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1. Variance Estimation in the Presence of Nonresponse

Professor Bjørnstad addresses a new approach to an extremely challenging topic, variance

estimation in the presence of nonresponse and imputation. In general, when single

imputation in order to compensate for nonresponse is applied, the classical variance

estimation techniques tend to underestimate the true sampling variance which takes

the imputation process into consideration.

Starting with the compensation of nonresponse biases, three approaches may help to

reduce this bias when estimating means, totals, or proportions:

. applying weighting techniques, e.g., from the class of calibration estimators

(cf. Deville and Särndal 1992 or Demnati and Rao 2004);

. single imputation, which is widely used in National Statistical Institutes (NSIs);

. multiple imputation.

Weighting techniques focus on unit nonresponse problems. In the case of item

nonresponse with complicated nonresponse patterns, in general imputation methods are

used. The imputation algorithm in connection with the set of auxiliary variables aims at

compensating for a possible nonresponse bias assuming missing completely at random or

missing at random.

In order to estimate standard errors or to deliver confidence intervals, correct variance

estimates have to be elaborated. In the case of imputed data these suffer from

underestimating the true variance due to ignoring the randomness of the imputation

process. The variance of an estimator û ð y*Þ on the imputed data set y* can be estimated

via variance decomposition

V ¼ VðEðû*jy*ÞÞ þ EðVðû*jy*ÞÞ ð1Þ

which is conditioned on the imputed data set (cf. Berger et al., 2004, p. 7). Ignoring the

imputation would yield the inner variance of the latter term which generally leads to a

severe underestimation of the true variance of û*.

When applying single imputation and resampling variance estimation, the variance

inflation can be assured by sophisticated weighting methods or applying a single

imputation in each resample (cf. Rao 2005; Berger and Rao 2006; Berger and Skinner

2005; Berger et al. 2004). However, these methods are very computer intensive and hardly

applicable in large samples in the near future.
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Another approach was introduced by Rubin (1978), multiple imputation. Applying the

so-called Rubin’s combination formula one can derive the true variance of the estimate in

terms of a variance decomposition taking the mean variance of the estimates and the

variation of the point estimates under the different imputed data sets, the inner and outer

variance. The advantage of multiple imputation is that a wide range of estimators may be

used assuming a variance estimator is available for the statistic. However, proper

imputation methods are rarely used in official statistics. Hot-deck methods are generally

nonproper and hence cannot be applied in a classical multiple imputation framework in

the Rubin sense.

Bjørnstad aims at filling the gap between applying classical single imputation methods

and multiple imputation methods in order to draw correct inferences from point estimators

with imputed data. This is achieved by deriving an inflation factor k within Rubin’s

combination formula in the following way:
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where û
*

jð Þ denotes the estimate for the jth imputed data set.

Let me address two important items of Bjørnstad’s work, both important for its success

in follow-up work and practice:

. The computational effort may become severe in large-scale surveys. Applying the

Rao and Shao (1992) bootstrap variance estimator needs at least 100 bootstrap

replicates each with a newly imputed data set. The effort of applying Bjørnstad’s

multiple imputation routine would reduce the computational burden by at least 70%

assuming the use of m ¼ 30 multiply imputed data sets. The complexity of the

reduction is linear. The comparison with jackknife variance estimates is more

sophisticated due to the variety of newly developed routines that are based on

specialized weighting techniques.

. The generality of the multiple imputation framework of Rubin’s work allows the end-

user to apply different estimation techniques to the same m multiply imputed data

sets. Within Bjørnstad’s work, the critical question is related to the variance inflation

constant k whether it can be applied to different estimators simultaneously or whether

it has to be derived separately for each estimator.

Bjørnstad gives some ideas on how to elaborate the constant k. Under the given

assumptions, one may start using

k ¼
1

1 2
n 2 nr

n

ð3Þ

The major question arises whether this formula holds for practical purposes under

1. the given examples in Bjørnstad’s work and

2. beyond these examples under more general imputation rules and other estimators,

e.g., the highly nonlinear Laeken-indicators drawn from the European survey on

income and living conditions (EU-SILC, cf. Dennis and Guio 2004).
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Equation (5) in Bjørnstad gives an idea on how to elaborate estimates for k. However, in

order to estimate k from the sample, one has to evaluate the two conditional terms

VðEðû* yobsj
�
Þ and EðVðû* yobsj

�
Þ. The major problem may arise in evaluating the

conditioning on yobs. Applying resampling methods may spoil the gain in efficiency

mentioned before.

The two problems described above will be examined in a short simulation example

given below which is related to the general simulation study conducted within the

DACSEIS research project (cf. http://www.dacseis.de).

2. An Example

The aim of the small simulation study is to elaborate the critical variance inflation constant

k in a practical environment. This example strongly follows the Monte-Carlo study in

Münnich and Rässler (2005), whereas the framework of the Monte-Carlo studies in the

DACSEIS context is best described in Münnich et al. (2004) and its summary results in

Davison et al. (2004).

A classical problem in official statistics is the estimation of the number of unemployed

people. In Germany, several definitions of unemployment are to be considered. The

jobless, close to the ILO concept, are estimated from the German Microcensus. However,

in Germany people register as unemployed in order to ask for subsidies. Within the

German Microcensus, a link variable to this register variable is included in the

questionnaire, which allows this variable to be used as an auxiliary variable (cf. Wiegert

and Münnich 2004). The German Microcensus itself is a 1% stratified cluster sample of

households and individuals.

The synthetic universe is based on the DACSEIS universe from the federal state

Saarland including three subpopulations:

SUB0 The estimation variable is the number of jobless in the federal state Saaarland.

As auxiliary variable, the number of people registered as unemployed was taken.

SUB1 The same estimation task was conducted on a subpopulation which is a regional

stratum of approximately one third of the size. Due to the smaller size, one may expect

heterogeneities to play a more important role than in the case of SUB0.

SUB5 In this subpopulation only larger buildings on the same estimation programme

were considered. The population is more homogeneous than SUB0 and SUB1.

This notation is strongly related to the DACSEIS simulation study (cf. http://rpm.dacseis.de).

Within the simulation study 10; 000 Monte-Carlo samples were drawn to elaborate

point and variance estimates with m ¼ 30 imputed data sets for each estimator and Monte-

Carlo sample. In the case of SUB0 only 1; 000 replicates were conducted due to the long

computation time of already two weeks on a 3 GHz Intel Pentium PC on Windows XP and

the statistical software R. This fact will cause a little lack in precision of the Monte-Carlo

variance of the point estimator in connection with the task SUB0. The settings of the

Monte-Carlo study are strongly connected to the settings in Münnich and Rässler (2005).

As single imputation routines two hot-deck methods were applied called SI LFS2 and SI

LFS3, respectively, to have coherent notation to the DACSEIS simulation study

(cf. Laaksonen et al. 2004). These two single imputation routines were applied in the
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non-Bayesian multiple imputation framework with m ¼ 30 data sets. Further, the multiple

imputation routine PRIMA from Münnich and Rässler (2005) was considered, also with

m ¼ 30 data sets. Both the Horvitz-Thompson (HT) and the generalized regression

estimator (GREG), were used to estimate the number of jobless people. Due to the fact that

nonresponse was only implemented in the estimation variable, the classical calibration

estimator could be taken as a benchmark.

Figure 1 gives an overview of the estimation results for the three different populations.

As expected, the GREG estimator and hence the calibration estimator yields the best

results and dominates the HT estimates. This is due to the highly correlated auxiliary

variable which was used for the calibration and the imputation. One can also observe that

the population SUB1 turns out to be very problematic, which results from the

heterogeneous small strata to be considered.

The main question in this context is the critical evaluation of the variance inflation

factor k. Starting with Bjørnstad’s recommendation, one may assume the inflation constant

k to be

k ¼
1

1 2
n 2 nr

n

¼
4

3
ð4Þ

ignoring the stratification. The latter may play a more considerable role for the scenario

SUB1 where the strata with respect to house size class are all included and hence more

heterogeneous. The internal and external variances can be estimated from the simulations.

Further, with the help of Equation (5) in Bjørnstad’s article, an optimal constant kopt can be

derived, which is shown in Table 1 for the different scenarios.

As expected, the population SUB1 spoils all results. Nevertheless, the quick solution (4)

seems to work in the case of the GREG estimators. Applying the HT estimator, one may

6000 100000060000020000005000400030002000

3600034000 38000 40000 42000 44000 1e+06 2e+06 3e+06 4e+06

10000 16000 200000015000001000000500000014000120008000

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

HT MI LFS2

HT MI LFS3
HT MI LINBIN

GREG MI LFS2
GREG MI LFS3

GREG MI LINBIN
Calib JK

Fig. 1. Boxplots of the point (left) and variance (right) estimation distributions for the three scenarios SUB0

(top), SUB1 (middle) and SUB5 (bottom)
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assume a violation of the assumptions given by Bjørnstad. Looking a little into detail,

one can find very little sensitivity of the constant k to the results – which in this case is

the unbiasedness of the variance estimator under imputation. The latter can be drawn

from Figure 2.

The kernel density estimates were drawn from the standard settings within the

software R. One can observe a noticeably higher ratio for the HT than for the GREG

estimator. Hence, the sensitivity of the variance estimates is much lower for the HT than

for the GREG. This results in less biased variance estimates than expected.

The elaboration of the constant k as well as the estimates is not significantly influenced

by the number of imputed data sets m assuming this number to be at least 5. The difference

between m ¼ 5 and m ¼ 30 in the given simulation experiment was under 3%.

Nevertheless, for robustness reasons and for confidence interval coverage rates under

normality one may prefer m ¼ 30.

Table 1. Optimal constants kopt for the HT (left) and GREG (right) estimator under multiple imputation with SI

LFS2 and SI LFS 3 as well as under MI PRIMA

Estimator
Population
Imputation method

HT GREG

SUB0 SUB1 SUB5 SUB0 SUB1 SUB5

kopt,0 kopt,1 kopt,5 kopt,0 kopt,1 kopt,5

SI LFS2 1.6683 2.6946 0.9327 1.2572 1.4292 1.2817
SI LFS3 1.6908 2.6950 0.9526 1.2500 1.3978 1.2930
MI PRIMA 1.4426 2.2696 0.8139 1.1281 1.2169 1.0978
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Fig. 2. Kernel density estimates of the ratio of within and between variances within the simulation runs for

the three imputation methods SI LFS 2 (left), SI LFS 3 (middle) and MI PRIMA (right) and the two estimators

(GREG: top, HT: bottom)
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3. Final Remarks

The given example proved within the context of the DACSEIS study to be problematic in

some cases, especially under SUB1. Therefore, the simulation results can be seen in the

framework of a very unfriendly environment. In the case of the GREG estimates, the

results seem to be very good. However, the HT estimates remain a little problematic and in

the SUB1 example unacceptable. The latter problem may be reduced by considering

separately estimated constants k – the approach of predetermined constants via response

rates seems to have space for improvements here.

Further research may enable end-users to apply the methodology themselves also in

difficult environments. However, the questions remain:

1. How can one estimate k ideally – at least in cases where the plug-in value (4) may be

inappropriate?

2. How robust are the estimation results in connection with bad estimates of k?

Professor Bjørnstad presented his ideas at the DACSEIS final conference at the Q2004

Conference in Mainz (cf. http://www.dacseis.de). His presentation opened a vivid

discussion including Professor Rubin as the originator of multiple imputation in the

Bayesian context. Personally, I hope that this new approach will lead to further discussions

on its applicability and allow wider comparisons between the different above-mentioned

methods. One major goal will be the derivation of appropriate estimates of the variance

inflation constant k – this may very well bring the two multiple imputation ideas closer to

each other and also foster their applicability in practice.

Personally, I would like to congratulate Professor Bjørnstad for his utmost inspiring

idea and the eloquent presentation of his article.
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