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Disclosure Control for Census Microdata
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Abstract: Approaches to disclosure control
for microdata from population censuses
in different countries are described. A
framework for assessing disclosure risk is
presented. The estimation of this risk is
considered in the context of census micro-

1. Introduction

The release of population census microdata
for secondary analysis can become an
area of conflict. Census authorities are
increasingly squeezed between users on the
one hand who want more and more
detailed microdata to be made available,
and “public concern” about the risk of
disclosure on the other hand.

Countries have responded to this dilemma
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data. Implications for disclosure control are
discussed.
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in different ways. Some, such as the United
States, Canada and Australia have come
down in favour of releasing files of suitably
anonymised census records in a formal and
public manner. Others, such as Sweden and
Italy have struck a balance between concern
with disclosure and demand for the data by
providing limited access to census microdata
to selected academics and others outside the
census office. These users are required to
take special measures to preserve confiden-
tiality, and may be required to do their
work in the census office.

Elsewhere, however, census microdata
are not available. While in most countries
this may be because of lack of user demand,
in some cases (e.g., in the Federal Republic
of Germany), the census authorities have
apparently taken the view that the risks of
breach of confidentiality outweigh the
benefits that would arise from making
samples of census records, however anony-
mised, publicly available. Although no
breach of confidentiality seems ever to
have occurred in those countries where cen-
sus microdata have been made available,
some census authorities presumably fear
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that it could still happen. Official exercises
like the census can easily become the sym-
bolic focus for protests of a more general
kind. As experience in Germany has
shown, serious public misgivings about the
use to which census data will be put can
actually jeopardise the census enterprise
itself (Butz 1985).

In Great Britain the Census Offices will in
1993 release two samples of anonymised
records (a 2% sample of individuals and a
1% sample of households) from the 1991
Census of Population, in response to a
request from the Economic and Social
Research Council, on behalf of academic
social scientists. The request, which is set
out in a report by the present authors and
others (Marsh et al. 1991), assesses the
potential benefits of census microdata and
sets them against the possible costs in
terms of the risks of disclosure. No such
microdata samples have been released
before from a census in Great Britain.

The aim of this paper is to develop a
general framework, within which dis-
closure risk can be assessed and controlled
for census microdata. Some approaches to
estimating the different components of
disclosure risk will be surveyed. Particular
reference will be made to the work of
Bethlehem, Keller, and Pannekoek (1990),
who showed how ‘““population uniqueness”
can be estimated from sample data if a
Poisson-gamma model is assumed. Some
new empirical evidence on the goodness of
fit of this model will be presented.

We concentrate on the real risks of dis-
closure, rather than on other risks which
might be perceived to exist by the public,
but which are not in fact real (Courtland
1985; Cox, McDonald, and Nelson 1986).
We are concerned only with the possibility
of statistical disclosure, whereby a user
links a microdata record to an identifiable
individual via their profile of census
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characteristics, and not with other forms
of disclosure, such as might arise from
breaches of physical security (Courtland
1985; Cox et al. 1986). Moreover, we con-
sider only methods of disclosure control
which involve various kinds of statistical
transformation of the raw census data to
produce the microdata for public release
(Dalenius 1977a) and not other contractual
or administrative methods (Gates 1988).

Two broad types of disclosure control
methods may be distinguished:

1. Methods which preserve the integrity of
the data
Examples include sampling individuals
by some representative scheme, sup-
pressing variables or combining
categories of variables.

2. Contamination methods
Examples include the creation of syn-
thetic microdata records from census
records for more than one individual
(Paass 1988), the addition of noise
(Spruill 1983; Kim 1986; Sullivan and
Fuller 1989), data swapping (Spruill
1983) or nonrepresentative sampling,
for example, of those individuals who
do not possess unique census records
(U.S. Department of Commerce 1978,
p. 29; Dalenius 1986).

For multipurpose datasets such as census
microdata, methods of the first type are
generally preferable to users. For this
reason, we devote the majority of this
paper to assessing disclosure risk and its
dependence on factors which can be con-
trolled by methods of type (1). We return
briefly to methods of type (2) in Section 7.
In Section 2 we shall introduce our
definition of disclosure risk in terms of an
identification rule, which links records and
verifies the link is correct. Aspects of such
rules are considered in greater detail in
Sections 3 and 4. The estimation of
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disclosure risk is considered in Section 5
and further issues are discussed in Sections
6 and 7.

2. Assumptions, Definitions and Basic
Framework

Our basic framework follows that of many
authors, for example, Paass (1988), Duncan
and Lambert (1989) and Bethlehem et al.
(1990). We consider an investigator who
attempts to disclose information about identi-
fiable individuals. We assume the investigator
has access to prior information about a set of
target individuals, whose identities (names
and addresses, say) are known to the investi-
gator. This set of individuals is termed the
investigator’s circle of acquaintances by
Willenborg, Mokken, and Pannekoek
(1990). In order to achieve disclosure, the
investigator is assumed to attempt to link
the prior information for the target indivi-
duals to the microdata records, using the
values of a set of key variables (Bethlehem
et al. 1990), which are available in both
the prior information and the microdata.
We write x; as the vector of values of the
key variables in the prior information and
X; as the vector of values in the microdata
for individual i. The distinction between X;
and x; allows for the possibility of measure-
ment error. Thus for an individual who is in
both the circle of acquaintances and the
microdata sample it will only be the case
that x; =X; if all the key variables are
recorded in an identical way in both
datasets.

While there seems to be broad agreement
in the literature on the basic framework
outlined above, differences do emerge in
the definition of statistical disclosure.
Fellegi (1972, p. 8) takes disclosure to arise
if “information can be deduced from the
published estimates that can be related to
a particular identifiable respondent.” U.S.

Department of Commerce (1978) and
Duncan and Lambert (1986) relax this
definition by replacing the exact determi-
nistic idea of deduction by ideas of
approximate determination or of prob-
abilistic inference. Such definitions have
natural applications to disclosure control
for tabular census data. For microdata,
however, a common overriding concern in
legislation governing the release of statisti-
cal information is to ensure that no micro-
data record can reliably be associated with
an identifiable individual (Paass 1988).
Our definition, which follows, embodies
this idea. The definition is based on those
of Cox and Sande (1979), and Paass
(1988). A linkage is said to result in
disclosure if both of two steps occur:

i. identification, 1i.., the investigator
succeeds in linking an individual to a
microdata record and is able to verify
with high probability that this link is
correct;

ii. the investigator consequently obtains
new information about this individual,
which was not available in the prior
information.

The requirement in (i) that the link be
verified is essential since, otherwise, any
guessed link could qualify as disclosure
and disclosure control would be impos-
sible. For further discussion of alternative
definitions of disclosure see Dalenius
(1977b), Duncan and Lambert (1989), and
Skinner (1992).

The crucial part of our definition is step
(i). If the prior information on a linked
individual includes all the information on
the microdata record then step (ii) and
hence disclosure is impossible. Thus it is
sufficient to consider the case where the
prior information does not include all the
information on the microdata record. But
in this situation if step (i) can be established
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then step (ii) follows automatically, pro-
vided the microdata record has not been
distorted by error. In what follows we
therefore focus on assessing the risk of
identification.

In order to arrive at a definition of
identification risk, it is first necessary to
consider the reasons which might lead
to an attempt at disclosure. There appear
to be two possibilities:

i. There might be genuine advantages to
be obtained from systematic record
linkage. For example, it is at least
conceivable that a commercial com-
pany which owned a large database
might seek to enhance the information
in it by attaching census information
to any individuals it could identify.

ii. Since the census is an important sym-
bol of government, an investigative
journalist or politically motivated indi-
vidual might try to disclose census
information on a one-off basis purely
to demonstrate that it was possible.

Given these reasons for attempting
disclosure, there seem to be two possible
scenarios, according to which the attempt
might take place:

a. the investigator first selects some target
individuals and then attempts to link
the record of prior information on
each of these individuals to one of the
microdata records;

b. the investigator first selects one or more
records from the microdata and then
attempts to link each of these to indivi-
duals in the general population.

As discussed by U.S. Department of
Commerce (1978, p. 27) and Paass (1988),
investigators whose reason for attempting
disclosure is (i), would be expected to
employ scenario (a), whereas those with
reason (ii) might employ either (a) or (b),
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in either case possibly carrying out a
“fishing expedition” for records with
“recognizable” combinations of character-
istics. We shall first examine the risk of
identification under scenario (a) and then
in Section 6 assess how this risk is modified
for scenario (b).

A procedure by which an investigator
attempts to link a microdata record with a
target individual and to verify the correct-
ness of the link will be called an identi-
fication rule. The possible form of such
rules will be considered further in Section
3. Like Duncan and Lambert (1989), we
suppose that the outcome of any identi-
fication rule is that the investigator either
decides to link an individual to one micro-
data record or else decides that there is not
enough information to link the target
individual to any record. The target indivi-
dual will be said to be identified by an
identification rule if the rule leads the
investigator to link the individual to a
microdata record. The identification risk
for individual i and a given identification
rule r is then the probability that the indivi-
dual is identified:

Identification risk for individual i
and rule r

= Pr (i identified by rule r).

(1)

The interpretation of this probability state-
ment requires some clarification. Duncan
and Lambert (1986; 1989) adopt a Bayesian
approach in which probabilities correspond
to the investigator’s subjective beliefs. Here
we adopt a frequentist approach. Under
scenario (a) above, we suppose that indivi-
dual i has been selected randomly from a
subpopulation S and is equally likely to be
any member of S. We may then equate the
probability of identification to the pro-
portion of members of S who would be
identified by the rule. The nature of S may
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reflect the degree of “selectivity” in the
attempt at disclosure. Thus, for general
attempts of type (i) above, S might consist,
for example, of all adults with a given credit
card, whereas for more selective attempts of
type (ii), S might consist of all individuals
falling into certain rare categories on one or
more of the key variables.

An advantage of our definition of prob-
ability is that it may be directly estimated
from empirical experiments, such as those
of Blien, Wirth, and Miiller (1992). In prin-
ciple, the definition could be extended to a
model-based approach in which the values
of the key variables were generated from
some model. Both in such a superpopulation
framework or in our original population
framework, the properties of an identifica-
tion rule can be calibrated by frequentist
criteria, even though the rule may itself
employ Bayesian methods for verification.

The outcome of any identification rule
can be either correct or incorrect and we
define the rate of false positives as

R;, = Rate of false positives of rule r
for individual i
= Pr (incorrect link|i identified by

rule r), (2)
where the probability statement is inter-
preted as before. Given the verification
requirement of the definition of identifica-
tion, we may restrict attention to the class
C,, of identification rules for which the rate
of false positives is below some threshold a,
say 10%. An identification rule might be
viewed as optimal for a given individual if it
maximises Pr (i identified by rule r) within
this class. The overall identification risk for
individual i may then be taken as

Pr (i identified)

= max Pr(i identified by rule r).

reC;q,

(3)

In many circumstances it will be imposs-
ible to establish a reliable link and the set
C,, will be empty, in which case Pr (i identi-
fied) may be taken to equal zero.

For simplicity, the probability of identifi-
cation will be evaluated conditional on
identification being attempted for just one
specific target individual and conditional
on a given scenario of an attempt at dis-
closure. The way in which such prob-
abilities for different individuals in the
investigator’s circle of acquaintances might
be combined into the overall probability
that at least one individual is identified is
discussed by Willenborg et al. (1990).

3. Identification Rules

In order to assess the risk of identification it
is necessary to consider the possible form of
identification rules. The simplest approach
is to separate the functions of linkage and
verification. A simple linkage rule involves
claiming a link if the key variable values
for the individual match those on a micro-
data record exactly. A naive verification
rule associated with this linkage rule
would be to claim that a link is correct
when there is only one record in the micro-
data sample which matches the individual
exactly, that is, the record is sample
unique. This rule is inadequate, however,
since if there is another individual in the
population with the same key variable
values then there is a probability of at
least 0.5 that the match is incorrect
(Duncan and Lambert 1989). Thus, in
order to obtain an identification rule with
an acceptable level of false positives, it is
necessary to verify that the individual is
population unique. Possible ways in which
this might be achieved will be discussed in
Section 4.

Provided there is no measurement error,
population uniqueness will be a sufficient



36

condition for an exact match to be verified
as correct. However, if there is measure-
ment error then different individuals might
be erroneously matched. Hence some
means of verifying that this is not the case
is needed. Some approaches to this prob-
lem have been suggested (Paass 1988;
Duncan and Lambert 1989; Sullivan and
Fuller 1989), although these have mainly
dealt with continuous variables and there
is not the space to pursue these ideas
further here. More fundamentally, the pos-
sibility of measurement error suggests that
the restriction of claimed links only to the
subset of cases where there are exact
matches might lead to too many false
negatives and hence to a non-optimal
identification rule in the sense of Section 2.
A variety of linkage rules which permit
discrepancies in some key variable values
have been suggested. Blien et al. (1992)
suggest defining alternative sets of key vari-
ables and making a link if there is an exact
match with respect to any of these alterna-
tive sets. Spruill (1983) and Strudler, Oh,
and Scheuren (1986) suggest linking the
individual to that record which minimises
the sum of absolute deviations or squared
deviations over all key variables. Verifica-
tion procedures for both these approaches
remain unclear, however. The more sophis-
ticated approaches of Paass (1988), Duncan
and Lambert (1989) and Sullivan and Fuller
(1989) incorporate the linkage rule and
verification rule in one procedure by speci-
fying a measurement error model and link-
ing only records for which the estimated
probability of a correct link is above some
threshold.

The question as to whether such rules
would ever lead to identification in the prac-
tical context of census microdata and what
the actual rates of false positives would be
is an empirical one for which at present
there is only very limited evidence. In an
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interesting study Blien et al. (1992, p. 71)
attempted to link 169,368 records from the
1987 ““microcensus” in one German state to
information on 10 key variables for 7,983
individuals in a handbook of German
scientists and scholars. This number of key
variables was ‘“the highest number of key
variables of the relevant handbooks.”
Using exact matching, subject to 16 alterna-
tive definitions of the key variables, and
rejecting any match which was not unique
in both the microcensus and the handbook,
they were able to link 14 records of which
only 4 turned out to be correct. The rate of
false positives was therefore 10/14. They
also applied Paass’s (1988) method which
allows for measurement error to a set of
key variables for which exact matching had
produced 7 links, of which 3 were correct.
Under two alternative assumptions about
the sizes of the measurement errors, Paass’s
method produced 9 or 11 links, of which
only 2 were correct in each case. The rate
of both false positives and false negatives
was therefore worse than for the exact
matching procedure. The practical failure
of Paass’s procedure here may be due to its
lack of robustness to assumptions about
the nature and magnitude of the measure-
ment error. It might be possible to reduce
the rate of false positives by reducing the
threshold specified in the method but this
might tend also to reduce the number of
correct positives towards zero. Indeed
Paass (1988) found in his study that for the
only two scenarios which involved solely
categorical key variables, the “address-list
broker” scenario and the ‘“industrial-
enterprise” scenario, his method gave no
links at all. The method only led to success-
ful links for three scenarios all involving
some continuous financial key variables
which are not characteristic of census
microdata.

For the remainder of this paper we
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propose for simplicity to restrict attention
to identification rules based on linkage
rules employing exact matching. While it
may be feared that such rules are non-
optimal, as mentioned earlier, evidence
from Blien et al. (1992) suggests that
methods which allow for measurement
error do not in fact appear to lead to more
correct links for the kinds of categorical
key variables and measurement error
typical of census microdata. Hence, on this
evidence, it appears our approach remains
conservative.

4. Verification of Population Uniqueness

In Section 3 we noted that an identification
rule should verify that an individual is popu-
lation unique, that is, that the individual’s
combination of key variable values is unique
in the population. In this section we discuss
ways in which this verification might take
place. By attempting to make each of these
ways difficult for the investigator, the census
authority can help to control disclosure.
One can imagine three ways in which
verification might be attempted.

4.1. Population lists

- If the investigator had access to some
comprehensive list of the population or
some specific subgroup of the population
defined by a census variable, it would be
possible to check whether a unique case in
the sample was unique in the population
(U.S. Department of Commerce 1978,
p. 26). For example, if the investigator’s
circle of acquaintances includes a black
female judge, aged 45, living in a particular
area, and if the census microdata sample
also yielded such a case, a list of all judges
which gave age, sex, ethnicity, and area of
residence could establish that such a person
was unique, and thereby reveal that person’s
identity.

The existence or otherwise of compre-
hensive lists containing sufficient census
variables to be usable for matching pur-
poses is a matter for empirical enquiry in
any country that is considering releasing
census microdata. In Britain, it is doubtful
whether any such list exists which could be
used in this way. Lists of professionals
holding particular qualifications usually
only contain name and sex, not age, and
often not even area of residence. “Yellow
page” telephone directories suffer similar
problems. Although several commercial
companies have the whole of the electoral
roll on file, the only variables they can
extract from that are area, household,
composition of adults, likely ages (from
name analysis) and the number of 17 year
olds — insufficient information for match-
ing; (for details of current activity in the
British social information industry, see
Sleight 1991). The largest of the more
detailed commercial databases is NDL’s
(National Demographics and Lifestyles)
Lifestyle Database (Patron 1991); this has
detailed records on only one in three house-
holds, a proportion which is probably
near the maximum possible by voluntarily
returned lifestyle questionnaires. It only
holds 5 of the 24 pieces of information avail-
able on the census: age, sex, marital status,
age of children and access to cars or vans;
it merges occupation and economic activity
status in such a way as to make it unmatch-
able with census information (Patron,
personal communication, August 1992).
Some Government managed registers
(such as the National Health Service
Central Register) are more comprehensive
but contain relatively few variables and are
maintained under conditions of strict
security to ensure their confidentiality
(Office of Population Censuses and
Surveys 1992). In principle, investigators
could attempt to compile a list themselves
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via their own fieldwork, but this seems likely
to be highly impractical for the sizes of areas
usually identified (e.g., no less than 120,000
individuals in Britain).

One can concede immediately that the
situation might differ in other countries,
and that the situation could change in
Britain. But the solution would be to group
categories of census variables released on
microdata to ensure that matches against a
vulnerable population list could not be
made. If dentists’ professional association
released a list of registered members contain-
ing their age, sex, and area of residence, one
would simply need to ensure that dentists
were not separately identifiable as an occupa-
tional group on the microdata sample that
was released.

4.2. Statistical inference

An alternative approach which does not
require the use of complete population
information is statistical inference. In this
approach it is recognized that population
uniqueness is a characteristic of the popula-
tion distribution of the key variables and the
problem of making inference about this
population characteristic given the sample
microdata is a problem of statistical infer-
ence. An analogous inferential problem for
continuous variables with measurement
error is discussed by Paass (1988), Duncan
and Lambert (1989) and Sullivan and
Fuller (1989). For categorical variables
Bethlehem et al. (1990) consider the estima-
tion of the overall proportion of population
uniques and Duncan and Lambert (1986)
consider prediction of individual values.
Here we are concerned with the prediction
of population uniqueness for given indivi-
duals.

To take an informal example of how
inference might proceed, consider again
the example of the black female judge,
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aged 45, for which just one single exact
match had been found in the microdata.
Furthermore, make the (unlikely) supposi-
tion that prior information is also available
on number of children, type of accommoda-
tion and number of rooms in the judge’s
dwelling. Suppose this information also
matches exactly with the microdata record.
It might be argued that this would be very
unlikely were the microdata record to be
for a different individual and hence that
population uniqueness could be inferred
with a reasonable degree of confidence.
We take a more formal approach to statis-
tical inference shortly.

4.3. Figures in the public eye

A third approach would be to argue that for
certain conspicuous target individuals, any
other individual with the same combina-
tion of census characteristics should be
public knowledge. Thus, all local public
figures with certain recognizable character-
istics, such as a female veterinarian, a
person from an unusual ethnic group aged
101 or a chief of police with nine children
and a Ph.D., might expect to be “publicly”
known in a local district. Similarly, certain
occupational categories (politicians, actors
and musicians) contain persons who are
in the public eye and such persons with
unusual characteristics might be expected
to be publicly known at a national level.
As discussed by U.S. Department of
Commerce (1978, p. 29), census offices
might largely hope to protect against any
confident inference of this kind by group-
ing categories in various ways. First,
restricting the size of area identified
helps to protect against the use of local
knowledge. Second, recognizable groups,
such as high profile occupational cate-
gories, could be combined with other less
visible groups. Third, extreme values of
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variables such as age, income or number of
children can be “top-coded.”

In summary, the only practical way in
which an investigator might infer unique-
ness with confidence appears to be the
method described in Section 4.2. The other
ways appear to be largely preventable in
advance by census offices. We now examine
this method in more detail.

The aim is to infer whether a given indivi-
dual i has a combination of key variable
values which is unique in the population.
One approach would be Bayesian, follow-
ing Duncan and Lambert (1986). An alter-
native frequentist approach, analogous to
our discussion of identification risk in
Section 2, would be to estimate the pro-
portion of population unique individuals
within some subpopulation S containing i.
If the population values are assumed to be
generated by a model, this proportion might
be replaced by Pr(population uniquel|S): the
probability that an individual is population
unique given that event S applies to the indi-
vidual. If this probability is high, subject to
the error involved in estimation, the investi-
gator could claim to have inferred popula-
tion uniqueness for the individual. In the
simplest case, S may be taken to be the
whole population. If Pr(population unique)
is not high then S might be taken to be
the event that 7 is sample unique and
Pr(population unique|sample unique) esti-
mated (of course, if i is not sample unique
then Pr(population uniquelnot sample
unique) = 0). If this is not high then an even
more restrictive S might be taken and so on.

To illustrate the estimation of Pr(popu-
lation unique) from the microdata, we con-
sider how inference might proceed under the
Poisson-gamma model of Bethlehem et al.
(1990). This model assumes that the fre-
quency of occurrence of each combination
of key variables has a Poisson distribution
with a rate which varies between different

combinations according to a gamma distri-
bution with parameters o and S. Under
this model

P = Pr(population unique)

4

=1+ Np)~ 1+ @
where N is the population size (see Appen-
dix). To illustrate how « and 8 and hence
P = Pr(population unique) can be esti-
mated we have used the Italian census
microdata for Tuscany described in Marsh
et al. (1991). We selected a random sample
of 10,000 individuals from 3.5 million
cases to represent an artificial microdata
sample and estimated o and (3 using a
procedure described in the Appendix.
Eight key variables were selected: area,
age, sex, marital status, housing tenure,
occupational group, employment status
and household structure. Three levels of
detail were considered for both area (1, 2
or 9 areas identified) and age (1, 5 or 10
year bands), making nine sets of key vari-
ables altogether. The estimates of o and
for each set of key variables are shown in
Table 1 along with the estimated values P
of P obtained by substituting these esti-
matesand N = 3.5 x 10, the original popu-
lation size, into formula (4), together with
the “true” values of P estimated (with
negligible error) from the 3.5 million cases.
The estimates P are similar to the true
values although a systematic bias is evi-
dent. Plotting both estimates and true
values against p = Pr(sample unique), for
example, shows clearly that as p increases
beyond 15%, say, there is increasing under-
estimation of P. Thus, for p = 54.1%, the
approximate 95% confidence interval of
0.33+2 x 0.007 = (0.32%, 0.35%) severely
underestimates the true value of 0.98%. In
the Appendix we consider a number of
possible reasons for this bias and.conclude
that the Poisson-gamma model must be
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Table 1. Estimates of P = Pr(population unique) from Poisson-gamma model

Areas Age & Jé] P P S.E. Pr(sample
identified band (107%) (1074 (%) (%) (%) unique)

(%)
1 1 year 5.15 3.35 0.14 0.08 0.002 22.8
5 years 9.34 9.10 0.01 0.03 0.001 9.7
10 years 12.45 13.04 0.00 0.02 0.001 6.9
2 1 year 3.92 2.20 0.36 0.13 0.003 31.1
5 years 7.56 5.63 0.06 0.05 0.001 14.9
10 years 9.10 8.92 0.03 0.03 0.001 9.9
9 1 year 2.26 0.85 0.98 0.33 0.007 54.1
5 years 3.63 2.60 0.26 0.11 0.002 27.6
10 years 4.99 3.61 0.14 0.08 0.002 21.5

misspecified in some way. It is, however,
beyond the scope of this paper to attempt
to find a better alternative. The only conclu-
sion we wish to draw from Table 1 is that,
because the estimated values of P are at
least in the right ball park and because
improved estimation might be possible
with alternative models, it should be
assumed feasible, without further evidence
to the contrary, that an investigator could
infer the value of P from the microdata.

The important point to note is that, for
values of P as low as in Table 1, the investi-
gator will be unable to use such values to
infer with any confidence that a link is
correct for any given target individual.

Now, as noted earlier, if the estimated
value of P turns out to be small, the investi-
gator could try instead to estimate the
conditional probability of population
uniqueness given sample uniqueness. Pro-
portions of individuals that are sample
unique are shown in the last column of
Table 1. For such individuals, the prob-
ability of population uniqueness is shown
in the Appendix to be raised to

Pr(population unique|sample unique)

_ (Ley

1+0 ©)

where § = N3 and n is the size of the micro-
data sample. As we would expect this is the
same as P in (4) if n = 0 but is larger than P
if n > 0 (it is assumed in the Poisson-gamma
model that o > 0, 8 > 0). For example, for
the values a=226x107, 6=297.5
above, we have P =0.33%, and if n/N =
0.02, we have Pr(population unique
sample unique)=2.33% which is greater.
However, this probability is still far too
low to infer uniqueness with confidence.

The increase in the ability to infer popula-
tion uniqueness which an investigator gains
by restricting attention to sample uniques
is a function of the microdata sampling
fraction for given « and 6. In Figure 1 the
value of Pr(population uniquelsample
unique) is plotted as a function of n/N
for fixed values of o =226x 107> and
§ = 297.5. The function increases from
P =0.33% when n/N =0 up to 1 when
n/N = 1. In general, the function is non-
linear but the value of « here is so small
that the function is visually indistinguish-
able from a straight line. For any values of
o, B3>0, the function is always convex
and this implies that

Pr(population unique|sample unique)

<P+ (1 —=P)n/N.
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Pr(population unique|sample unique)

P = 0.0033
0 1 n/N
Fig. 1. Probability of population uniqueness

given sample uniqueness as a function of the
sampling fraction

Hence, whenever the sampling fraction n/N
is small, only a small improvement in the
investigator’s confidence in population
uniqueness can be made by restricting atten-
tion only to sample uniques.

If the estimated probability in (5) is small,
then the investigator could restrict the sub-
population S still further and, in the limit,
attempt to specify and estimate a model
relating population uniqueness as a binary
response to all the key variables as explana-
tory variables. This would appear to be
difficult in the absence of population micro-
data but if it were possible then the investi-
gator could use the fitted model to predict
the probability of population uniqueness
for any target individual with given key
variable values and,.in principle, to select
that individual for which this predicted
probability was maximum.

5. Estimation of Identification Risk

Census authorities considering the release of
census microdata would like to estimate the
identification risk for alternative forms of
release, e.g., for different choices of cate-
gories of variables. Estimation of this risk
will necessarily involve judgements about

the possible prior information available to
potential investigators and the possible
scenarios of attempts at disclosure. One
direct approach to estimation involves the
use of empirical experiments such as in
Blien et al. (1992). Such experiments may
not only be very expensive, however, but
may also be impossible, for example,
because a decision about release is required
before the data are collected or because prac-
tical or legal reasons prevent the linking of
identifiers. There is, therefore, a need for sim-
pler approaches to estimation, and we now
indicate one approximate approach, first out-
lined in Marsh et al. (1991).

Let us suppose that the key variables and
the subpopulation S, from which the target
individual is randomly selected, are specified.
Given our constraint on false positives, we
may approximate the identification risk by
the proportion of individuals in S who
would be correctly identified by a reliable
identification rule. Assuming a rule based
on exact matching, it is necessary for correct
identification to take place that the following
two events occur.

A: the individual appears in the microdata,

B: the key variable values for the indivi-
dual are recorded identically in the
prior information and the microdata.

Furthermore, as argued in Section 3, in
order to verify that the link is correct it is
necessary to verify that the individual is
population unique and a necessary condi-
tion to be able to achieve this reliably is
that the individual is population unique, i.e.,

C: the combination of key variable values
for the individual is unique in the popu-
lation.

These events together with the further event:

D: the investigator is able to verify with
high probability that the individual is
correctly linked.
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All of these events may be taken as approxi-
mately necessary and sufficient for identifi-
cation and we may write:

Identification risk for individual i

=Pr(4 and B and C and D)

or in terms of a succession of conditional
probabilities:

Identification risk = Pr(4)Pr(B|4)
x Pr(C|4, B)Pr(D|4, B, C). (6)

The probabilities are interpreted, as before,
as the proportion of individuals in the sub-
population S for whom the respective
events apply. We suggest that rough esti-
mates of the first three components of risk
Pr(4), Pr(B) and Pr(C|A4, B) will often be
obtainable in practice and we discuss this
in the following three subsections. The
fourth component is more difficult to assess
and requires some qualitative judgement in
the light of the discussion of Section 4.
There seems room, however, for some
quantification. For example, model-based
methods as discussed in Section 4 might be
used to estimate from the microdata the
probability that an individual is population
unique for individuals in S who obey condi-
tions 4, B and C. The proportion of such
individuals for which this estimated prob-
ability is above 90%, say, might be taken as
an estimate of the probability of verifying
population uniqueness given 4, B and C.

In any case, Pr(4, B, C) provides an
approximate upper bound for the identi-
fication risk. For related discussion, see
Greenberg and Voshell (1990, p. 1) who
“regard the number of population uniques
present on the microdata file as one of the
components of a measure of disclosure risk.”

5.1. Event A: presence in the microdata

In the simplest case, the microdata sample is
selected by a randomised equal probability
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sampling procedure so that the first com-
ponent of the identification risk in (6) is

Pr(4) = 1/k

where 1/k is the sampling fraction. For
example, k = 50 in the proposed British
individual file. In practice, census non-
response and population change may tend
to reduce Pr(4) somewhat. For example,
Blien et al. (1992) only found 53 individuals
or 0.66% of the 7,983 individuals in their
handbook to be present in the microcensus
sample even though the sampling fraction
in the microcensus was 1%.

We may usually expect Pr(4) to be
unaffected by the choice of subpopulation
S since the randomised selection of the
sample will prevent “response knowledge”
(Bethlehem et al. 1990). However, some-
times there will be variations in inclusion
probabilities which might in some circum-
stances be useable by a malicious investiga-
tor to increase the conditional probability of
A given choice of S.

For example, for the 1980 U.S. census or
the 1986 Canadian census, the samples are
selected only from those households which
complete the long form of the census
schedule, which is only administered to
around one household in five. Thus, in the
(unlikely) event that the investigator was
able to ascertain that a target individual
had filled in a long form, the prior inclusion
probability would be increased five-fold.
Also, for some microdata the sampling
fraction varies between geographical
regions, for example, in the 1986 Canadian
census the fraction varied between 1/20
and 1/100 (Denis 1989).

5.2.  Event B: identical recording of key
variables in both datasets

There are three possible reasons why the
vectors x; and X; may differ, even though
the investigator may have attempted to use
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key variables which have common defini-
tions in the two datasets.

First, variables which appear in theory to
have the same definition may in practice be
operationalised in different ways: many
different definitions of social class exist,
for example, (Marsh 1986), and even less
contentious variables such as long-term
illness or access to a car are often measured
in very different ways.

Second, there may be a time mismatch
between the measurement of the variables
on the two datasets. Almost all the vari-
ables regularly collected on censuses are
subject to change. The only common time-
invariant census variables are sex, date of
birth, and place of birth, while some, such
as labour force participation status, can
change frequently. While in theory the
owner of a large database could freeze the
information about the known individuals
at the date of the census in order to facili-
tate matching, in practice these multi-
purpose databases are constantly updated,
often with information whose precise
dating is either not clear or not recorded.
Two years commonly elapse between the
date of the census and the earliest date by
which a user might expect to receive micro-
data; this time lag not only reduces the
probability of a perfect match but may
also be expected to reduce the probability
of attempts at disclosure (U.S. Department
of Commerce 1978, p. 27; Bethlehem et al.
1990).

Finally, the variables in either dataset
may be subject to measurement error
(including respondent error, coding error,
typing error and so on). The problems of
measurement error in census variables have
long been recognized (Hansen, Hurwitz, and
Bershad 1961). Census post-enumeration
surveys in Britain and the United States
illustrate the problems that can arise with
seemingly straightforward variables such

as number of rooms, housing tenure or
access to a car (Britton and Birch 1985;
U.S. Department of Commerce 1986).
Further evidence of response variation in
census-type variables such as ethnicity,
employment status, and housing character-
istics is given by Turner and Martin (1984,
chs. 4, 5 and 6) and Martin, DeMaio and
Campanelli (1988).

While it seems reasonable to suppose that
event B will usually be independent of event
A so that Pr(B|4) = Pr(B), it seems less
plausible that Pr(B) will be independent
of the choice of subpopulation S from
which the individual is randomly selected.
Fortunately for disclosure control, it seems
likely that Pr(B) will often actually be
reduced for those subpopulations with rare
characteristics which a malicious investiga-
tor is most likely to choose to focus on.
For it seems to be a common property of
measurement error that rare categories of
variables often display a higher error rate
than common categories. For example,
comparing linked 1971 and 1981 British
census records suggests that the error rates
for country of birth are lowest for England
and highest for the less common countries
of birth (Office Population Censuses and
Surveys 1988). Similarly, the 1980 U.S.
post-enumeration survey showed higher
inconsistency rates with rare tenures such
as living in accommodation rent-free than
owning one’s own accommodation (U.S.
Department of Commerce 1986, p. 77). This
property tends to reduce the probability of
condition B being achieved for just those
individuals with rare census characteristics
whom a mischievous investigator might try
to track down. Rare categories also arise
by crossing univariate categories, for
example, female dentists in a given town.
Such multivariate categories may also tend
to have higher measurement errors than
the corresponding univariate categories
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because of cumulation of errors. A simple
attempt to illustrate the possible magnitude
of cumulative measurement error on several
variables was made in Marsh et al. (1991).
On the basis of error rates estimated from
post-enumeration surveys for five key vari-
ables: household size, tenure, number of
cars and vans, economic activity and social
class, it was estimated that the probability
that all the variables would be correctly
classified in both datasets would be around
0.64, even using the same variable defini-
tions and taking measurements at the same
point in time.

Blien et al. (1992) found in their study
linking the German microcensus with a
handbook of scientists and scholars that
out of 53 common individuals, 43 had
incompatible values on at least. one of
the ten key variables so that the implied
estimate of Pr(B|4) is 0.19.

5.3.  Event C: population uniqueness

Just as for event B, it seems reasonable to
suppose that event C is independent of
event 4 so that Pr(C|4,B) =Pr(C|B).
Also, given the tendency discussed in the
previous subsection for rare characteristics
to have high error rates, we may expect
events B and C to be negatively associated
so that Pr(C) can act as an approximate
upper bound for Pr(C|B).

Let us first consider the case when the
subpopulation S, from which the target
individual is randomly selected, consists of
the whole population. In this case, Pr(C) is
equal to the proportion of individuals in
the population with unique combinations
of values on the key variables. This assump-
tion may be a reasonable first approxi-
mation for the first type of potential
investigator who wishes to use record link-
age to add information to an arbitrary
record from an existing large database.
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The value of Pr(C) will depend on the
number and detail of the key variables and
on the size of the population. Schlorer
(1975) carried out an experiment using
random subsets of 10 census-type key vari-
ables (with an average of 8.5 categories)
for a population of 31,465 individuals and
found that, using 4, 5, 6, 7, or 8 key vari-
ables, the proportions of unique combina-
tions were 1%, 11%, 32%, 56%, or 76%
respectively. In a population of 23,485
households composed of a father, mother
and two children, Bethlehem et al. (1990)
found the proportion of households with
unique combinations of 6 key variables,
consisting of ages of the father and mother
and ages and sexes of the two children (all
ages in years), to be 68%. For a larger
population of 87,959 records from the
1980 U.S. Census, Greenberg and Voshell
(1990) found, using 6, 10, or 15 key vari-
ables, proportions of unique combinations
of 0.4%, 9%, and 35% respectively.
Which of the above proportions of unique-
ness is the most realistic estimate of Pr(C)
for a specific census microdata file clearly
depends on the number of key variables
and on the size of the subpopulation
which can be identified by further key
variable information. Marsh et al. (1991)
conducted an experiment with Italian
census microdata using eight key variables
which were judged to err on the cautious
side on the basis of an investigation of
the availability of variables in commercial
databases. For a population of 3.5 million
individuals with nine areas identified to a
minimum size of 200,000 and with age
recorded in one year bands the estimated
proportion of uniques in the population
was about 1%.

Let us now turn to the second type
of potential investigator, who wishes
to achieve disclosure for its own sake
and who, it is at least conceivable, might
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select a target individual from some sub-
population S, defined by categories of key
variables which are perceived to be unusual.
Marsh, Dale, and Skinner (1993) carried out
an experiment on British census data with
six key variables and with different choices
of S consisting of the different categories of
each of the key variables, one at a time.
They found that the proportion of unique
cases was indeed greater for unusual cate-
gories and furthermore that the proportion
could be predicted quite reliably from the
relative size of the category. The implication
for disclosure control was that the fineness
of the category sizes should be restricted.

When evaluating specific proposals for
the release of census microdata, we suggest
that the census agency conduct a similar
study to those above, assessing the
sensitivity of the estimated value of Pr(C)
to alternative plausible types of key vari-
able information, to alternative amounts
of detail in the microdata and to alternative
possible subpopulations S. See Dalenius
(1986) for computational methods of deter-
mining population uniqueness.

6. The Alternative Scenario

In Sections 3-5 we have investigated the
identification risk for scenario (a) of
Section 2 in which an investigator, who
holds prior data on a target individual,
seeks a matching record from the micro-
data. Alternatively, the investigator might
employ scenario (b) and first select a micro-
data record before seeking a matching
individual from the general population.
Ironically, the only obvious rationale for
doing this would be a demonstrative breach
of confidentiality.

Let us suppose then that an investigator
selects a record from the microdata and sets
out to identify the person in the population
to whom this record belongs. One approach

would be to search a database containing
prior information on a number of indivi-
duals in the population. In this case, the
probability of success can be assessed in an
identical way to that discussed above, but
reversing the roles of the microdata sample
and the database. Following the approxi-
mate approach in Section 5, the only element
in equation (6) that would change would be
Pr(4), which is now given as the proportion
of the population in the database rather
than the proportion appearing in the micro-
data sample.

However, unlike the microdata sample
which was selected on a random basis, it
would now be possible to select an individual
from the microdata deliberately in order to
increase Pr(4) — the probability of the micro-
data respondent appearing in the database.
For example, if the investigator had a reason-
ably comprehensive list of car owners, by
selecting a car owner from the microdata,
Pr(4) would approach 1. But, as noted in
Section 4 under (1), databases which have
reasonably comprehensive coverage of sub-
groups defined by census variables, such as
government registers, often contain few key
variables, so that an increased value of
Pr(4) is compensated for by small values of
Pr(C|4,B). An alternative way to seek a
match would be by advertising for a person
with particular characteristics to come for-
ward and identify himself or herself. How-
ever, it would seem essential for the person
concerned to reveal his or her characteristics
voluntarily for this approach to work. Dis-
closure could not be achieved without the
person’s consent. This is not strictly a breach
of confidentiality on the part of the census
agency, and we therefore can exclude it
from the current assessment of risk.

7. Discussion

Disclosure control may be achieved by
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varying the factors, such as the sampling
fraction or the definition of categories of
variables, which affect the identification
risk. Given the definition of risk in equa-
tion (3), the effects of these factors need to
be assessed both in terms of their effect on
the proportion of successful identifications
for a given identification rule and also in
terms of their effect on the class of possible
rules for which a reliable and verifiable
identification is feasible. The latter may
involve checking for the existence of: (i)
lists with complete coverage of individuals
in subgroups of the population defined by
census variables and (i) categories of
variables such as occupation, which might
identify figures in the public eye.

The estimation of identification risk
depends crucially on what variables are
considered to be key variables. This implies
the need for continued surveillance of
external databases which might contain
census variables. It might be argued that
such surveillance is impractical. Thus,
McGuckin and Nguyen (1988, p. 196)
state that “there is no easy way to know
exactly what information is available to
the public nor is there any easy way to
evaluate its quality or how well it can dupli-
cate Census data. Moreover, it is impossible
for an agency that wants to release a public
use microdata file to keep track of new out-
side files and changes to existing ones.”
Whilst we recognize this difficulty, it is not
clear that it is always an impossibility. In
Britain, all personal data which are stored
on a computer are subject to the provisions
of the Data Protection Act 1984. The Act
gives individuals rights to find out and if
necessary challenge the information held
on them. Those who hold such personal
data are required to register as data users
and to state the purposes for which they
hold the data, and this register is open to
the public (Data Protection Registry 1989a).
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As a result, the most important holders of
data, and the information contained in their
databases, are relatively easily discovered.

All European countries which have rati-
fied the Council of Europe Convention on
Data Protection have agreed to abide by a
set of common principles governing such
personal data. While the Convention itself
does not cover the process of registering
data users (Data Protection Registry 1989b),
many countries in Europe have set up
registration procedures similar to those
operating in Britain, which would facilitate
discovery of the major users of personal
data. While it is true that the register
might not be comprehensive — it might not
be completely up to date, new information
might have been added to a database,
some private sector companies might not
be on the register because in some countries
they are not obliged to register — nonetheless
the existence of such registers and of know-
ledgeable staff to run them means that in
practice it is most unlikely that any major
data gathering exercise could escape notice.

A specific application of our general
approach to proposals for the release of
census microdata in Great Britain is
described by Marsh et al. (1991), who con-
clude that it would be feasible to produce
microdata which are both valuable to
potential users and for which the risk of
disclosure is “very small.”

Our approach to disclosure control has
assumed methods which preserve the
integrity of the data in the terminology of
Section 1. The alternative approach to
disclosure control is by contamination
methods, which cannot only reduce the
risk of identification, but also break the
automatic link between identification and
disclosure described in Section 2. Thus,
even if an investigator could correctly link
an individual to a microdata record, it
would still be difficult to disclose new
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information with confidence if there had
been substantial contamination.

The most important disadvantage of
this approach is that it can grossly distort
statistical analyses when substantial con-
tamination is applied. Contamination is
usually controlled so that certain predeter-
mined characteristics of the original data,
such as means, variances and covariances
(Kim 1986) and univariate distribution
functions (Sullivan and Fuller 1989) are
preserved. This may create no difficulties
for microdata released for specific applica-
tions, but the usual purpose of census
microdata is to provide a broad and
flexible data resource for uses which cannot
be determined in advance. Large numbers
of tabulations are produced to meet estab-
lished demand, but microdata might be
used, for example, for the analysis of
subsets of data on minority groups which
become of topical policy interest or to fit
binary response regression models which
might be selected only in the light of
exploratory data analysis of the microdata.
While predetermined characteristics such
as means and variances may not be affected
by contamination, uncontrolled characteris-
tics, such as binary regression relationships,
may be.

Appendix
Al. Poisson-gamma Model

Following Bethlehem et al. (1990) let K be
the number of possible combinations of
key variable values in the population. Let
F; be the number of individuals in the popu-
lation with combination i, i =1,...,K and
let f; be the corresponding number in the
microdata. We assume that combination i
occurs with probability 7; where the values
of my, ..., mg are generated by a gamma dis-
tribution with parameters « and £, such that
KaB = 1. We assume that F;, f; and F; — f;

are Poisson distributed conditional on x;
F|m; ~ Poisson (N;),
film: ~ Poisson (nm;),
(F; — f; )m; ~ Poisson [(N — n)m;]

and that f; and F; — f; are independent given
m;. It follows, by integrating out ;, that

1+a

Pr(F, = 1) = Naf(1 + NB)™

Note that this expression differs from
equation (6.4) of Bethlehem et al. (1990),
since we use the usual gamma parameteriza-
tion (e.g., Johnson and Kotz 1969, p. 125),
whereas the parameters ap and (g, say,
used by Bethlehem et al. (1990), appear to
be ag = a/N, Bp = BN. The expected num-
ber of individuals in the population for
which F; =1 is KPr(F; = 1) and the prob-
ability that an individual, selected at ran-
dom from the population, has a unique
combination is

P = Pr(population unique)
= N'KPr(F,=1)
= (1+ N0

which is equation (4). Similarly, the prob-
ability that an inividual randomly selected
from the microdata sample has a combina-
tion which is unique in the sample is

Pr(sample unique) = n ' KPr(f; = 1)
= (1 4+ ng)~0+),
(A1)
Using the fact that
Pr(F;=1,f; = 1|m)
= Pr(F; — f; = O|m;)Pr(f; = 1|m;)
we obtain similarly

Pr(Fi=17f,'=1)=naI@( +Nﬂ) (1+a)

and so the probability that an individual
randomly selected from the sample has a
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combination which is both unique in the
sample and in the population is

Pr(sample and population unique)
=1 fi=1)
=(1+Npg) U+,

Equation (5) then follows by dividing (A2)
by (Al).

=n"'KPr(F,
(A2)

A2. Estimation

Estimates (&, 3) of (a, 3) were obtained by
equating p, the observed proportion of
sample uniques, to formula (A1), substitut-
ing 3=1/(Ka), and solving for « using
Newton’s iterative method. The estimate P
of P was then obtained by substituting (&,
B) for (o, B) in (4). The standard error of
P was estimated by the usual §-method as
cpv(p)l/ 2, where straightforward algebra
gives

v(p) =p(1 = p)/n, ¢, = Pa(N)/[pa(n)],
a(n) = log(1 +npB)/(KB?)
—[1+ 1/(KB)n/(1 + n).

A3. Remarks on Lack of Fit of Model

On observing the systematic bias of P as an
estimator of P in Table 1, it might first be
asked whether alternative estimation proce-
dures, such as method of moments or max-
imum likelihood, as considered by
Bethlehem et al. (1990), might have given
different results. However, if the model
and assumptions are correct, then all these
estimators should be consistent and only
differ in their implied confidence interval
widths. Given our narrow confidence inter-
vals, it is necessary to question our model
and assumptions, rather than our estima-
tion procedure.

One assumption that is very questionable
is that we know K. The values we use for K
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exclude certain combinations of key vari-
ables, such as married two-year olds,
which we judge logically impossible. But
such judgements are inevitably somewhat
subjective. In fact, it turns out that P is
extremely insensitive to the choice of K.
For example, for Provinces and 1-year age
bands, the effect of doubling K is to change
P from 0.332 to 0.334 (& is roughly halved
and § is hardly affected). This insensitivity
may be seen alternatively by allowing for
K to be estimated with an error which has
variance vg and is uncorrelated with p. In
this case, the estimated standard error of P
becomes

[03 v(p) + cgvg]

Plnlog P/(1 + nfB)
—Nlogp/(1+np)]/(a(m)K*B).
Under the very conservative assumption
that vg = K2, the standard error of the
value of P, above, only increases from
0.0066 to 0.0074. The reason for the insensi-
tivity of P to K is that if o is very small, as in

1/2

where cx =

our case, then p=(14+nB)"" so that
B= (p~' —1)/n and
P=[L+N@p™ ~1)/n)™

which does not depend on K. For example,
this formula gives P = 0.335 compared to
the value 0.332 in the case above.

It seems, therefore, that the Poisson-
gamma model itself must be questioned.
One theoretically unattractive feature of
the model is that the probabilities m;,
which lie in the interval [0, 1], are modelled
by a gamma distribution, defined on the
interval [0, cc]. A more attractive model in
this respect would be to assume that N is
fixed, Fy,...,Fx are multinomial given
m,...,Tg with parameters (N, my,...,7g)
and the marginal distribution of each =; is
beta with parameters a and b. However, if
E(m;)=1/K — 0 and K — oo and if the
coefficient of variation of the m; converges
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to a finite non-zero limit as K — oo, then a
also converges to a finite non-zero limit and
b — oo as K — co. But, in this case, the beta
distribution converges to a gamma distribu-
tion with parameters @ = aand 8 = 5! and
the formulae for Pr(F;=1) and
Pr(F; = 1| f; = 1) become identical to those
for the gamma distribution under this repar-
ameterization. In other words, if we were to
fit this beta-multinomial model to the
microdata and estimate P as a function of
the estimated a and b, we would expect
almost identical answers to the Poisson-
gamma model. Hence, it appears that it is
some other aspect of the specification of
the Poisson-gamma model than that the
gamma distribution is not restricted to
[0, 1], that causes the bias in P. As a referee
notes, one possibility would be to extend the
Poisson-gamma model to a mixture of such
distributions.
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