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Design for Composite Estimation With
Changing Survey Frames
Philip J. Hughes'

Abstract: We consider the design for com-
posite estimation in rotating surveys with
changing frames. These designs require not
only the specification of the rotation rate
but also the sampling rate for births. We
report on and extend previously unpublished
results on the optimum design for change in
mean and change in total.

We show that designs which sample
births optimally may be considerably more
efficient than the common design in which
births and continuing units are sampled

1. Introduction

The frames of many rotating surveys change
regularly with the addition of “births” and
the deletion of ““deaths.” However, the stan-
dard theory of composite estimation, which
was laid down by Patterson (1950) following
the initial developments of Jessen (1942),
assumes a fixed frame. Fixed frame results
may be applied to the changing frame case
by forming continuing death and birth sub-
populations and applying fixed frame
results to the continuing population. Mean
estimates may be derived for the death and
birth sub-populations.

Konijn (1973), Forsman and Garas (1982),
and Babiker (1984) showed this approach

! Australian Bureau of Statistics and University of
Southampton.

Currently Research Manager with AGB: McNair,
168 Walker St., North Sydney, NSW 2060, Australia.

with equal rates. We then consider con-
strained optimum designs in which the
sample rate for births is optimised given a
fixed sample rotation rate. The treatment of
selected births over many periods is also
examined.
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required straightforward adjustments to the
fixed frame estimation results. For survey
design an additional parameter is required.
As for the fixed frame case, the proportion
of remaining, previously selected units, to be
rotated out of sample (the rotation rate)
needs specifying. An additional design issue
for the changing frame case is the allocation
of the new sample between the continuing
and birth sub-populations.

Forsman and Garéds (1982) considered
such design issues for estimating mean and
total, and change in mean and total. Births
were assumed identifiable prior to selection.
They reduced the design problem to the opti-
misation of the rotation rate by assuming a
predetermined sampling rate for births.

Babiker (1984) examined the cases in
which births are identifiable either before or
after selection. He considered the global
optimum design in which the rotation rate
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and the sample rate for the births are jointly
optimised for mean and change in mean. To
date Babiker’s results are unpublished. They
are summarised in Appendices A and B.

Babiker did not derive the global opti-
mum design for change in mean under com-
posite estimation but conjectured that it
required the maximum possible sample
overlap given the birth sample. This is not
always true. We extend Babiker’s results,
deriving sufficient conditions under which
the optimum designs for change in mean
and change in total have this property.

In rotating surveys with changing frames,
births and continuing units are often sampled
at the same rate. We call this the basic
design. We show that with composite esti-
mation the basic design may be significantly
less efficient for estimating change than
designs in which births are sampled opti-
mally. We also consider constrained opti-
mum designs in which the sample fraction
for births is optimised given a fixed rotation
rate.

Finally we show that in order to avoid
estimation problems in later periods, selec-
ted births should be sub-sampled prior to
their amalgamation with the continuing
units.

Many rotating surveys with changing
frames are rotating business surveys and we
pay particular attention to the application
of the results to such surveys. We assume
equi-probability sampling with the only
supplementary variable being the previous
value of the current variable.

2. Notation

Assume the population, P,, on the first
occasion consists of N, units. Before the
second occasion the death population, Py,
of size N,p units, is deleted and the birth
population, P,y, of size N,y units, is added
to the population to make P, the population,
of size N,, on the second occasion. Let P,
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be the population, of size N\c = N, — Nyp,
of units in the population on both occasions.
The same population, of size Noc = Ny,
may be labelled P,c on the second occasion,
then N, = N,c + Ny

We assume the sample size, n, is constant.
Let s, be the sample on the first occasion.
Let s, be the sub-sample, of size n,;, of
units in P, which are removed from the
sample for the second occasion. Let s,c be
the sub-sample, of size n,c = n — n;p, of
units in s; not in P,p.

A sub-sample of s,c, S;cm, Of size ncy
(mem < nye), is retained for the second
occasion. s,y is the sub-sample, of size
ey = Mic — Miems> Of units in s;¢c not in
SicMm -

The sample s, on the second occasion is
made up from s,cy, of size n,cq = Miems
(the sub-sample labelled s,cy on the pre-
vious occasion), as well as a sub-sample s,y,
of size n,y, of units selected from P,y from
the births and a sample s,cy, of size n,cy,
selected from the units in P,c not in sc.
Denote s,c = Sycy Y Socm the sub-sample,
of size nyc = Mycy + Macm» Of units selected
for the second occasion from P,c.

We assume that within the sub-populations
samples are selected with equi-probability.

Let ¥, 7 and o2 denote the population and
sample mean and the population variance of
the survey variable, respectively. Subscripts
are used to identify sub-groups.

Thus, for example, p,cy denotes the
sample mean on the second occasion of the
units retained from the sample of continuing
units on the second occasion. Define

k = o/oy; ke = 0OiclOxc;
kxn = On/0xc; kip = Oip/Oic;
Wip = Nip/Ny;

Wic = Nic/N, = 1 — Wp;
Win = NNy -
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Wie = NN, = 1 — Wi
g = WicOic/WicOxc = kc(N2/Ny);
Tc = Me/n; T = nfyln
Tiem = Mem/t Ticy = Miculns
Tn = Nn/m

and r = ncy/nc the rotation rate applied
to 5.

Let p. be the correlation between the
survey variables on occasions 1 and 2 for
units in the common population P,c.

Let {i, 4 and 7‘"2,* be estimators of ¥, and
Y,, the population mean and total, respec-
tively, on the second occasion and let
8, and D, , be estimators of ¥, — ¥,
and Y, — Y,, the change in population
mean and total, respectively, on the two
occasions, where * = M or C according
to whether the estimator is a mean or com-
posite estimator, respectively.

3. Global Optimum Designs for Change

The global optimum designs require t,cy
and T,y values which minimise the relevant
variance. Appendix A, based on Babiker
(1984) and Hughes (1988), sets out the com-
posite estimators and their variances for the
estimation of mean, change in mean, total,
and change in total.

The global optimum design for mean was
derived by Babiker (1984). This design,
together with that for the global optimum
design for total, is summarised in Appendix
B.

We consider the optimum design for
change in mean and change in total denot-
ing the optimum values by T,cyopr) and
TaN(©OPT) -

Optimum values must satisfy the con-
straints 0 < Tycy < Ticand Tyoy + Ty < 1.

For change in mean the optimum design,
ignoring the above constraints, are solutions

to
aV(SZ,C)/aTICM = 0; and aV(Sz'c)/atm = 0.

From (A6) in Appendix A these reduce,
respectively, to

TempPelpe + pcg” — 2g]
+ 2tiemPcoe[Tic + &1 — )]
— ag{pctic + pc&(l — T )’

+ 21c8(1 — )} = 0 (1)
and
Wac{oe — pe(l — (g — po)}/n

— Winknftn = 0 2

whereoe = /(I — pt)and = (1 — 1)
x (1 = per) + tieper(l — ).

No analytic solution to these equations
was presented by Babiker (1984). Using
numerical methods Babiker conjectured
that the optimum solution exists on the
boundary of the solution set — that is
Tiemopny = Min(tyc, 1 — Tnepn).  This
solution corresponds to one of maximum
sample overlap given the sample allocated
to births. We extend Babiker’s results by
stating and proving a theorem on a sufficient
condition for the existence of optimal solu-
tions on the boundary. If these conditions
are not met then the optimum solution may
exist inside the boundary of the solution set,
thus disproving Babiker’s conjecture.

Theorem 1

A sufficient condition for the optimal design
for composite estimation of change in mean
to be on the boundary of the solution set,

TicmoPT) = min(tc, 1 — Tonop) 18
kk<g<k

where o, = 1 — o¢; o, = 1 + ac; k, =
o /pc; ky = d/pc; and g = Wic0,c/ Wi 0.
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Proof: Theorem 1 is proved by showing
that for k;, < g < k, and any feasible value
of 1,5, the optimum value of T,y exceeds
min(t,c, 1 — Tn). This, in combination
with the constraint that t,oy < min(tc,
1 — 1,y), gives the stronger result that
Tiemopry = Min(t,c, 1 — 15y) for any feas-
ible 1,y value. The result follows by consider-
ing the particular case of T,y = Tanpr)-

Casei. k < g < k,.

For this case expression (1) may be treated
as a quadratic in T,¢y with fixed 1,y . Solving
for T,cm gives

Tem = {—w&(tc + &1 — )
+ lelac}/{peg — 2pcg + pe}

where € = tc(l — pcg) — (1 — o)
x (g — pcg)-

For k, < g < k, these roots are real and
positive and the smaller root corresponds to
a minimum variance point. Thus we need
only consider the smaller root which, since
peg — 2pcg + pe < 0, is given by
Tiem = {—0&(nc + &1 — ™)

+ lelac}/{ptg’ — 2pcg + PE}-

This root depends on the sign of . We
consider the cases of € positive, negative or
zero.

Caseia k; < g < k,ande > 0.

Tew = (b — p)tkitic + (1 — g}/
{pc(k, — 2)}

and

g > k= (ky — po)tk + g}/
{pc(k, — g)} > 1*
= (k; — po)tkitic + (1 — g}/
{pc(k, — g)}

= Tiew > Min(tyc, 1 — 1yy)
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Caseib k <g < k,ande <0
Tiew = (Pc — kD{kotic + (1 — )8}/
{pc(g — k1)}
g < ky = (pc — k\){k, + g}/
{pclg — k)} > 1
= (pc — kD{ktic + (1 — tn)g)/
{(pc(g — k}
= Tiem > Min(tic, 1 — Tyn)
Caseic k <g<k,ande =0
Tiem = {%e(tc + &1 — )}/
{ptg — 2pcg + pt}

and

az(l + &) = peg — 2pcg + e
= Ticm min(t,c, 1 — o).
Caseii. g = k,org =k,.

For this case, expression (1) is linear in
T,cm With the following solution

Tiem = 0.5{1c + (I — )}

> min(tc, 1 — n).

For all cases 0V (8,¢)/0ticm < 0 as Tycy
approaches the optimum value from below.
Thus the boundary value min(t,c, 1 — Tyn)
is the constrained optimum solution for
k, < g < k, and for any 1,y since it is the
extreme of the feasible range closest to the
unconstrained optimum.

The theorem is completed by taking
To;n = Tonoen Which gives Tyevepr =
min(t,c, 1 — Tonorn)-

If g < k, or g > k,, the existence of a
non-boundary optimum solution depends
on expression (2). The possible existence of
a non-boundary solution for the global opti-
mum design for composite estimation of
change in mean then depends on g and pc
(since pc is a function of k, and k,). Table 1
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Table 1.k, and k, values for given p

Pc kl k2
0.50 0.27 3.73
0.70 0.41 2.45
0.80 0.50 2.00
0.90 0.63 1.60
0.95 0.72 1.38
0.98 0.82 1.22
0.99 0.87 1.15

sets out the values of k, and k, for a range
of pc values.

Non-boundary solutions may exist if g
lies outside the range (k,, k,). The value of
g is generally close to unity and thus, from
Table 1, non-boundary solutions would be
most unusual unless pc is very high, of the
order of 0.98 or greater.

Babiker (1984) showed that if the opti-
mum solution is on the boundary then
it corresponds to the following design:
Define

L = pcWicipcg — 28 + pc)s
and

B = 2WikanWaclll — pcgl — ac},
then

1.
If 1c < min(T/(T + B), Wycll — pcgll

{Winkon + Wacll — pcgl})
Tiemorny = Tic
TonoPT) = Wonkon |

{Winkon + Wacll — pcgl}

hence

Tacu©PT) > 0.
il.
If max(T/T + B),
Wicac}) < Tic
Wicoc/{Winkan + Wacoc}

Wankoon [{ Wankon + Wacac}

Wacae[{ Wonkon +

TicM©PT) =

TonoPT) =

hence
Tocuorry = 0.
1ii.
Otherwise
Ticmorry = Tic
TonoPT) = I — 1
hence
Tcuoery = 0. 3)

4. Optimum Design for Composite
Estimation of Change in Total

Appendix A shows an equivalence between
the variance forms for change in mean (see
(A6)) and for change in total (see (A8)) with
the terms W ., Wy, Wip, and W,y in (A6)
being replaced by N,c, Nyc, Nip, and N,y,
respectively, in (A8). In particular the term
g in the variance of change in mean is
replaced by the term k. for change in total.
Replacing these terms leads to the expression
I'/(' + B) in the above conditions being
replaced by Nic(1 — pc)/{Nwkon +
Nic(1 — pc)}. This gives Theorem 2 on
the optimum design for the composite esti-
mation of change in total.

Theorem 2

A sufficient condition for the optimal design
for composite estimation of change in total
to be on the boundary of the solution set is
ki < ke £ k,.

This result follows from Theorem 1 sub-
stituting & for g.

The same substitution in combination
with (3) shows that if the optimum solution
is on the boundary then it is given by

i

If 1e < Nic(l — po){Nwkon +
Nic(1 = po)}

Tiemor) = Tic

Tonorry = Non kon/

-

{NZNkZN + Nic(1 — PC)}
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hence

Tycueren > 0.
il.
If Nic(1 — po)/{Nawkon + Nic(1 — po)} <
Tic < Nicoc/{Nmwkoy + Nicoc}

Tiemorr) = Tic
Tnorny = 1 — Tic
hence
Tycuorery = 0.

1ii.
If 1,0 > Nlc“c/{NszzN + NlCaC}

Tiemorry = Nicoc/{Nmwkow + Nicoc}
Tnorry = Non kZN/{NZN kon + Nic °‘c}
hence
Tocuorry = 0. “4)

Thus the sufficient conditions for a
boundary solution for change in total are
k, € (0,c/oyc) < k,, whilst the correspond-
ing sufficient condition for change in mean
is given by k, < (Wc01c/WycOa) < Ky
The sufficient conditions for boundary solu-
tions for change in mean and change in total
coincide if N, = N,.

Hughes (1988) also shows for composite
estimation of change in fixed frame surveys
that a necessary and sufficient condition for
the optimum rotation rate to be zero is k;, <
Oic/0xc < k-

It is also readily shown that if o, =
o,c the optimal design for estimating

min(t,c, (I — Tyyopr)) and is as given in
Theorem 2.

5. Constrained Optimum Designs

The optimum rotation rate arising from the
global optimum design may not always be
desirable. A number of factors other than
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variance minimisation may need to be taken
into account. Firstly, high rotation rates
may be undesirable if the average sampling
cost of newly selected units is much greater
than that of previously selected units. On
the other hand, low rotation rates increase
the respondent burden of units and may also
be undesirable. This suggests a more general
analysis which accounts for these types of
costs. The nature of these costs, however,
make them difficult to quantify. In practice
the rotation rate may be pre-determined
subjectively, taking into account the issues
of sampling efficiency, cost, and respondent
burden.

We thus extend the above analysis and
consider constrained optimum designs in
which the sample fraction for the births is
optimised given the rotation rate.

6. Constrained Optimum Design for
Composite Estimation of Mean and
Total

Values of 1,y are required which minimise
the appropriate variance given Ticy. For
mean, V(fi, ), as given in (A2), is minimised
for fixed 1,cym, as follows:

ToNoOPT) =
min{l — Tcum, Winkon[ticper(l — 1)

+ 1 — per)fl(0 = per)(Wankan + Wac)l}-

)

Replacing W, Wy, Wip, and Wy by

Nic, Nyc, Nip, and N,y, respectively, in

(5) gives the result that the constrained

optimum design for total and mean are
identical.

7. Constrained Optimum Design for
Composite Estimation of Change
in Mean

Values of 1,y are required which minimise
V(Sz c)» given Tycy. -
The expression for 8V (8,¢)/0t, = 0,
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obtained from (2) above, reduces to

Wk {(1 — per) + tic(l — r)rpé}

*
TN

The optimum value of T,y is constrained
to be less than or equal to (1 — T,y ). Thus
the constrained design is

TfN(OPr) = min(ty, 1 — Tycm)- @)

‘8. Constrained Optimum Design for
Composite Estimation of Change
in Total

Values of 1,y are required which minimise
V(Dﬂz'c), given T,cy. This follows directly
from (6) substituting k. for g

Kk

Winkan(1 — per) + Waclpe(1 — ) — 1) + g(1 — pc)(d + rpe)l’

Winkon {(1 — per) + Tic(l — ")"P%:}

(6)

denote the basic and constrained optimum
design, respectively. The relative precision
values for the mean estimator under the
basic design and the constrained optimum
design (BD and CD respectively in Table 2),
relative to the mean estimator forr = 0, are
defined

V(TZ,M; r = O)pasic/ V(TZ,M)BASIC
and

V(Ijz,M; r = O)gasic/ V(ﬁ2.M)BASlC
for level and change, respectively.

TN

and T,npr) is thus given by

- Tiem)- (&)

$k _ s (p Rk
TNoery = min(ty, 1

9. Empirical Analysis

We compare the basic and the constrained
optimum designs under composite esti-
mation for estimating total and change in
total. The large number of possible par-
ameters, estimators, and designs hinders
interpretation. To simplify we consider typi-
cal values for a rotating business survey:
Wi = Wip = 0.05, kc = 1.0, pc = 0.95,
kip = 1.0, and k,y = 1.5.

We consider the precision of the mean
and composite estimators, relative to the
mean estimator at r = 0, for estimating
total and change in total under the basic
design and the constrained optimum design.
We consider a range of r values including
the global optimum rotation rates for total
(r = 0.76) and change in total (r = 0.16).
We assume G,c/0, = G,c[/o, = 0.8.

The subscripts BASIC and C_OPT

Winkan(1 = per) + Waclpe(l — ko)1 = 1) + k(1 — pe)(1 + rpe)]

®)

For the composite estimator relative pre-
cision values are V(TZ,M; r = 0)pasic/
V(Tz,c)* and V(ﬁZ,M; r = 0)pasic/ V(ﬁz,c)*
for total and change, respectively, where for
BD, * = BASIC and for CD, * = C_OPT.

The relative design precision (DP) values
for the composite estimator, relative to the
basic design, in Table 2 are defined as

DP = V(TZ‘C)BASIC/ V(Tz,c)c_ow
for total and

DP = V(DZ,C)BASIC/ V(ﬁz,c)c_ow
for change.

Table 2 provides some understanding of
the gains in precision from composite esti-
mation and the additional gains available
through the respective constrained optimum
designs. For all r values the most significant
gains, relative to the mean estimators, are
achieved through introduction of composite
estimation. Further, but less significant,
gains are available in moving from the basic
to the constrained optimum design. We
examine-this table in more detail below.
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Table 2. Relative precision of estimators of total (T) and change in total (D)

r Estimating Mean Composite estimator
Estimator
- Basic CD! DP
Basic design
design
0.00 Total 1.00 1.47 1.47 1.00
Change 1.00 5.13 5.13 1.00
0.05 Total 1.00 1.53 1.55 1.01
Change 0.94 5.03 6.36 1.26
0.10 Total 1.00 1.59 1.61 1.01
Change 0.88 4.94 6.80 1.38
0.15 Total 1.00 1.64 1.68 1.02
Change 0.83 4.83 6.93 1.43
0.16 Total 1.00 1.65 1.69 1.02
Change 0.82 4.81 6.93 1.44
0.20 Total 1.00 1.70 1.74 1.02
Change 0.79 4.72 6.89 1.46
0.30 Total 1.00 1.80 1.85 1.03
Change 0.71 4.47 6.55 1.47
0.50 Total 1.00 1.99 2.07 1.04
Change 0.59 3.84 5.32 1.38
0.70 Total 1.00 2.11 2.21 1.05
Change 0.51 2.96 3.69 1.25
0.76° Total 1.00 2.12 2.23 1.05
Change 0.49 2.61 3.12 1.20
0.90 Total 1.00 2.01 2.10 1.04
Change 0.45 1.61 1.75 1.09

' CD = Constrained Optimum Design Given r.

2 Global optimum rotation rate for composite estimation of Change.

3 Global optimum rotation rate for composite estimation of total.

Parameters assumed: W,y = W,p, = 0.05, kc = 1.0, pc = 095, kp = 1.0, k) = 1.5,

and Glc/cl = 02(:/62 = 0.80.

Estimation of level - The relative precision
of composite estimates of level increase
slowly with the rotation rate up to the point
of optimum rotation. The constrained opti-
mum design provides almost no additional
precision.

Estimation of change — More significant
gains in precision are available for change
estimation than are available for level esti-
mation. The choice of rotation rate with
composite estimation is more sensitive to
change than level estimation hence a com-
promise design would lean towards the opti-

mum rotation rate for change. For this
example this optimum rate of 16% is similar
to the rotation rates used in many rotating
business surveys.

Constrained and Global Optimum Designs
- The optimum rate of rotation for com-
posite estimation of change is 16% com-
pared to 0% under a fixed frame design. For
composite estimation of total change the
optimum rate of rotation is 76% for either
case. Thus the optimum design for change is
more affected by the changing population
structure than the optimum design for level.
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This table indicates that the loss of preci-
sion in constraining rotation rates to be
other than the optimum rate may be appre-
ciable for level or change estimation.

10. Design Precision of the Constrained
Optimum Design Relative to the Basic
Design for Composite Estimation

We compare the constrained optimum and
basic designs for the composite estimation
of change in total. A broader range of par-
ameters than considered in the previous
section is used. We restrict attention to
parameters which are generally observed
in rotating business surveys in which the
changes to the survey frame are limited, r is
not large, and pc is large. We consider a
broad range of values of k,y, as its likely
value is uncertain, and assume k,, =
ke = 1.

Under the basic design if N, > N, some
units in s, will need rotating to maintain a
constant sample size. The minimum r value
is (N, — N,)/N, and a greater rate will be
required if units are to be rotated out of
sample after a fixed number of periods.
We restrict consideration of r to r >
(N, — N))/N,.

The relative design precision values are
presented in Table 3. The values of the
design precision for the constrained opti-
mum design relative to the basic design for
composite estimator presented in Table 3
are given by

V(D,,)sasic! V(Dac))e opr-

Table 3 indicates that the relative design
precision of the constrained optimum design,
relative to the basic design, may be signifi-
cant for the composite estimation of change.
This is largely dependent on k,. For
k,y = 0.5 the increased precision is only
marginal, whilst for k,y = 1.5 it may be
considerable.

This is because the constrained optimum
design is a form of optimum allocation to
the continuing and birth sub-populations
and produces greater gains as sub-populations
are increasingly heterogeneous.

We conclude that if the births have a
higher variance than the continuing sub-
population (i.e., k,y > 1) then constrained
optimum designs may produce significant
precision gains for the composite estimation
of change.

It is difficult to speculate on k,y as it
depends on the nature of the births and their
stratification. If there is no size stratifi-
cation, then births may tend to be smaller
than the continuing units thus causing k,y, to
be less than unity. If, however, the effect of
size is controlled through size stratification
then k,y may be larger than unity since the
births are likely to have a more variable
performance than units which have been
established for some time. One would expect
the births to exhibit greater extremes of
growth (positive or negative growth) than
continuing units. Thus there may be signifi-
cant gains in constrained optimum designs
with size stratification.

The same table may be produced for the
estimation of total. For such a table with the
same parameters the design precision varies
from 1.00 to 1.07. We conclude that con-
strained optimum designs produce very little
gains in precision for estimating level, relative
to the basic design.

11. Treatment of Births Over

Many Periods

The preceding analysis assumed two survey
periods. Over the longer term, it is necessary
to consider the treatment of the birth sub-
populations for each period. Considerable
difficulties may arise if separate birth sub-
populations are retained for each period as
the total sample would be spread increasingly
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thinly over these sub-populations and the
continuing sub-population. Eventually amal-
gamation of births and the continuing sub-
population would be necessary. It would be
possible to leave a number of birth strata for
several periods. The judgement over the
delay before births are absorbed into the
continuing population depends upon how
quickly they assume the pattern of other
units. We assume that the births for the
current period are amalgamated with the
continuing population from the previous
period to form the continuing population
for the current period.

Upon amalgamation, units from the con-
tinuing sub-population may have been
selected with unequal probabilities. This will
necessitate some form of post-stratification
or unequal sample weighting to form esti-
mates for this sub-population. As the num-
ber of frame updates increases this may
become unacceptably complex. The increase
in efficiency resulting from departures from
the basic design may thus have an off-setting
cost in increased estimation complexity.
This may be avoided if the births are
sampled at the optimum rate when belong-
ing to the birth sub-population and then
sub-sampled prior to their amalgamation so
that all units in the continuing population
have equal selection probability.

Hughes (1988) raises the possibility of a
composite estimator which takes account of
births being sub-sampled and uses ' the
past responses of sub-sampled births. This
requires partitioning the continuing sub-
population into a “previously continuing”
component of units also continuing on the
previous occasion and a “new continuing”
component of units which were births on the
previous occasion. Separate composite esti-
mators could then be applied to these two
components. The increased efficiency of this
estimator is unlikely to off-set the increased
estimation complexity unless the components
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of the partitioned continuing sub-population
have significantly higher inter-period cor-
relations than the combined continuing sub-
population.

12. Sample Selection in Rotating Surveys
With Changing Frames

The previous section raises the possibility of
the over-sampling of and then subsequent
sub-sampling of births. This is usually
straightforward although some account
must be taken of the particular selection
methods used in rotating business surveys.
Collocated sampling (Brewer, Early, and
Joyce 1972) was developed by the Australian
Bureau of Statistics to meet the particular
requirements of rotating business surveys.
Other similar methods have also been devel-
oped. These methods may be readily extend-
ed to permit the over-sampling of births and
their later sub-sampling whilst not depart-
ing from the other requirements for which
the methods were originally developed.
Hughes (1988) outlines these extensions.

13. Conclusions

We have derived sufficient conditions for the
global optimum design for composite esti-
mates of change to be one of maximum
rotation given the birth sample. Often the
rotation rate will be fixed and we have
derived the constrained optimum design.
We have shown that the constrained opti-
mum designs may be significantly more effi-
cient than the basic design. This depends
greatly on the relative magnitudes of the
population variances of the birth and con-
tinuing sub-populations. If the births exhibit
a greater variance then the use of the con-
strained optimum design will provide signifi-
cant precision gains in many situations with
the gains increasing with the samplée”rota-
tion rate and the inter-period correlation.



Hughes: Design for Composite Estimation With Changing Survey Frames 89

As well as providing more efficient esti- dynamics of the changes in the population
mates of change, designs which over-sample structure by providing more precise estimates
births also permit enhanced analysis of the from the births.

Appendix A
Composite Estimation With a Changing Frame

Appendix A summarises the optimum estimators and minimum variances derived by
Babiker (1984) for the estimation of mean and change in mean. Also included are the
extensions of Hughes (1988) to the estimation of total and change in total.

The two-period composite estimator of mean
The optimum two-period composite estimator for mean is given by
foc = Wb + Wicl@hicu — @iom + bPcu + (1 — B)facm}

where

a = ter(l — rpc/m;

b= (1 —per)(l — Tn — Tic(l — N)/n
and

o= (I — o) = per) + tcper(l — r) (A1)
with variance given by

Vo) = {1 — penWicoic/m] + [Wioim/tnl}/n. (A2)

The two-period composite estimation of total

The estimator for total is given by

Toc = Nabwn + Nac{ahicu — @Piom + biacu + (1 — B)irom} (A3)
where a, b and © are as given in (A1) and variance given by
V(Tz,c) = {la - per)Njcoic/n] + [NZZNG%N/EN]}/”- (Ad)

The two-period estimator of change in mean
For change in mean the optimum two-period composite estimator is given by
Src = hom + Wae — Iacy + diem — Wic + ey + WanIn — Windio
where
¢ = (1 = nN{ucWec + Wicpc(l = tn) — ticWic(I — rpc}in
and

-

-1 - "){I’Vlc(l = Ton) + PcTic I’Vzc}/"c v(AS)

QU
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and variance
V(Sz,c) = Wioic{tiompt + Ticot + &ae(l — Ton) + petiem] — 28PcTicm }/nTicn
+ [Wivoan/ntn] + [Wirois/ntpl. (A6)

The two-period composite estimator of change in total
For change in total the optimum two-period composite estimator is given by

Dyc = ehem + (Noc — ey + [Fiem — Wic + Nicu + Nondax — Nipbio
where

e = (I = N{ticNyc + Nicpe(l — ) — TieNie(l = pclin

and
f = =0 =n{Nc(l — 1) + rpcticNoc}/m (AT)
with variance
V(Dyc) = NicGxc{tiempe + Ticoe + ke[oe(l — Ton) + petiom] — 2kcPeTiom}/nticT
+ [Nnoin/ntn] + [Nipoip nTip]. (A8B)

Appendix B

Design for Level

Appendix B summarises the results of Babiker (1984) for the optimum design for the
composite estimation of mean. Included for completeness is the extension to the estimation
of total.

Optimum design for composite estimation of mean

The global optimum design for the composite estimation of mean requires T,cy and T,y
which minimise the variance in (A2) of Appendix A and which satisfy 0 < T,cy < T)c, and
Tiem + Ton < 1. The optimum values, T)cmopr) and Tonopr), are given by

i, if 1ic < Wity [(Wacoc + Wankan)
Ticmoen) = Tictc/o%
Unorn = Wankan (02 + Tico)/{oa(Wae + Winkan)}
or ii, if 1jc > Waco,/(Wacoc + Winkon)
Temorny = Wactc/(Wacte + Winkon)
Tnorry = Wankon[(Wacoe + Wonkan) (BI)

where oc = /(1 — p&); o, = 1 — ac;and o = 1 + oc.
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Optimum design for composite estimation of total

The variance expressions for the composite estimators of total and mean have the same
form. From A2 and A4 the terms W,c, Wy, W,p, and W,y in the variance of the mean
estimator are replaced by N, Ny, N,p, and N,y, respectively, in the variance of the total
estimator. From this it is readily shown that the optimum designs for total and mean are

identical.
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