s2, respectively. It follows that the Horvitz-Thomp-

son estimator for ÅX based on subsample s1 is given by

ÃÅXp1
�

n

Nn1

X
i[s1

xi

pi

�3�

In an equivalent way, the Horvitz-Thompson estimator for ÅY based on subsample s2 is

given by

ÃÅYp2
�

n

Nn2

X
i[s2

yi

pi

�4�

Because ÃÅXp1
and ÃÅYp2

are based on two interpenetrating subsamples drawn from a ®nite

population, they are not independent. Van den Brakel and Renssen (1996b) derived an

expression for Var� ÃÅXp1
ÿ ÃÅYp2

�, taking into account the dependency between ÃÅXp1
and

ÃÅYp2
. Deriving a design-unbiased estimator for Var� ÃÅXp1

ÿ ÃÅYp2
� requires paired observa-

tions of xi and yi obtained from each sampling unit. These paired observations are not

available because the sampling units are assigned to either s1 or s2. However, it can be

derived that an approximately unbiased estimator for Var� ÃÅXp1
ÿ ÃÅYp2

� is given by (see

Van den Brakel and Renssen (1996b) for a derivation):

ÃVar� ÃÅXp1
ÿ ÃÅYp2

� �
1

n1

1

�n1 ÿ 1�

X
i[s1

nxi

Npi

ÿ
1

n1

X
i[s1

nxi

Npi

 !2

�
1

n2

1

�n2 ÿ 1�

X
i[s2

nyi

Npi

ÿ
1

n2

X
i[s2

nyi

Npi

 !2

;
1

n1

ÃS2
X �

1

n2

ÃS2
Y �5�

Note that ÃS2
X=n1 and ÃS2

Y =n2 are ordinary variance estimators for the sample means as if the

sample elements are selected with unequal probabilities (pi=n) with replacement (Cochran

1977, Equation (9A.16)). These variance estimators only depend on the ®rst order inclu-

sion expectations. No second order inclusion expectations are required. Consequently, test

statistic (2) is relatively simple to evaluate. The ef®ciency of the sampling design tends to

vanish by the comparison of the subsample means ÃÅXp1
and ÃÅYp2

. This result seems to be in

conformity with the results of Kish and Frankel (1974). They found that the design effect

for differences between subclass means tends towards one from below for proportionate

strati®ed sampling. Also for cluster samples they empirically found that the design effect

of a positive intraclass correlation for differences between subclass means is less than for

separate means.

If all ®rst order inclusion expectations are equal (self-weighted sampling designs), the

test statistic (2) reduces to Welch's t0 test statistic (Miller 1986), regardless of the second

order inclusion expectations of the sampling design used to draw s. Note that ÃS2
X and ÃS2

Y are

estimates for the population variances for the x and y variables weighted with a factor

n=�Npi�. If it is reasonable to assume that these weighted population variances are equal,
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then an ef®cient estimate is obtained by using the pooled variance estimator:

ÃS2
�

1

n1 � n2 ÿ 2

X
i[s1

nxi

Npi

ÿ
1

n1

X
i[s1

nxi

Npi

 !2

�
X
i[s2

nyi

Npi

ÿ
1

n2

X
i[s2

nyi

Npi

 !2 !
�6�

In the case of a self-weighted sampling design, the test statistic (2) reduces to the t-test

statistic.

In the analysis of the experiment, we can take advantage of auxiliary information by

applying the generalized regression estimator instead of the Horvitz-Thompson estimator

for the estimation of the parameters in the t-statistic. This increases the precision of the

analysis and corrects, at least partially, for the bias due to selective nonresponse. Note

that this approach very much resembles the application of covariance analysis from the

theory of experimental designs. By analogy with (2), the following test statistic is

obtained:

Ãt �
ÃÅXR1

ÿ ÃÅYR2������������������������������
ÃVar� ÃÅXR1

ÿ ÃÅYR2
�

q �7�

with ÃÅXR1
the generalized regression estimator for ÅX based on s1 and ÃÅYR2

the generalized

regression estimator for ÅY based on s2. Following the model assisted approach of SaÈrndal

et al. (1992) the target variables for each element in the population are to a certain

extent assumed to be an independent realization of a linear regression model. In order

to describe the target variables measured by means of the standard treatment as well as

the experimental treatment, two different regression models are de®ned:

xi � zt
ibx � exi

V�xi� � j2
xi

yi � zt
iby � eyi

V�yi� � j2
yi
; i � 1; 2;¼;N �8�

with zi a vector with q auxiliary variables of element i, bx and by vectors containing

q regression coef®cients, exi
and eyi

the residuals, and j2
xi

and j2
yi

the variances of the

regression models of the target variables of xi and yi respectively.

The generalized regression estimator for ÅX based on subsample s1 is given by:

ÃÅXR1
� ÃÅXp1

� Ãbt
x�

ÅZ ÿ ÃÅZp1
� �9�

with Ãbx the generalized regression estimator of the regression coef®cient bx based on

the sampling units in subsample s1 (see SaÈrndal et al. (1992), Equation 6.4.13), ÅZ a vector

with the q population means of the auxiliary variables, and ÃÅZp1
a vector with Horvitz-

Thompson estimators of the population means of the q auxiliary variables based on sub-

sample s1 (with ®rst order inclusion expectation n1

n
pi). In a similar way, the generalized

regression estimator for ÅY based on the sampling units in subsample s2 is given by:

ÃÅYR2
� ÃÅYp2

� Ãbt
y�

ÅZ ÿ ÃÅZp2
�

with Ãby the generalized regression estimator of the regression coef®cient by based on s2 and
ÃÅZp2

a vector with Horvitz-Thompson estimators of the population means of the q auxiliary

variables based on subsample s2 (with ®rst order expectation n2

n
pi).
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An approximately unbiased estimator for Var( ÃÅXR1
ÿ ÃÅYR2

) is given by:

ÃVar� ÃÅXR1
ÿ ÃÅYR2

� �
1

n1

1

�n1 ÿ 1�

X
i[s1

nÃexi

Npi

ÿ
1

n1

X
i[s1

nÃexi

Npi

 !2

�
1

n2

1

�n2 ÿ 1�

X
i[s2

nÃeyi

Npi

ÿ
1

n2

X
i[s2

nÃeyi

Npi

 !2

;
1

n1

ÃS2
Ex
�

1

n2

ÃS2
EY

�11�

with Ãexi
� xi ÿ zt

i
Ãbx and Ãeyi

� yi ÿ zt
i
Ãby. The derivation of this variance estimator resem-

bles the derivation of the variance estimator in the case of the Horvitz-Thompson estima-

tor (5). Following SaÈrndal et al. (1992, Result 6.6.1), the g weights (SaÈrndal et al. (1992),

Equation (6.5.10)) can be attached to the residuals in the variance estimators, as an

alternative. If it is reasonable to assume that the weighted population variances for both

treatments are equal (under the null hypothesis), then it is more ef®cient to use the pooled

variance estimator. This estimator has the same form as (6) with xi and yi replaced by Ãexi

and Ãeyi
respectively. Instead of de®ning two separate regression models for both treatments

in the experiment, it is possible to assume that the regression coef®cients of the auxiliary

variables in both treatments are equal (bx � by � b). Then the target variables in the popu-

lation can be described with one linear regression model. Consequently, the estimates of

the regression coef®cients Ãb, based on sample s (with ®rst order inclusion expectation pi),

will be more accurate. Vector Ãb can be substituted, in the generalized regression estimators

(9) and (10).

Hypothesis (1) can be tested with the test statistics (2) or (7). In order to construct

critical regions, we have to know the probability distribution of the test statistics. In the

case of simple random sampling without replacement, Lehmann (1975, Appendix 8),

based on the work of HaÂjek (1960), gives a suf®cient condition under which the joint dis-

tribution of the two-sample means tends to the bivariate normal distribution. Conse-

quently, in the case of simple random sampling central limit theorems can be applied

to derive that the limit distribution of the test statistics (2) and (7) tends to the standard

normal distribution. In survey literature the normality assumption for estimators based

on complex sampling designs is usually assumed to be valid. The assumption that

the test statistics (2) and (7) are asymptomatically standard normally distributed has

been con®rmed by simulation studies for different sampling designs. Consequently, the

standard normal distribution can be used to construct critical regions which yield very

nearly (1 ÿ a)% coverage, where a denotes the size of the test.

7. Discussion, Conclusions and Further Research

Field experiments embedded in ongoing surveys are particularly appropriate if interest is

focussed on testing of hypotheses concerning the effect of alternative survey methodolo-

gies or treatments on estimates of ®nite population parameters. Statistical methods from

experimental designs and sampling theory can be combined in order to develop ef®cient

methods for design and analysis of such experiments. Principles of experimentation should

be applied in the design and analysis of embedded experiments to improve the precision of

the estimated treatment effects and to avoid distorting the cause-effect relationship

between treatments and outcomes. Trying to implement experiments embedded in
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ongoing surveys, where the regular survey is also used as the control group (see the exam-

ples in Section 4), involves the danger that the regular survey will take priority over the

alternative treatments by the conduction of the ®eldwork. Therefore it may be ef®cient to

conduct embedded experiments completely separate from the ®eld work of regular sur-

veys. Nevertheless, in large-scale ®eld experiments it remains very dif®cult to standardize

the application of treatments and to eliminate or exercise suf®cient control over external

in¯uences. Usually many people (e.g., interviewers) are involved in conducting a ®eld

experiment, which makes it dif®cult to standardize protocols of experimentation and to

supervise compliance. So there are many sources of extraneous variation that can mask

or bias the results of the experiment and distort the cause-effect relationship between treat-

ments and observed effects. The principles of experimental designs can be applied in

designing embedded ®eld experiments in order to minimize the negative effects of these

disturbances. Parallels between structures of experimental designs and sampling theory

can be exploited in a straightforward manner by designing ef®cient embedded experiments

based on these principles. The structure of the survey design forms a framework for

the design of the experiment, e.g., local control by means of randomization within strata,

clusters or interviewers.

In this article we advocate a design-based analysis in order to draw inferences about

®nite population parameters of the survey. In embedded ®eld experiments, a large number

of experimental units are drawn by means of a random sample from a ®nite population and

are, according to the experimental design, randomized to different treatments. Sensible

hypotheses about ®nite population parameters can be formulated from the objective of

the experiment. Ef®cient test statistics can be constructed which take into account the

probability structure imposed by the applied sampling design as well as the randomization

applied to assign experimental units to the different treatments. By using a design-

unbiased estimator, like the Horvitz-Thompson estimator, or the generalized regression

estimator for the parameters of the test statistic, the analysis takes into account the

complexity of the applied sampling design so inferences on ®nite population parameters

can be drawn. In doing so the external validity of the experiment is guaranteed. Besides

the sampling design, the estimator for the test statistic must also take into account

the randomization of the experimental design applied to assign the experimental units

to the different treatments, which consequently guarantees the internal validity of the

experiment.

Such statistical procedures are currently not generally available. A ®rst step towards the

development of such methods is given in this article by deriving a design-based method

for the analysis of the two-treatment embedded experiment. In Section 6 we showed

that combining the applied sampling design with the randomization according to the experi-

mental design comes down to a reweighting of the observations using a factor n=�Npi�. As a

result, we were able to obtain a test statistic that is relatively simple to evaluate.

Van den Brakel and Renssen (1996c) generalized these results to the analysis of the k

sample problem and obtained a design-based method for the analysis of the completely

randomized design embedded in complex sampling designs. The results obtained so far

must be generalized to experimental designs which exercise local control over sampling

structures by e.g., randomization within strata, interviewers or clusters. This will lead

naturally to statistical procedures for the design and analysis of embedded experiments,
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combining the internal validity guaranteed by methods from randomized experimentation

with the external validity obtained from the theory of randomized sampling.
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