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Disclosure Limitation Using Perturbation and Related
Methods for Categorical Data

Stephen E. Fienberg1, Udi E. Makov2, and Russell J. Steele1

1. Introduction

Disclosure avoidance methodology has developed over the past 20 years as a major area of

government statistics research and activity. The advances are impressive (e.g., see the pro-

gress chronicled in Subcommittee on Disclosure-Avoidance Techniques, 1994, especially

when compared with the methodology described in Subcommittee on Disclosure-Avoidance

Techniques, 1978). But all too often these advances appear to be unlinked to the analytical

uses to which most census and survey data are put and to the evolving methods of statis-

tical analysis. During this same 20-year period there have also been major advances in sta-

tistical methodology and theory. A theme of this article is that many of these statistical

tools that come from these latter developments have relevance to the area of disclosure

limitation methodology. For a number of reasons situations involving categorical data

in the form of a contingency table offer an excellent venue for such consideration.

In this article we:

· Review some current statistical ideas in use for data disclosure avoidance for categorical

variables.

During the past twenty-®ve years, the ®eld of disclosure protection has undergone a ``statistical
transformation'' and has begun to utilize the advances that have occurred within the ®eld of
statistics itself as well as in a variety of areas of application. This article reexamines some
of the approaches currently employed in statistical disclosure limitation methodology for
categorical data, e.g., cell suppression and data swapping, and relates them to the more
conventional statistical methods associated with loglinear models and the simulation of exact
distributions. It ties this perturbation approach to a general framework for the use of simulated
data which we described earlier in Fienberg (1996) and Fienberg, Steele, and Makov (1996).
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· Present a new statistical framework for data release.

· Relate these ideas and approaches to ``traditional'' statistical methodology associated

with loglinear models for cross-classi®ed categorical data and to the simulation of

associated exact distributions.

Before doing so, we outline a framework in which the problem of data-disclosure avoid-

ance methodology can be viewed. We consider four different parties: the agency or data

collector; the respondents or data providers; an intruder who wants to learn about one or

more data providers via the data to be released by the agency; users or secondary analysts

of the agency data. The question of interest to us is: What data can the agency release for

analysis by the users while protecting the respondents from the intruder (i.e., preserving

their con®dentiality)? The practical way in which this question has been answered is

through the application of some disclosure limitation methodology that the agency hopes

achieves the desired goals.

For most data releases, especially those from censuses, the U.S. Bureau of the Census

has either released data at high levels of aggregation or applied a data disclosure avoidance

procedure such as data swapping or cell suppression before preparing micro-data or tables

for release.

Consider a sample of n observations on p variables, which may be discrete or continu-

ous. Our general characterization is in terms of the smoothing of a multi-dimensional

empirical distribution function (an ordered version of the data), and sampling from it using

bootstrap-like selection. Both the smoothing and the sampling introduce alterations to the

data and thus a bootstrap sample will not necessarily be the same as the original sample ±

this works to preserve the con®dentiality of individuals providing the original data. Two

obvious questions are: How well is con®dentiality preserved by such a process? Have

the smoothing and sampling disguised fundamental relationships among the p variables

of interest to others who will work only with the altered data? In this article we focus

primarily on the second of these questions but we do discuss ways to approach answering

the ®rst.

In the next section we review some of the speci®c methods for disclosure avoidance

that have been proposed in the literature, and that ®t under the broad rubric of ``matrix

masking.'' In particular we describe two speci®c methods for ``matrix masking'' when

all of the variables are categorical ± a special case of cell suppression and data swapping.

Then, in Section 3, we explain how we view these methods in the context of the users'

analytical goals. In Section 4, we suggest a general strategy for disclosure limitation

that attends to the proposed goals in a non-standard fashion, and we relate the strategy

to some modern approaches from the statistical methodology literature. In Section 5,

we describe in further detail our current efforts at implementing a perturbation method

related to this general strategy in the context of contingency table problems. We end

with an outline of research that would put the general strategy suggested on a ®rm

theoretical foundation.

There are a number of excellent articles that attempt to bridge the gap between the

literature on disclosure avoidance and more general statistical methodology, beginning

with the pioneering work of Duncan and Lambert (1986) and (1989), and continuing with

contributions to the special 1993 issue of the Journal of Of®cial Statistics on con®dentiality
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and data access. This article builds both directly and indirectly on a number of these earlier

efforts.

The general strategy proposed here has appeared in other articles in the past; see e.g.,

Liew, Choi and Liew (1985), Little (1993), Rubin (1993), and Fienberg (1994b). Heer

(1993) has suggested a bootstrap method for contingency tables which is related to but dif-

ferent from our proposals for the use of exact distributions in Section 5. Finally, Kennick-

ell (1997) has recently reported on results of a multiple imputation approach to disclosure

limitation. To our knowledge, no previous authors have integrated these ideas with both

the full literature on loglinear model methods and that on disclosure limitation.

2. Matrix Masking for Micro-data

Duncan and Pearson (1991) give an excellent description of approaches to the masking of

microdata. Suppose that X is an n by p matrix representing the microdata for n individuals

or cases on p variables or attributes. Then matrix masking of the microdata ®le X provides

the user with the transformed ®le Z � AXB � C in lieu of X. The matrix A transforms

cases, B transforms variables, and C blurs the entries of AXB. Cox (1995) explicitly links

several of these methods, especially data swapping, to the matrix masking approach, and

Fienberg (1994a, 1997) provides a more detailed discussion of the link between matrix

masking and a number of proposed disclosure limitation methodologies. Fuller (1993)

and Sullivan (1989) provide an informative presentation of the effect of some speci®c

implementations.

A special case involving the deletion of rows is the method of cell suppression. Suppose

we are interested in summarizing a set of data in the form of a cross-classi®cation of

counts or nonnegative aggregates. Deleting or suppressing a cell value is equivalent to

the deletion of those rows of X for which the entries in columns corresponding to the

cross-classifying variables assume the values that specify the cell in question. Cell

suppression is widely used for data on establishments because counts of ``1'' or ``2''

may uniquely identify a respondent, or one or two establishments dominate an industry,

and thus their ``share'' comprises a large fraction of a weighted total. For simplicity

here we focus on the version of cell suppression that weights the respondents equally

and thus acts directly on a table of unweighted counts.

In the case of a simple table of counts, current practice at the U.S. Census Bureau and

elsewhere would reduce to the suppression of any cell where k $ 3 or fewer respondents

make up that cell's value. Such cells are referred to as primary suppressions. Typically an

agency using such a rule keeps the value of k as well as the method used for selection of

cells con®dential.

Because reported cross-classi®cations usually include the corresponding marginal

totals, suppressing a single cell produces multiple masks for the same matrix and, taken

together, these masks do not disguise the data ± the value of a deleted cell in a two-way

array can be retrieved from the other entries in the same row or column combined with

the corresponding marginal total. Thus methods for cell suppression in cross-classi®cations

also choose other cell values for suppression; these are often referred to as complementary

suppressions. Determining ``desirable'' patterns of complementary suppressions is an active

area of research, especially for multi-way cross-classi®cations (see e.g., Cox (1995)).
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It is important to note for the present context that the basic approach in cell suppression

is one involving margin preservation, i.e., in the 2-way table the method for suppression

preserves both sets of one-dimensional marginal totals, fni�g and fn�jg, by design. In

higher dimensions, cell suppression also preserves marginal totals but possibly those of

highest order. The principal problem we have with cell suppression as a method is

that it intentionally ``distorts'' the information in the table by purposely selecting cells

to suppress. As a consequence, users can be led into misleading and, in particular, biased

inferences on the basis of the cell values that are reported.

In 1978, Dalenius and Reiss (1978) proposed a method for ``swapping'' observations

while preserving marginal totals. According to Dalenius and Reiss's de®nition of a k-order

swap, all k-way marginals are preserved. No higher order marginals are guaranteed to be

preserved. They present no algorithm for doing these swaps or ®nding which ones are

available. They do, however, present theorems and statements about the probabilities of

there being swaps. We can view data swapping as a special case of matrix masking at least

in its simplest forms as noted above.

To understand the idea of data swapping, we consider a 3-way contingency table with

entries fnijlg as in Table 1. We want to track what happens when we swap the value in the

(1,2,1) cell of layer 1 of Table 1 with the (3,1,2) cell in layer 2. Table 2 shows the result.

Note that the 2-dimensional total for the ®rst two variables (adding over layers of Table 2)

is unchanged, as is the 1-dimensional total for the 3rd variable.

Thus in moving from the original table to the table with the swapped pair of observa-

tions we end up by perturbing the data, in a 2 ´ 2 subtable using a ``local move'' of a

pair of observations in a way that preserves the two-way totals, fnij�g, and the one-way

totals, fn��kg. Data swapping involves the repeated application of such moves of pairs

of randomly selected observations.

The U.S. Census Bureau actually used a variant of data swapping for the release of 1990

Census microdata, swapping a somewhat small percentage of records between ``nearby''

census blocks (see Grif®n, Navarro, and Flores-Baez (1989), Navarro, Flores-Baez, and

Thompson (1988), as well as Subcommittee on Disclosure Avoidance Techniques,

(1994), and Fienberg, Steele, and Makov (1996)). The results were considered to be a suc-

cess and essentially the same methodology has been proposed for data releases from the

2000 Census. As used in this context, data swapping also distorts the data to some extent

488 Journal of Of®cial Statistics

Table 1. Original 3 ´ 2 ´ 2 table with marginals

n111 n121 n1�1 n112 n122 n1�2

n211 n221 n2�1 n212 n222 n2�2

n311 n321 n3�1 n312 n322 n3�2

n�11 n�21 n��1 n�12 n�22 n��2

Table 2. Altered 3 ´ 2 ´ 2 table with marginals; (1,2,1) cell swapped with (3,1,2) cell

n111 n121 ÿ 1 n1�1 ÿ 1 n112 n122 � 1 n1�2 � 1
n211 n221 n2�1 n212 n222 n2�2

n311 � 1 n321 n3�1 � 1 n312 ÿ 1 n322 n3�2 ÿ 1

n�11 � 1 n�21 ÿ 1 n��1 n�12 ÿ 1 n�22 � 1 n��2



because the number of swaps is not released and the resulting increase in the variability

associated with the perturbations cannot easily be incorporated by the user into analyses

without full information on the extent of swapping and the margins that are preserved.

But if we view data swapping as a ®rst approximation to the method proposed in Section

5 below, then one can show that it is at least consistent. Thus the distortion is only an

increase in variance and not the systematic bias that might result from using data to which

cell suppression has been applied.

Both the method of cell suppression and the method of data swapping preserve marginal

totals in contingency tables. But this is also a property associated with loglinear model

methods. What is interesting is that despite the fact that cell suppression and data swapping

have been presented in the same sessions in various forums (see e.g., Cox and Sande

(1978) and Dalenius and Reiss (1978) and the discussion of the two articles by Zalkind

(1978)), previous authors have failed to note this clear relationship between these methods

as well as to methods in the contingency table literature. Reviewers and others have

questioned whether the preservation of marginal totals is a statistical necessity. In fact,

from a modeling perspective one can argue over the desirability of working with ®xed

margins, but as a practical matter it is consistent with the practice of many statistical

agencies, especially when the margins are matched with those from censal records or a

baseline survey, through poststrati®cation and/or raking. For us margin preservation in

tables is intimately linked to loglinear models, as we have noted, and working with the

``exact'' distribution for a given loglinear model given its minimal suf®cient statistics,

as we do in Section 5, is a convenience that matches the practicalities of current agency

practices.

More recently, Gouweleeuw et al. (1998) propose a postrandomization method (PRAM)

for data perturbation that ®ts, at least approximately, into the class of matrix masking

approaches. PRAM applies a randomization to selected variables in the dataset but in a

form that allows the user to draw proper statistical inferences. In PRAM, the equivalent

of the matrix A is stochastic and, instead of an additive matrix C, there is a sampling error

associated with each case whose variance depends on the parameters underlying A.

Gouweleeuw et al.'s version PRAM acts on individual or blocks of variables indepen-

dently, and is applied independently to each variable in a microdata ®le. Duncan and

Fienberg (1998) have proposed a generalization of PRAM to allow for multi-way depen-

dencies that preserve speci®ed marginal totals, in a fashion that is closely linked to the

methods described in Section 5.

3. Perspective on Data Release and Disclosure Limitation

Typical users of government statistical data are interested in relationships and causal

connections for policy choices. They use statistical models to describe such relationships.

Often their view of ``error'' is akin to including an error component in an analytical model

(such as a regression error term e in the equation Y � b0 � b1X � e�. Otherwise, the user

has limited ways to address the multiplicity of information on uncertainty and error

coming from the statistical agency that produces the data.

Most users are interested in analytical models, and especially ones with causal implications.

Thus we can think of the users' objectives as involving the linking of response variables,
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Y, and explanatory variables, X, through a statistical model that attempts to represent

some underlying substantive phenomenon. Unfortunately we rarely get to observe or

measure Y and X directly. What is produced through a census or a survey questionnaire

is often a related but fallible measure of the quantities of real interest. These we label

Y* and X*.

We can take as the user's objective the estimation of a multivariate cumulative distribution

function (c.d.f.), of the forms FYjX or FYjX;v for various values of X, or at least characteristics of

such a multivariate c.d.f. Here the parameter v might be a population mean or variance,m orj2,

oraparameter(s) ina statisticalmodel suchasa regressioncoef®cient,b, probablymultidimen-

sional in form. In the ensuing discussion we ignore those sources of measurement error in X

beyond these forms captured in the agency's own evaluation and data preparation activities.

Estimation of a multivariate c.d.f. is a general statistical problem that includes a number

of interesting special cases. For example, suppose that all of the variables in the user's

model and in the data set are categorical in nature, as is often the case in censal and survey

settings. Then the c.d.f. is essentially equivalent to the table of conditional probabilities

(for Y given X) that correspond to the cross-classi®cation of the variables in contingency

table form (cf. Bishop, Fienberg, and Holland (1975)). We refer to this special case again

in Section 5 and provide an extended set of references and notes on it.

At the risk of oversimpli®cation, we can characterize the standard approach to data

collection, processing and release roughly as follows:

· Collect and ``clean up'' the raw data. This includes editing, matching and all other

preliminary processing.

· Protect the data by applying some form of data disclosure avoidance methodology.

· Release the resulting data either as set of marginal tables for some larger cross-

classi®cation, or as micro-data ®les for the variables related to the ones of user interest

(Y*, X*).

· Estimate v directly using a sample-based quantity, v.

In effect, the user then follows the agency's lead and estimates the c.d.f. directly from

the released data using the ``empirical'' c.d.f. (suitably weighted to take into account

the impact of the survey design), ÅFY�jX�, or possibly a more elaborate and smoother

parametric estimate based on the estimated parameter, i.e. ÅFY�jX�;Åv.

While this approach might make considerable sense for some descriptive statistical

problems, the fact is that ÅFY�jX� and ÅFY�jX�;Åv rarely re¯ect fully aspects of sampling error

such as clustering, which many believe to be important, and they almost never re¯ect the

other sources of error listed above that typically dwarf sampling error. Further, given the

current state of the art of statistical disclosure limitation methodology, the user may still

be able to ``identify'' individuals in the released data. One way to overcome these short-

comings is to continue to address the various components of error and to separately

improve the approach to data disclosure avoidance. Alternatively, we can attempt to

reconceptualize the data reporting problem in a new and integrated fashion.

4. Alternative Strategy and Framework

Here we propose an alternative approach to the release of survey data that we described

earlier in Fienberg et al. (1996). We begin with the goals of the users and ask how agencies
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should organize the data of interest in order to provide data that ®t with the user goals. Our

approach is cast in terms of the release of a public-use micro-data ®le that is intended

to support analyses for the conditional distribution of Y* given X*. The ®rst step in our

prescription is:

1. Combine the census or survey data that the agency would normally have chosen to

release, in the form ÅFY�jX� and ÅFY�jX�;Åv, with formal statistical information on error,

e.g., form editing, matching, nonresponse, etc. and apply some form of parametric or

semi-parametric technique to estimate FYjX and FYjX;v using all available data by
ÃFYjX and ÃFYjX;Ãv respectively, where Ãv is a new estimate of v cast in terms of the

distribution of the variables of actual user interest, Y given X.

For non-parametric estimation of FYjX we can either think in terms of a classical statis-

tical approach using some type of kernel density estimator or a related type of ``smooth''

estimate, or in terms of a Bayesian approach based on the mixture of Dirichlet processes

(see e.g., West, MuÈller, and Escobar (1994)) or the use of Polya trees (Lavine (1992)).

These tools, however, have been used primarily in low-dimensional problems and thus

there needs to be additional research to study their adaptation to the high-dimensional

censal and survey problems which are the focus of this article. Even if these methods

are not especially ef®cient for statistical estimation purposes, they may serve the needs

of data disclosure avoidance which are crucial to the strategy outlined here.

In what ways does this new smoothed estimate of FYjX differ from the one that is explicit

or implicit in the current approach? We offer three examples. First, consider the release of

decennial census data. In both the U.S. and Canada, there has been extensive documenta-

tion of the extent of census undercoverage and how the resulting undercount is distributed

across groups in the population and across geographical areas. Failure to correct for

such undercoverage in the release of data leads to biased estimates of the true quantity

of interest, FYjX. Second, by smoothing data to re¯ect regression-like relationships we

can typically achieve improved estimates with much lower variances, although at the price

of some potential bias. Finally, by incorporating agency information on components of

error (which tends to increase variances) into the statistical estimation process, we produce

a new smoothed estimator of FYjX.

We hasten to add that this smoothing process should not be viewed simply as standard

model selection and ®tting, for the goals here are different. The smoothing process possi-

bly involves models but should not be carried out in a way that ``oversmooths'' the data.

Thus the results of smoothing should ideally be compatible with competing models for the

data which subsequent analysts could produce by working with the smoothed c.d.f.'s.

The next steps in our prescription are:

2. Instead of releasing the c.d.f. estimated in step 1 above, the agency now ``samples''

from it to create a ``pseudo'' micro-data ®le which we label as ÅÃFYjX and ÅÃFYjX;Ãv. We

use the overbar to indicate a sample from the smoothed c.d.f.'s in accord with our

earlier notation for the empirical c.d.f., which corresponds to a sample, and the

hat to indicate that we are sampling from the smoothed or estimated c.d.f.

3. The agency repeats the process of ``sampling'' and then releases the resulting replicate

``pseudo'' micro-data ®les.
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The ``pseudo'' micro-data ®les created in the approach outlined above have several

interesting features.

First, if we think of them as consisting of a set of released records for individuals,

then these ``individuals'' do not necessarily correspond to any of those in the original

sample survey. This fact enhances the public notion of the protection of con®dentiality

of responses even if an intruder might still be able to indirectly make inferences about

individuals in the original sample. This point is especially important from the perspective

of data disclosure avoidance. Since the individuals in the pseudo micro-data ®le are not

typically those from the original sample, we have at least in part addressed con®dentiality

concerns. After all, we no longer even appear to be releasing data for any individual from

the original sample. But this discussion of data disclosure avoidance is somewhat illusory.

It remains possible that individuals, whose values on Y and X are far from those for the rest

of the sample, may still in effect be regenerated through this complex statistical estimation

process and reemerge virtually intact in the pseudo micro-data ®le. Thus we would argue

that empirical checks on the effectiveness of data disclosure avoidance are still necessary

and, in particular, we would advocate examining the issue from the perspective of an intruder

(see e.g., Fienberg, Makov, and Sanil (1997), or Lambert (1993)).

Second, there is close connection here with two recently developed statistical methods:

(1) the bootstrap (Efron (1979), Efron and Tibshirani (1993)) which is a classical method

involving repeated sampling (with replacement) from an empirical distribution function;

(2) multiple imputation (Rubin (1987) and (1993)) which is a Bayesian method for gen-

erating values that are sampled from a posterior distribution. Our preference is to think

about the estimation implicit in the approach outlined here from a Bayesian point of

view. Thus, in effect, we are proposing that agencies should ®rst estimate the empirical

distribution function, generating the full posterior distribution of FYjX or FYjX;v and

then sample from it using Rubin's multiple imputation approach. From this perspective,

the bootstrap can be viewed as a way to sample from something approximately akin to

the mean of the posterior distribution.

Third, the sample design for the released records need not be the same as that for the

original sample survey. Thus, at least in principle, the agency could use simple random

sampling, or even sampling with replacement from ÃFYjX or ÃFYjX;v. Rubin (1993) empha-

sizes this point without explaining exactly how to determine what we might call the

``equivalent'' sample size for the released data ®les. The heuristic idea is that there is

only so much information available in the data and the resampling process cannot increase

this. To preserve the appropriate level of accuracy in the data we need to have a bootstrap

sample size that at least is conceptually equivalent to the ``effective sample size'' of the

complex sample design, thus re¯ecting a design effect. This notion is somewhat proble-

matic, however, as the ``effective sample size'' might well vary from one analytical set-

ting to another!

But perhaps the most important feature of the approach is that users can now analyze

pseudo micro-data ®les to estimate speci®c quantities of interest, e.g., v, using standard

statistical methodology. In essence the idea is that we can use a standard statistical method

such as regression analysis or something more elaborate and thus will produce consistent

estimates of the coef®cients of interest. What we cannot do, however, is use the usual

estimates of standard errors that result from the standard analysis tools.
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One of the lessons from both the bootstrap and multiple imputation is that while we can

estimate v using standard statistical methodology applied to the generated bootstrap or

multiple imputation sample, we cannot get a proper handle on the variability of our esti-

mates without using replicate versions of the pseudo micro-data ®le. Generating multiple

replicates, however, is a relatively simple task, and estimating variances using the multiple

versions of estimated parameters is then straightforward and does not necessarily require

special computer programs. This technique of using replicate samples can be exploited for

model selection as well, although that process would obviously be superior if done with

the full posterior distribution.

5. A Related Approach for the Categorical Data Case

Here we outline the estimation and simulation process of Section 4 for the special case of

categorical variables and cross-classi®cation. Our focus is on parametric estimation of

the c.d.f., which as we note above is equivalent to estimating the cell probabilities in a

contingency table.

The most common class of statistical models used in connection with contingency table

data is the loglinear model and for a set of basic sampling schemes (see e.g., Bishop, Fienberg,

and Holland (1975) and Whittaker (1990)) there is a direct relationship between a speci®c

hierarchical loglinear model and a set of marginal tables that correspond to the minimal

suf®cient statistics associated with the model. If we report only those marginal totals

appropriate for a loglinear model that ®ts the data well, then another investigator can,

in effect, reconstruct the cell probabilities for the full contingency table (cf., Fienberg

(1975)). Further, reporting only a speci®c set of marginal tables is saying that these are

the only totals needed for inference, and this is implicitly suggesting the appropriateness

of a speci®c loglinear model.

As we noted in Section 2, cell suppression and data swapping are in common use as

methods for disclosure limitation in categorical variable settings. Unfortunately there

seems to be a total disconnect between the literature on disclosure limitation for catego-

rical variables and the now standard literature on loglinear models for categorical data.

This is rather unfortunate since, as we noted in Section 2, the notion of margin preservation

is fundamental to both cell suppression and data swapping. In the former, cells are

suppressed subject to marginal constraints, and in the latter, individuals with one set of

margins ®xed are swapped between cells, thus preserving other totals. Thus key features

of these methods can be embedded in the loglinear model framework, thereby suggesting

alternative ways to approach disclosure avoidance. Further results from the loglinear

model literature may well be of value in understanding the properties of methods such

as cell suppression and data swapping (cf. the discussion in Fienberg (1995) and

(1997)), but here we pursue an alternative approach linked to the general strategy

described in Section 4.

Our approach needs to be embedded in a model selection and estimation framework

where the goal is to develop a replacement table for the original one whose entries are

``compatible'' with those in the original table, and which, when analyzed would allow

the user to draw inferences similar to those drawn from the original table. The ®rst step

in such a process is deciding on a model that captures the essential features of the data.
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Consistent with the initial smoothing stage of the general strategy proposed in Section 4,

we would advocate a model which ``over®ts'' the data, i.e., whose corresponding marginal

totals are more extensive than those that might result from a detailed analysis by a speci®c

user. This means that users who analyze the replacement table will be able to search

for models and relationships that remain when we preserve the marginal totals and are

contained within the model used to generate the replacement table.

Generating the distribution of all cross-classi®ed tables of counts that satis®es a given

set of marginal constraints is a problem which has occupied the attention of a substantial

number of statisticians in recent years (e.g., see Agresti (1992)). A number of algorithms

have been proposed but they have been implemented primarily for two- and three-way

cross-classi®cations. New ideas from the literature on graphical loglinear models suggest

that implementation for higher dimensions may at least become feasible (see e.g., Lauritzen

(1996), or Whittaker (1990) for details of graphical models). The framework we outline in

Section 3 requires us to produce a smooth c.d.f. and then sample from it. In the present

context, this seems to suggest, at least heuristically, that we should consider making draws

from the exact distribution conditional on a ®xed set of marginal totals.

Consider a three-dimensional contingency table with cell counts fnijg and expected cell

values fmijkg. We can ®t loglinear models to the expected cell values such as the model of

no 2nd-order interaction.

log mijk � u � u1�i� � u2�j� � u3�k� � u12�ij� � u13�jk� � u23�jk� �1�

with appropriate side-constraints for identi®cation purposes. The minimal suf®cient statis-

tics or ``fully ef®cient statistics'' for this model are the margins that correspond to highest

order terms: fnij�g, fn�jkg, fni�kg.

A special case of Model (1), in which u23�jk� � 0 for all j and k, is interpretable as

the conditional independence of Variables 2 and 3 given Variable 1. All conditional

independence models for a multidimensional contingency table are loglinear models.

In unpublished work, John Darroch and Gary Glonek attempted to construct a Markov

chain algorithm for generating draws from the conditional distribution given the margins

implied by a loglinear model. The transitions of their Markov chain in effect involved one-

step data swaps. Diaconis and Sturmfels (1998) show how to implement a generalization

of the Darroch and Glonek approach using the method of GroÈbner bases and provide a

proof of the convergence of the algorithm through the irreducibility of the Markov chain.

The important thing to note for the present circumstances is that simple data swaps are not

suf®cient to ``reach'' all possible tables. The method of GroÈbner bases gets around this

problem by introducing ``generalized data swaps'' that combine speci®c pairs, triples,

etc. of data swaps in very speci®c forms. Fienberg et al. (1997) explore this methodology

in connection with a number of different non-decomposable graphical loglinear models

and we illustrate results from this approach in the example below.

In order to ensure some level of smoothness in the resulting tables associated with

random draws from the exact distributions discussed above, we can retain only those

draws ``compatible'' with a more complex loglinear model. Note that the variability of

the perturbation methodology used here is directly accessible to the user, since anyone

can begin with the reported table and information about the margins that are held

®xed, and then run to Diaconis Sturmfels Markov chain algorithm to regenerate the full
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distribution of all possible tables with those margins. This then allows the user to make

inferences about the added variability in a formal modeling context in a form that is similar

to the approach to inference in PRAM by Gouweleeuw et al. (1998). As a consequence,

the procedure proposed here, and variants on it, represent a major improvement from

the perspective of access to data over cell suppression and data swapping.

An intruder can follow the user in attempting to identify individuals represented in the

cross-classi®cation. The principal tool at the intruder's disposal from the released data is

the information from the released marginal totals. These can be used to compute upper and

lower bounds on the table entries and thus to determine the disclosure exposure of the

release (see e.g., Fienberg (1998)). If the upper and lower bounds for some cells are

``too close'' to one another then the agency must suppress marginal information relevant

to the user's needs, thus restricting the utility of the released data. But then the decision to

suppress becomes a conscious one and its implications for the subsequent analyses by

others can be explored, and perhaps mitigated by instructions or information provided

to secondary analysts.

The intruder can alternatively use the information on the released marginals to generate

the relevant GroÈbner basis and then run the Markov chain procedure to yield all possible

tables with the ®xed margins. If cells with entries of ``1'' or ``2,'' for example, are almost

always unchanged across tables, this information is akin to that from the bounds, and the

response to it must be similar.

An alternative to the procedure outlined in this section would be the generation of a full

posterior distribution for the cell probabilities in the table, e.g., using the methods of

Epstein and Fienberg (1992) and/or Madigan and York (1995), and then sampling from

that posterior distribution as in multiple imputation. We hope to explore this approach

in a future article.

6. An Example

The following 3-way table example gives the cross-classi®cation of individuals by race,

gender, and income (collapsed into three categories) drawn from the 1990 U.S. Decennial

Census Public Use Files (see Table 3).

In Table 4 we present the maximum likelihood estimates for the expected counts

corresponding to the entries in Table 3 under the no 2nd-order interaction model with

multinomial sampling. We computed these in S-plus. The likelihood ratio chi-squared value

for the ®t of this model was 2.89 on 4 d.f. This is indicative of a moderately good model ®t,

although it is actually somewhat dif®cult to assess the ®t given the sparseness of the row in

the ®rst layer which has a total count of 1 in it.

Then we generated 1,000,000 tables with the same 2-way margins, using the Diaconis and

Sturmfels (1998) algorithm (see the Appendix for details). For each table, we calculated

the likelihood ratio chi-squared goodness-of-®t value based on the maximum likelihood

estimates for these margins under the no 2nd-order interaction model. In Figure 1, we

have plotted the ordered likelihood-ratio chi-squared values against the cumulative values

from the corresponding x2 distribution with 4 d.f. A good ®t to the x2 distribution would

be represented by a straight line. We can see by the plot that the distribution of our simulated

tables does not ®t the x2 distribution as well as we might have hoped. This is due again to the

495Fienberg, Makov, Steele: Disclosure Limitation for Categorical Data



sparse nature of the table. Because the maximum likelihood estimates for the sparse cells are

not whole numbers, we cannot reach tables that have very low-chi-squared values, because

we cannot get close enough to the maximum likelihood estimates. Yet, other than the bias at

the low end of the distribution, the distribution seems to be approximately chi-squared.

Clearly the selection of a single table from the distribution of all possible tables,

exempli®ed by the simulation study reported on in this section, poses a problem and we
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Table 3. Three-way cross-classi®cation of gender, race, and income for a census tract. (Source: 1990 Census

Public Use Microdata Files)

Gender � Male

Race Income level

< $10,000 > $10,00 and < $25,000 > $25,000 Total

White 96 72 161 329
Black 10 7 6 23
Chinese 1 1 2 4

Total 107 80 169 356

Gender � Female

Race Income level

< $10,000 > $10,00 and < $25,000 > $25,000 Total

White 186 127 51 364
Black 11 7 3 21
Chinese 0 1 0 1

Total 197 135 54 386

Table 4. Maximum likelihood estimates for data in Table 3 under the no 2nd-order interaction model

Gender � Male

Race Income level

# $10,000 > $10,00 and # $25,000 > $25,000 Total

White 97.09 72.15 159.76 329
Black 9.21 6.41 7.38 23
Chinese 0.70 1.44 1.86 4

Total 107 80 169 356

Gender � Female

Race Income level

# $10,000 > $10,00 and # $25,000 > $25,000 Total

White 184.91 126.85 52.24 364
Black 11.79 7.58 1.62 21
Chinese 0.30 0.56 0.14 1

Total 197 135 54 386



need to consider ``rejecting'' those tables far from the original data. We can do this using

some type of chi-squared distance measure (see e.g., those described in Bishop et al.

(1975) or in Read and Cressie (1988)), although we have not implemented such a rejection

process here to select a single table or even a set of tables to report.

The dimensionality of the table in this example has simpli®ed our task of implementing

the exact table methodology outlined in Section 5. Implementation for high-dimensional

tables would be computationally intensive, with the most dif®cult task being the genera-

tion of the GroÈbner basis used in the Markov chain. We continue to explore this methodol-

ogy for simpli®cations.

Finally, there is level of disclosure risk associated with this table, because of the two

counts of ``1'' in the marginal totals that are held ®xed. Fienberg (1998) computes the

upper and lower bounds for the cell entries in this example given the two-way margins,

and Fienberg and Makov (1998) discuss the same example in the context of estimating

the existence of ``population uniques.''

7. Discussion and Further Research

It is important to distinguish between the idea of generating public-case micro-data

®les based on real people and real data through a statistical simulation process, such as

we have outlined in this article, and the typical micro-simulation model, which may rely

indirectly on data via statistical models but which does not correspond to data on real

people. There is a serious difference between ``pseudo people'' who resemble individuals

from whom we have actually collected data of interest, and ``imaginary people'' for whom

we have invented data through a stochastic or nonstochastic modeling process. In this

article we propose the former, not the latter. There are, of course alternatives such as
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Fig. 1. Chi-squared goodness-of-®t plot for simulated values using the data in Table 3



aggregation and collapsing, which ®t the matrix masking framework outlined in Section 2,

and comparisons with them do need to be made in practice.

There are several virtues of the proposed framework outlined above. First, we believe that

it would force agencies to take their own data and their sources of error more seriously, as

these are key inputs to the modeling effort outlined in Section 4. Second, we believe that it

would solve a large part of the data disclosure avoidance problem. Third, the framework

would generate public-use micro-data ®les of a form that would allow users to apply

standard statistical methodology and model search methods (cf., Gouweleeuw et al. (1998).

There are a number of formidable technical details that need to be addressed before an

agency could properly implement the proposed framework in a systematic fashion. For the

exact distribution method for contingency tables outlined in Section 5, the computational

details for high dimensions remain problematic. For the general perturbation approach of

Section 4, examples of technical issues include:

· How should an agency combine the multiple sources of error and uncertainty?

· What smoothing methods should be used and how much smoothing is appropriate?

· How do we determine ``effective'' sample size for pseudo micro-data ®les? The

application of bootstrap ideas relies on certain series expansions (see e.g., Hall

(1992)), and these typically require the use of a bootstrap sample of the same size

as the original sample. What is the equivalent notion here?

· How many replicates are required for variance estimation? Rubin (1993) suggests the

use of four or ®ve replicates in the multiple imputation context. Efron and Tibshirani

(1993) use very large numbers of bootstrap replications. Multiple imputation gains its

power in this regard from the parametric speci®cation of the full posterior distribution.

Will a smaller number of replicates suf®ce for either approach?

Further, the actual implementation of algorithms of the highly multidimensional

situations involved in censal and survey data may require new statistical methods and

theory. For example, as we suggested in Section 5, the problem of simulating from

distributions for multidimensional contingency tables subject to marginal constraints

has been implemented primarily for two- and three-dimensional tables. Implementation

for higher dimensions requires new strategies and algorithms. These are at the forefront

of current statistical and mathematical research.

Finally, we may need to think about the statistical estimation problems outlined here

in a form different from that which we usually ®nd in the methodological literature. It

would be wrong, however, to think of the approach suggested here as being rooted solely

in bootstrap theory or as relying on Bayesian multiple imputation, as that would in essence

be expecting to get usable perturbed data at ``no cost'' in terms of bias and variability.

There is a price to pay for disclosure limitation, and the more restrictions one places on

the release of data the bigger the price. Moreover, because of the multiplicity of goals

that we are attempting to address, we may need to think in terms of providing the users

with data that enable them to approximate the conditional distributions FYjX and FYjX;v

rather than reproduce them in a precise statistical fashion. This relates to Meng's

(1994) notion of uncongeniality between an imputer's assessment and those assessments

of the users.

In this article, we have tried to suggest that both government agencies and users bear
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responsibility when it comes to utilizing census and survey data. It is no longer enough for

agencies to prepare public-use ®les and extensive sets of tabulations as they have in the

past. Nor can they continue to ignore the analytical goals of the users of their data. At

the same time, the users must learn how various sources of survey error affect their ana-

lytical goals, and to build such information into the statistical procedures they use. We

have argued that, by looking to and utilizing recent developments in statistical methodol-

ogy, we may be able to develop an integrated approach to the release and analysis of survey

data which will help us all learn to take uncertainty and error seriously. Perhaps the frame-

work proposed in this article will be the ®rst step towards this goal.

Appendix: Algorithm Used to Generate Chi-Squared Values in Example of Section 5

In Section 6, we used the GroÈbner bases generated for various examples as input to the

generation of values from the exact distribution using the Monte Carlo algorithm proposed

in Diaconis and Sturmfels (1998), and described in Fienberg et al. (1997). Sampling

from the output generated by the Markov chain involves some care since we need to avoid

the dependence associated with persistence in low probability states. We replicated the

following detailed approach used by Diaconis and Sturmfels (1998) in their contingency

table example.

Read real table, mle table and moves into respective structures

for i :� 1 to (number of tables ´ 500)

r1 : � randomly generated number from 1 to number of moves

temporarily make move r1 to ®nd table probability

r2 :� randomly generated number from Unif[0,1]

if table probability > r2 and move creates no negative cells

then make the move permanently

else do not make the move permanently

if i mod 500 � 0

then print current tables' chisquared value

next i

This algorithm is straightforward. In order to keep from oversampling tables that have a

low transition probability, the algorithm samples every 500th table, therefore requiring

500 ´ the number of desired tables iterations to run. The step which avoids the creation

of negative cell values was actually coded into the function that changed the table only to

make it obvious that one would not want to allow a table with negative cells. Another

way to do it would have been to assign zero probability to any table with negative cells.

The chi-squared value of the table was based on G2
� ÿ2logl, where l is the likelihood

ratio using the user supplied maximum likelihood estimates (MLEs) for the table cell entries,

under the multinomial sampling model. These are functions of the ®xed margins, and can be

computed using standard algorithms, e.g., we used the routine for MLEs in S-plus.
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