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Developing an Optimal Call Scheduling Strategy
for a Telephone Survey
Betsy S. Greenberg' and S. Lynne Stokes'

Abstract: We use a Markov decision process
to minimize the expected number of tele-
phone calls needed to make contacts for
a random digit dialing survey. Our states
include information about the history of
calls made to a telephone number and the
action to be selected is the time of the
next call attempt. Transition probabilities
are estimated using a polytomous logistic
regression model with data collected by the

1. Introduction

Many large U.S. government survey organi-
zations collect data by telephone because of
the potential for improvements in timeliness
and cost over personal visit interviewing.
The high telephone ownership rate in the
United States has lowered concerns about
coverage bias. Development of computer
© assisted telephone interviewing systems
(CATTI) has increased data processing effi-
ciency.

A variety of sample designs are used for
these surveys, such as sampling from lists
developed from directories or Waksberg-
Mitofsky schemes (Waksberg 1978), which
produce self-weighting samples of house-
holds. The steps of the data collection pro-
cess are the same regardless of the design
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Bureau of the Census during a test of tele-
phone interviewing for the Current Popu-
lation Survey. We find that the optimal
strategy for that survey should reduce
the number of call attempts required and

improve the nonresponse rate.
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used. The status of the number must first be
ascertained (nonworking, business or other
nonresidential, or residence), the household
contacted, and then the interview completed.
All three steps are completed in one call for
some sample units, while many calls are
required for others. The first step is some-
times difficult to complete because, for
example, “out-of-service” recordings are
not used by some telephone companies. The
second step requires attempting to contact
at a time when an eligible respondent or at
least a knowledgeable person (who can sug-
gest a convenient appointment time) is
available. And finally, the third step requires
winning a respondent’s cooperation.
Successful completion of the first step
requires good information about how tele-
phone companies identify nonworking
numbers (such as with a nonworking num-
ber recording) and how to obtain informa-
tion from them for numbers that ate not
identified. It also requires a well-designed
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series of questions to distinguish businesses
and other nonresidential numbers from
residential numbers. Completing the third
step, once a contact has been made, requires
a good questionnaire and a well-trained and
experienced interviewing staff. Good survey
organizations are well aware of these needs
and make attempts to satisfy them.

The goal of reaching an uncontacted case
is more problematic. In face to face inter-
views, information from neighbors and
appearance of the sample unit or neighbor-
hood are frequently used by interviewers for
scheduling the next call. In telephone sur-
veys, only the calling history of the case
is available for use in scheduling contact
attempts. There is no strategy known to be
best for minimizing the effort of reaching
households in telephone surveys. In fact, the
details of such a strategy would be likely to
vary from one survey to the next, depending
on such factors as characteristics of the
target population, the sample design, and
even the staffing capabilities of the survey
organization.

Weeks (1988) points out that the effort in
making the phone calls typically consumes a
significant portion of a survey’s available
resources. He writes (p. 420) that “calling
protocols are still dominated by intuition
and folklore™ and that serious methodologi-
cal research in these areas would make a
significant contribution. The research that
has been done on the question of call schedu-
ling, for both face to face and telephone
surveys, has concentrated nearly exclusively
on the goal of finding the best time and day
for making the first attempt (Falthzik 1972;
Weeks, Jones, Folsom, and Benrud 1980) or
by grouping together all calls (Vigderhous
1981). But most call attempts made in tele-
phone surveys are not first attempts. So, an
efficient call scheduling strategy for subse-
quent attempts would provide a potential
for improving efficiency in data collection.
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Attempts to improve the timing of call-
backs have been reported. Warde (1989)
tried to determine optimal waiting times for
callbacks based on the last outcome only.
Weeks, Kulka, and Pierson (1987) present
evidence suggesting that second calls (in
addition to first calls) should ideally be
scheduled on weekday evenings or on week-
ends. They also mention that other factors
such as the availability of qualified inter-
viewers and the capacity of the interviewing
facility need to be considered. Kulka and
Weeks (1988) examined call outcomes across
a series of three calls for the purpose of
developing optimal calling protocols. Stokes
and Greenberg (1990) developed a method
for assigning calling priorities to uncontacted
numbers with the goal of maximizing the
number of contacts or interviews during a
shift. This scheme attempts to use the calling
resources in the best way possible, and has
the advantage of being easy to implement.
However, it does not consider the import-
ance of quickly identifying nonresidential
numbers, nor does it give high priority to
phone numbers that are difficult to reach.

In this paper a method is described for the
development of a strategy which has the
broad objective of minimizing the total
number of calls (both first and subsequent
ones) required to contact a sample of house-
holds and at the same time, to reduce the
proportion never contacted for a surveying
period of fixed time duration. The strategy
consists of a set of rules for scheduling the
time of the next call to each unit, based on
that unit’s calling history. Using this method,
it is easy to include staffing constraints in the
strategy.

Section 2 of this paper describes the meth-
odology. In Section 3 we illustrate an appli-
cation of this methodology. We describe our
Markov decision model, the factors that we
found useful for estimating the parameters
needed, and the solution we obtained from
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our optimization. Recommendations and
conclusions follow in Section 4.

2. Methodology

In a survey, when an interview attempt has
been unsuccessful because the unit to be
interviewed was not contacted, the time of
the next attempt to contact that unit must
be selected. In telephone surveys, the only
information available to aid in this decision
is the amount of time remaining for the
survey to be completed, the history of calls
to the sample unit, and their outcomes. The
small number and objectivity of the avail-
able information suggest that a generaliz-
able method for improving the efficiency
of callback scheduling may be possible to
develop. This section describes a Markov
decision process and how a process of this
type could be used to minimize the number
of phone calls required to contact a survey
population. In Section 3 the use of this
method is illustrated with a model developed
to find the optimal strategy for a specific
telephone survey.

2.1. Markov decision process

We assume that a process observed at dis-
crete time points is in one of a number of
possible states. After observing the state of
the process, an action must be selected from
the set of possible actions. If the process is in
state i and action a is selected, then we
assume that

i. a reward R(, a) is earned, and

ii. the new state of the system is chosen
according to the transition probabilities
P(a).

This implies that both the costs and the
transition probabilities are functions only
“of the last state and the subsequent action.
In order to choose actions, we must follow
some policy. If a stationary policy is
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employed, i.e., if the action taken at time ¢
depends only on the state at time ¢, then the
sequence of states forms a Markov chain
and the process is called a Markov decision
process.

A Markov decision process can be used to
model the process of contacting units in a
telephone survey. That state of the process
includes information about the time and
outcome of previous calls to the unit and the
time remaining in the survey. Based on the
state, an action is selected, i.e., when, if
ever, to make the next call. Following each
attempt, the state of the process is updated.
By including all of the information pertain-
ing to the previous call attempts in the state
description, the Markovian assumption will
be satisfied.

Each time a case is completed, for exam-
ple, because an interview was completed or
the survey period ended, we consider that
the Markov decision process starts over.
The objective of the decision process is to
maximize the long run average reward earned
per unit time. Since each call attempt changes
the state of the Markov process, the optimal
policy will maximize the average reward
earned per call. Rewards are assigned so
that the highest reward is given for the most
desirable outcome, such as an interview.
The lowest reward is given for the most
undesirable outcome, such as completing
the survey period without making a contact.
The optimal policy gives, for each state,
the appropriate action that will result in a
maximum average return.

Optimal policies do not necessarily
exist for all Markov decision problems with
expected reward criteria. However, if there
is a state, call it 0, and B > 0 such that
P,(a) = B for all i and a, then an optimal
stationary policy will always exist (Ross
1983). In a telephone survey there is always
a positive probability that the next call will
result in an interview. By calling the result-
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ing state after an interview state 0, it is
clear that an optimal stationary policy is
guaranteed to exist for this problem.

The stationary policy is allowed to be
“randomized” in that actions are selected
according to a probability distribution. If m,
denotes the steady-state probability of being
in state i and choosing action a, then the
expected reward is £,Z, R(i, a)m,,. Therefore
the problem of finding the optimal policy
can be written as

maximize Y, Y. R(i, @),

subject to m, > 0, for all i, a, )

Z Y m, = 1,and )

Yom, = Z Y. Pya)m, forallj.  (3)

Constraints (1) and (2) are obvious. The first
requires that the probability of being in
a particular state and taking a particular
action is not negative. Constraint (2) requires
that the sum of all these probabilities is
equal to one. Constraint (3) follows because
the left-hand side is the probability of being
in state j and the right-hand side is the same
probability computed by conditioning on
the state and action chosen one stage earlier.
This maximization problem is a linear pro-
gram (Manne 1960) and can be solved using
any simplex code. Although the model allows
for a randomized strategy, the actual solu-
tion will not be random. For each state, only
one state/action pair will have a positive
probability indicating that this is the opti-
mal action.

White (1985, 1988) surveyed applications
of Markov decision processes and found
that despite a surge of work in the computa-
tional field and extension of Markov deci-
sion process theory, real applications were
surprisingly rare. Reasons suggested for the
lack of applications included the difficulty in
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obtaining transition probabilities and the
sheer size of the problems.

The size of the optimization problem is
determined by the number of possible states
and state/action pairs used. The number of
state/action pairs determines the number of
variables and the number of possible states
determines the number of constraints in
the linear program. Each state/action pair
requires one parameter estimate (the tran-
sition probability) for each of the possible
outcomes.

The more information about the call
history included in the state of the system,
the better the Markov model will represent
reality. However, this will also require
a large number of possible states and a cor-
respondingly large number of probability
estimates. Obviously the quality of the
optirnization model and the optimal policy
obtained reflects the quality of the estimates
used to define the model. Therefore, it is
important to carefully consider the trade-off
between model accuracy and accuracy of
the estimated parameters by only including
information in the states that is actually
found to be predictive of future outcomes.
We next describe an approach that can be
used to find a parsimonious set of model
states and to estimate the required transi-
tion probabilities.

2.2.  Logistic regression

In order to develop an optimal strategy, it is
necessary to select model states and estimate
probabilities for the possible outcomes of
each state/action pair. To do this, one could
arbitrarily select states and proceed to esti-
mate the probabilities directly from the raw
call history data of a similar survey; i.e.,
P,(a) could be estimated as the proportion
of calls in state i which were observed to
move to state j after action a was taken. The
problem with this direct approachi is that
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there will be a very large number of transi-
tion probabilities to be estimated for even
the simplest set of state/action pairs. As
a simple example, suppose the states are
defined only by the number of calls pre-
viously made to the number and the out-
come of the most recent call, and that the
possible actions are restricted to only two:
call back during the next possible day or
evening shift. Suppose that only four out-
comes are possible (busy signal, unanswered
ring, business or other nonresidential, and
interview) and that a maximum of 10 calls
are allowed to any telephone number. Since
there are only two possibilities for previous
outcome (busy signal and unanswered ring),
it can be seen that there are still 160 transi-
tion probabilities (10 values for number
of previous calls x 2 values for previous
outcome x 4 values for next outcome x 2
possible actions) to be estimated. Most
researchers, ourselves included, do not have
a call history data set large enough to sup-
port estimation of the number of parameters
that would be required for even this moder-
ately detailed specification of state/action
pairs.

One solution to this problem is to approx-
imate the transition probabilities using a
model with a manageable number of par-
ameters fit to the call history data. A logistic
regression model is one possible choice. The
categories to be predicted by the model are
the possible call outcomes and the explana-
tory variables are the characteristics of the
call history and selected action. Since more
than two call outcomes are possible, a poly-
tomous logistic regression model is needed.
If there were N possible outcomes, this
model assumes that the outcome for a case
having call history characteristics represented
by the vector X is multinomial with P, the
probability of outcome i satisfying

P

1

L = e®and P, +...+ P, =1
Py
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where B, is a vector of parameters to be
estimated for each of the N — | possible
outcomes. (The Nth outcome is the comple-
ment of the others.)

For example, for the simple set of state/
action pairs described above, the N = 4
outcomes are busy signal, unanswered ring,
business of other nonresidential, and inter-
view. There are three explanatory variables,
two of which are class variables. They are
the number of previous attempts, last out-
come (busy or unanswered ring), and the
next attempt time (day or evening). If there
were no interactions between explanatory
variables and the logit were linear in the
number of previous attempts, then there
would be 12 parameters to be estimated to
fit this model: 4 parameters (1 intercept + 1
coefficient for previous attempt + 1 indi-
cator coefficient for last outcome + 1 indi-
cator coefficient for next attempt time) for
each of N — 1 = 3 outcomes.

Once B;, the vectors of regression coef-
ficients, are estimated, the model can be used
to predict the probability of each outcome
for a unit having a specified call history X.
Such predictions are smoother than ones
made directly from the data, some of which
will be based on few observations. They will
also be subject to less sampling variability,
since far fewer parameters will be estimated.
However, since they may be subject to sub-
stantial bias resulting from a poor fit to the
data, careful checks of model fit, such as
examination of residual plots, should be
made (see, for example, McCullagh and
Nelder 1983).

A further advantage for the modeling
approach to estimating transition probabili-
ties is that it can aid in the selection of
state/action pairs. Hypothesis tests help in
identification of which characteristics of call
history and actions are predictive of call
outcome. These tests are better syited to
identifying the effects than ones performed
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directly on observed outcomes, since tests
on regression coefficients provide a way of
separating the effect of one characteristic
from that of the others; in other words, it
allows for testing the amount of predictive
ability for one characteristic while holding
the others constant.

2.3.  Model sensitivity to parameter
estimates

When an optimal strategy is implemented,
we expect that the actual improvement will
be somewhat less than predicted by the
model because the model selects optimal
actions based on estimates rather than true
probabilities. If we consider the linear pro-
gram defined above, we see that equation (2)
requires that the decision variables sum to 1.
The effect of this constraint is that the objec-
tive function will be very flat. Therefore, the
optimal value found by the model should be
relatively insensitive to errors in estimation
of the transition probabilities. In contrast,
the optimal policy may in some instances be
very sensitive to errors in the estimates. For
example, if in a particular state the probabil-
ity of an outcome with a high reward is
about the same for two different possible
actions, then the model will select the action
with the higher estimated probability. If the
actual probabilities are close, then even for
very accurate estimates, it is likely that the
wrong action will be selected. Fortunately,
this should not matter, because the two
actions are nearly equal with respect to the
expected reward.

3. Tllustration

To illustrate the method, this section
develops a calling strategy for a survey con-
ducted by the U.S. Bureau of the Census.
The target population is the same as that of
the Current Population Survey, which is
that of noninstitutionalized civilians in the
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United States. The survey has a planned
sample size of 600 households to be collected
over a two-week period. The strategy was
developed using data collected by the Census
Bureau during an experimental random
digit dial telephone survey (RDD-I). The
data includes call histories from two repli-
cates of the survey.

A Waksberg-Mitofsky design was used
for the survey, so there are nonworking,
business, and other nonresidential tele-
phone numbers among the numbers called.
When a nonresidential telephone number is
identified, it is replaced with a new randomly
selected number. It is important to identify
these numbers quickly so that they can be
replaced and a residential respondent can be
interviewed before the end of the survey.
Calls to nonworking numbers were excluded
from our analysis because we felt that
no strategy specifying calling times could
improve the efficiency of identifying such
cases. Business and other nonresidential
numbers were not excluded because the data
showed that the time at which these numbers
are called does affect how quickly they can
be identified.

3.1. Estimates of transition probabilities

In order to develop a call scheduling strat-
egy, it is first necessary to determine the
important factors that are predictive of
future outcomes. These are the factors that
will be included in the state description and
used to estimate probabilities for the poss-
ible outcomes of a call. The data are from a
survey identical to the one we are designing
and are therefore ideal for determining the
important predictive factors, for estimating
probabilities, and comparing the strategy
obtained from the optimization model.
The data base used to make these esti-
mates contained information about the time
of day, day of the week, and outcome of
each call made during the production phase



Greenberg, Stokes: Optimal Call Scheduling Strategy for a Telephone Survey

of interviewing. This included information
on 4,196 calls made to 1,474 telephone num-
bers, about 1,200 of which were residences.
The factors that affected probabilities of a
contact or interview and a method for esti-
mating the probabilities were described in
Stokes and Greenberg (1990). Those results
are summarized in this section, along with a
description of those factors affecting other
possible outcomes.

The outcome of each call to a telephone
number in our sample was classified into
one of six categories: business or other non-
residential, busy, unanswered ring, other
noncontact (such as fast busy or silence),
interview, or contact. A call was classified as
an interview only if the entire questionnaire
was completed. Every other case in which a
residential respondent answered the tele-
phone, such as a partial interview, an
appointment to call back, or even a refusal,
was classified as a contact.

The possible actions making up the strat-
egy are the day and time at which a call to
a given telephone number will be made. The
choices for time were described by the shift:
day (9:00 a.m.-5:00 p.m. weekdays), evening
(5:00 p.m.-9:00 p.m. weekdays), or Saturday
(10:00a.m.-4:00 p.m.). The data did not
support a finer classification of these time
shifts. That is, morning and afternoon did
not show a statistically significant differ-
ence, nor did early and late evening. Data
were not available for call attempts made
outside of these shifts.

In order to find the optimal strategy, esti-
mates of probabilities of each call outcome
for any action and call history pair were
needed. In the case of first calls there is
no previous history, so the only possible
explanatory variable is the time of the call.
Estimates of these probabilities for first calls
were made from the 1,474 first calls by
assuming a simple multinomial model.
These estimates showed that the probability
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of a successful outcome (either an interview
or contact) was highest for the evening. This
observation has previously been made by
several authors for a variety of target popu-
lations (e.g., Kulka and Weeks 1988; Vig-
derhous 1981; Warde 1989).

Estimates of the probabilities for subse-
quent calls to a number were made from a
polytomous logistic regression model built
from the 2,722 additional calls made to the
telephone numbers which were not contacted
in the first attempt, the same data base used
for fitting a model for prediction of the
probability of interview or contact in Stokes
and Greenberg (1990).

The dependent variable in the model is
the categorical variable “outcome” which
has the six possible values described above.
The explanatory variables found to be use-
ful for prediction of outcome probabilities
are basically the same as those found in
Stokes and Greenberg to predict the prob-
ability of the one outcome interview or con-
tact. The effect from each of these factors
will be discussed briefly.

1. Shift during which the call was made.
As with first calls, we found that subse-
quent calls made in the evening have
higher probability of resulting in a con-
tact or interview. The shift of a call
attempt is indicated using the variables
DAY SHIFT and EVENING SHIFT.
(The third level is indicated when both of
these variables equal zero.)

2. Number of previous attempts to the
number.
The probability of an interview or contact
decreases steadily as number of previous
attempts (ATTEMPTS) increases, while
the probability of an unanswered ring
increases rapidly.

3. Timing of previous unsuccessful, calls.
Next, the timing of previous unsuccessful
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calls has an effect on the likely outcome.
When a previous weekday attempt made
in the day had resulted in an unanswered
indicated by the variable D,
the probability of a contact or inter-
view was reduced for subsequent day-
time attempts. Similarly, a previously
unanswered evening call, indicated by
the variable E, reduced the probability
of a successful outcome on subsequent
evening calls. These effects are included in
our model as interactions between the
variables D and E and specific shifts.
A similar observation could not be con-
firmed from the data for Saturday calls.

ring,

4. Elapsed time since the previous call.
Longer waiting times between calls
increased the probability of interview or
contact outcomes. Two variables are used
in the model to describe waiting time.
One is the number of days since the last
attempt (LAGDAY) and the other is an
indicator of whether or not the previous
call was within two hours (IMM).

5. Previous outcome.
The previous outcome received for a tele-
phone number is related to its current
outcome. There are three possible pre-
vious outcomes: busy, unanswered ring,
and other noncontact. Of these three,
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busy has the highest probability for a
subsequent contact or interview outcome,
while unanswered ring has the lowest
probability. This remains true regardless
of the elapsed time since the previous call;
that is, there is no interaction between
elapsed time and previous outcome. Also,
repeated unsuccessful outcomes are
extremely common; that is, previous out-
come of busy increases the probability of
a busy outcome, with similar effects for
unanswered ring and other noncontact.
This effect is included in the model by
the presence of two indicator variables,
LAGRING and LAGBUSY, which
describe the previous outcome.

In addition, interactions among several
pairs of variables were considered; no other
interactions were significant. The logistic
regression model required estimation of 50
parameters. In contrast, if we had estimated
the probabilities directly from the data
without using a model, we would have to
estimate 2,592 parameters from only 2,722
observations. The model was fit by maxi-
mum likelihood. The analysis of variance
table describing the fit of this model to the
data is shown in Table 1. A strong predictive
ability is shown for each of the variables
described above. The fit of the model was

Table 1. Analysis of variance table for logistic regression model

Source Degrees of freedom Chi-square P-value
INTERCEPT 5 26.11 0.0001
DAY SHIFT S 49.69 0.0001
EVENING SHIFT 5 12.63 0.0271
ATTEMPTS 5 69.26 0.0001
LAGDAY 5 11.46 0.0429
IMM 5 16.16 0.0064
LAGBUSY 5 43.71 0.0001
LAGRING 5 130.70 0.0001
DAY SHIFT x D 5 81.69 0.0001
EVENING SHIFT x E S 28.68 0.0001
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evaluated by examining plots of weighted
residuals for all six categories against pre-
dicted values and the variables LAGDAY
and ATTEMPTS. The only trend apparent
in our plots was that the model was slightly
more likely to underestimate the probability
of contact and interview when those prob-
abilities were small than when they were
large. The number of such cases was small
enough that we do not consider this to be a
problem.

While our model appears to fit well, the
variance of parameter estimates would be
smaller if more data had been available.
With a larger data set, it is possible that
other factors, interactions, or finer classifi-
cations of the time shifts may have been
statistically significant. In addition, if more
data were available, it would be possible to
develop separate models for each call so that
the predictive factors could be different for
different values of the variable ATTEMPTS.

3.2.  The optimization model

A Markov decision process is used to model
the problem of selecting an optimal calling
strategy for working telephone numbers.
The state of the system is described by the
following information about the history of
calls to a particular phone number:

1. whether or not this number was ever
called and received an unanswered ring
during a weekday day shift (D),

2. whether or not this number was ever
called and received an unanswered ring
during an evening shift (E),

3. the outcome (PREVOUT) and time
(TIME) of the previous call, and

4. the number of attempts (ATTEMPTS)
already made to this phone number.

After observation of the state, an action,
i.e., the time of the next call is chosen. Based
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only on the state and the action chosen, the
probability distribution for the next out-
come is determined. For each state, only
certain actions are feasible, as the time of the
next call must be after the time of the
previous call. This is why we include TIME
in the state description even though it is not
used as a variable predictive of outcome.
The model state combined with the selected
action determines the values for all of the
variables used in the logistic regression
model described in the previous section.
Therefore the transition probabilities for
this optimization model can be estimated
from the RDD-I data using the logistic
regression model. The action selected and
the outcome obtained determine the next
state and the reward earned.

When the outcome of a call is a business
or other nonresidential number, the prob-
ability distribution for the next outcome is
determined by assuming that a brand new
phone number is being called. When a call is
unsuccessful, i.e., when the outcome is an
unanswered ring, busy, or other noncontact,
the probability distribution for the next
state is determined by the call history to that
phone number as described by the new state.
When a call results in an interview or a
contact without an interview, a reward is
earned, no further calls are made to that
number and the process starts over. When
the survey period ends before a contact is
made a negative reward (penalty) is earned
as the process starts over. The objective of
the Markov decision process is to maximize
the long run average reward earned.

The objective of this study is to minimize
the number of phone calls required to con-
tact a household. However, an interview is
certainly better than a refusal or even an
appointment to call again. Contacts at cer-
tain times of the day, regardless of the skill
of the interviewer, are more likely to result
in an immediate interview, while contacts
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at other times are more likely to result in
refusals or appointments. In the RDD-I
data, approximately 54% of first contacts
that were made on the weekend resulted
in immediate interviews, while only 50%
of first contacts made in the evening and
40% of first contacts in the day resulted in
immediate interviews. By making contacts
at better times, the additional work required
to complete the case can be reduced. There-
fore a smaller reward is assigned when a call
results in a contact without an immediate
interview.

In the RDD-I data there were 866 inter-
views and a total of 6,227 calls to working
numbers. Therefore, the strategy used in
selecting times to call resulted in 0.1391
interviews/call. Of the interviews, 492 were
made at the first contact and the remaining
required additional calls. A total of 613
phone numbers had contacts that did not
result in immediate interviews. In the
Markov decision model the process starts
over with a new phone number after a con-
tact. Therefore the model maximizes the
expected reward per call for calls made up
to and including the first call in which a
residential respondent answered the phone.
In the RDD-I data this included 4,196 calls.
If a reward of 1 is assigned for interviews,
then the reward, r, for contacts must be such
that

492 + r613

0.1391.
4196

Therefore a reward of 0.1493 is assigned
each time a call results in a contact without
an interview.

If by the end of the two week survey
period a phone number has not been distin-
guished as residential or not, the phone
number is assumed to be a residence and
counted as a nonresponse. In the model,
when the outcome of the last call of the
survey is unsuccessful, the call is counted as
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a final noncontact. In addition to minimiz-
ing the number of phone calls required to
contact households, it is also very desirable
to reduce bias by decreasing this final non-
contact rate. One way to do this is to assign
a penalty (negative reward) for this out-
come. Another way this noncontact rate
could be reduced is by setting a constraint
on the proportion of calls that result in
a final noncontact. To illustrate the first
approach, a penalty of 1 was assigned for a
final noncontact.

We have selected a reward structure that
depended only on the state of the system
and not on the action. Therefore, our objec-
tive function could be written as maximize
>, X, R(i)r,. However, if the cost of calls
in certain shifts (such as evenings and
weekends) was more expensive because of
overtime costs, then it would be appropriate
to have a different reward structure that
depends on the action taken.

In our state description, D and E may
each take on 2 possible values (either 0 or 1).
The variable ATTEMPTS takes on any
positive integer value and the outcome of
the previous call (PREVOUT) takes on 6
possible values (business or other nonresi-
dential, contact, interview, unanswered
ring, busy signal, or other noncontact). The
time of the previous call (TIME) could be
any one of 22 possible values (10 day shifts,
10 evenings, and 2 Saturdays). In addition,
we allow two phone calls to the same num-
ber in the same shift and so the previous call
may be either the first or second in the par-
ticular shift, which means that the time of
the previous call may take on 44 different
values. Fortunately, not every possible com-
bination of the variables, D, E, ATTEMPTS,
PREVOUT, and TIME is possible. For
example, when the outcome of the previous
call was a business or other nonresidential,
a new phone number is selected so the
new state must have D = 0, E = 0, and
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ATTEMPTS = 1. The number of possible
states was further reduced by requiring that
ATTEMPTS = 4 on the fourth and subse-
quent attempts. In all, 982 states are allowed
in our model.

The number of variables required in the
linear program is equal to the number of
possible state/action pairs. If all feasible
actions are allowed, there are, on average,
11 possible choices for each action and nearly
11,000 state/action pairs. Each state/action
pair requires 6 parameter estimates (the
transition probabilities for the possible out-
comes). The number of variables and par-
ameters required was reduced by allowing
the choice of significantly fewer actions.
Following an unsuccessful call (with out-
comes of ring, busy, or other noncontact),
we chose to require another attempt to be
made by the end of the next weekday. This
is an example of a managerial decision that
is easily incorporated into the model. In all,
we allow 2,763 state/action pairs.

3.3. The solution

The linear programming formulation
described in the previous section was speci-
fied with algebraic equations using GAMS,
the General Algebraic Modeling System
(Brooke, Kendrick, and Meeraus 1988) and
the optimal solution to the linear program
was found using MINOS. GAMS greatly
simplified the effort required to generate and
solve a linear program with approximately
1,000 variables and 3,000 constraints. In this
section, the optimal strategy obtained from
the optimization model is discussed.

The strategy obtained from our model is
only applicable to a two week household
survey similar to the RDD-I telephone sur-
vey. The strategy obtained depends on some
of the modeling decisions we have described
above. For example, the only feasible
actions allowed in our model were calls
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made within the next weekday, so the result-
ing optimal policy obtained from the model
only includes those actions. The quality of
the resulting policy obtained from the model
also depends on the quality of the data we
had available for prediction. For example,
our data showed that the probability of a
successful outcome on a first call (either an
interview or contact) was the lowest for the
Saturday shift. This is not consistent with
the findings of Weeks et al. (1987) and Kulka
and Weeks (1988). This discrepancy may
have occurred because our data base inclu-
ded very few Saturday calls. This would
affect the optimal policy obtained from the
model. In spite of model and data limita-
tions, the policy obtained from our model
illustrates the possible improvements from
our approach. We describe the resulting
policy and improvements below.

Although the optimization model allows
a randomized strategy, the solution obtained
is not random. For each state, only one
state/action pair has positive probability
indicating that this is the optimal action. In
addition to indicating the optimal actions,
the solution to the linear program predicts
the fraction of calls with particular out-
comes. In the solution of the demonstration
model, the fraction of calls with predicted
outcomes interview, contact (without inter-
view), and final noncontacts are 0.1641,
0.1732, and 0.0124, respectively. If 600
households are to be interviewed, this would
translate to 282 interviews, 297 contacts,
and 21 phone numbers that would not have
been identified as residential or not.

The optimal strategy obtained from the
model could be summarized as follows:
Make the first call during the day and all
additional calls in the evening until the
phone number is identified as being residen-
tial or not. If the outcome of the first call
is a busy signal or other noncontact, then
following an unanswered ring in the evening
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shift, another attempt should be made to
make a contact during the day. Unsuccess-
ful call attempts made in the day are fol-
lowed by an attempt in the evening of the
next day. This strategy is different from that
obtained by Kulka and Weeks (1988), poss-
ibly because our data base included business
and other nonresidential telephone numbers
which are most easily identified by calls
during the day.

In general, there should not be two calls
made to the same number in the same day
and certainly not in the same shift. Excep-
tions to this rule of thumb occur toward the
end of the survey and before the first
weekend. For example, after identifying a
nonresidential number, a new phone number
is randomly selected. Calls to new numbers
are usually made during the day shift; i.e., if
a nonresidential number is identified during
an evening shift, the first call to a newly
selected number should be made in the next
day shift. However, on Friday evenings,
Saturdays, as well as Wednesday and Thurs-
day evening of the second week of the sur-
vey, calls to newly selected numbers should
be made immediately. Similarly, follow-
ing unsuccessful calls, subsequent attempts
should be made earlier as the time allowed
to complete the survey runs out. It is not
until the last weekday of the survey that it is
optimal to make two calls in the same shift.

Following an unsuccessful daytime call,
an evening call should be made. Typically,
these calls are made the next day of the
survey. However, beginning on Wednesday
of the second week of the survey, it is some-
times better to make the next call the same
evening instead of waiting and possibly run-
ning out of time. Whether or not a tele-
phone number is called twice in one day
seems to depend on how difficult it is to
contact a number given its call history. If the
probability of reaching a number is mod-
erately low, the number should be called
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sooner, so that more calls to that number
will be possible. However, if the call history
indicates that the chance of reaching the
phone number is extremely low, the number
should not be called twice in one day. This
may be because it is expected that both calls
will be unsuccessful.

The solution to the linear program also
allows calculation of the proportion of call
attempts that should be made in each shift.
This information allows planning for the
number of interviewers required for each
shift. The optimal solution in the demon-
stration model requires that about 42%,
51%, and 6% of calls be made in the day,
evening, and Saturday, respectively. More
notable, however, is the fact the model solu-
tion specifies that 39% of all calls should be
made in the day shift on the first day of the
survey. Almost no calls should be made
until the evening of the second day of the
survey when 19% of all calls should be
made. On subsequent days, significantly
fewer calls should be made in each shift. As
Weeks et al. (1987) point out, in practice,
this schedule may not be practical to imple-
ment. Because of a limited number of CATI
calling stations and interviewers, it will
probably be required to spread the calls
more evenly over the survey period.

Constraints on the availability of inter-
viewers and calling facilities could be easily
included in the optimization model by add-
ing constraints limiting the proportion of
calls that are allowed in each shift. To illus-
trate this, we added the constraint that at
most 15% of the calls could be made in any
one shift. Our original model only allowed
the first day or evening as possible choices
for calls at the beginning of the survey. To
make the new linear program feasible, we
allow first calls during the first two days and
evenings. The optimal policy obtained for
this model is a randomized strategy. The
new strategy requires that first calls are now
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Table 2. Comparison of optimization model results with RDD-I data

RDD-I Model 1 Model 2
Interviews 492 563 557
Contacts 613 594 604
Business 277 205 229
Non-contact 96 43 39
Total calls 4,196 3,432 3,465
Score 0.139 0.190 0.187

made in each of these shifts. If the optimal
policy is followed, 33% of calls will be made
in the day, 60% in the evening, and 7% on
Saturday.

We find that the optimal policy for subse-
quent calls is very similar to the one described
above. For telephone numbers that are first
called in the evening, the optimal strategy is
to follow an outcome of unanswered ring in
the evening by a call attempt in the day. All
subsequent calls should be in the evening
unless the call in the day had an outcome of
busy or other noncontact. In this case, the
model predicts that it will be necessary to
make additional attempts in the day. Other-
wise, all additional attempts should be made
in the evening. With the added constraint
limiting the proportion of calls made in each
shift, the effect of planning ahead for the
end of the survey is seen earlier. Starting on
Tuesday of the second week, some phone
numbers are called twice in one day. This
apparently happens earlier because calls to
some phone numbers were started later.

In Table 2, the predicted results of the
optimal policy obtained for the two models
are compared with the RDD-I data. The
results are scaled to represent 1,200 house-
holds, the planned sample size for the two
replicates of the RDD-I survey, so that the
numbers could be compared directly with
the actual data. The score computed for
each is the number of interviews and weighted
contacts divided by the number of call

attempts. The first model represents a 36%
improvement in this score over the actual
data. Specifically, 18% fewer calls should be
made resulting in more interviews and fewer
phone numbers that were never reached by
the end of the survey. The addition of the
constraints limiting the number of calls in
a shift resulted in a slightly worse perform-
ance, but still one that is significantly better
than the RDD-I data.

4. Recommendations and Conclusions

The optimal strategy obtained from the
Markov decision model does not always
take the action that will result in the highest
probability of an interview or contact on the
next call. Instead, this model is maximizing
the average reward earned on all of the calls.
For example, on first calls, the probability
of success is higher if the call is made in the
evening rather than the day. However, the
optimal strategy requires that first calls be
made in the day (unless time is running out
in the survey). While this strategy does not
result in the highest immediate reward, it is
clearly ““planning ahead” for the possibility
that additional calls will be required. The
planning in the strategy is also seen clearly
as time runs out in the survey. Often a call-
ing time will be selected that does not have
the highest probability of success. This is
required to allow for a sufficient number of
calls to reduce the probability of a final
noncontact at the end of the survey period.
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The results from the two optimization
models show that the calling strategy used
to collect the RDD-I data could have been
significantly improved. The number of calls
required and the number of phone numbers
that were never contacted are both signifi-
cantly lower when an optimal strategy is
used. The improvement is due to several dif-
ferences between the way the RDD-I data
was collected and the optimal strategy.
In the optimal strategy, a given phone
number is not (except near the end of the
survey) called twice in one day and once an
unanswered ring has been obtained during
the day hours, the phone number is not
called again during the day. During the
actual survey, these rules were frequently
violated. By maximizing an average reward
criterion, the optimal policy plans ahead for
the possibility of subsequent calls at the
end of the survey period. When an optimal
strategy is implemented, we expect that the
actual improvement will be somewhat less
than that predicted by the model because
the model selects optimal actions based on
estimates rather than true probabilities.

The optimal solution to the Markov
decision model also allows prediction of
the number of call attempts that will be
made in each shift. This information will
allow planning for the number of inter-
viewers required for each shift. The Markov
decision model will be very useful for staff
planning. In practice, during a particular
shift, the interviewers may not complete all
the calls that should be made, or they may
complete the required calls and have time
at the end of the shift to call additional
numbers. This means that the optimal strat-
egy will not be precisely followed.

A priority rule could be incorporated to
simplify this implementation problem. First
priority should be given to calling those
numbers which are to be called based on the
strategy of the Markov decision model.
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Since it is possible that only some of these
numbers will actually be called, they should
also be ranked to determine which numbers
should be called first. For example, highest
priority could be given, as suggested in
Stokes and Greenberg (1990), to those with
the highest probability of a contact or inter-
view. Since it is also possible that there
will be time to call additional numbers, the
remaining numbers should also be priority
ranked. Combining the results of the Markov
decision model with a priority rule will
result in a tool that is useful for planning a
survey as well as the day to day operation of
the interview facility.

Another possible use of the methodology
is to evaluate the currently used calling stra-
tegy. Since optimal expected rewards can be
estimated from the model, a comparison
with actual rewards provides information
about whether or not change in the current
calling rules are likely to produce large
gains.

The methodology we describe in this
paper could be used to find optimal calling
strategies for other telephone surveys. The
states and allowable actions would reflect
the specifics of the particular survey. For
example, the survey may be conducted over
a different length of time or may allow
different choices for the times of repeat
attempts. The constraints on the proportion
of calls should reflect the specifics of the
resources available for the survey. The
results from several different models could
be used to compare different survey alterna-
tives such as a longer survey period versus a
shorter one with more interviewers working
simultaneously.

The transition probabilities used in the
Markov decision model should reflect the
target population that is being surveyed.
These probabilities should be estimated
either using case management data collected
in a survey with a similar target poplrlation
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or preferably from data collected in an
experiment for that purpose. Use of a logis-
tic regression model has the advantage of
allowing identification of predictive charac-
teristics of call histories and also gives a
method for estimating transition probabili-
ties from a limited amount of data.
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