
Discussion

Daniel Thorburn1

1. Background

Missing data can cause problems for both scientific experiments and official statistics.

Every contribution to the handling of incomplete data is therefore welcome. One way to

attack the problem is to collect more data on the missing elements, e.g., do follow-up

surveys, control studies or Hansen-Hurwitz plans. The other main approach is to find good

mechanical ways to improve the estimation phase, often, but not always, using auxiliary

data. Imputation is an example of this approach. Other examples are post-stratification,

calibration or reweighting by estimated response probabilities. One must then make prior

assumptions on the models and on the relation between the data and the nonresponse. Such

models may be simple, like MAR (Missing at Random) and MCAR (Missing Completely

At Random) or more complicated like those involving the assumption that the probability

of no reply can be described by a logistic function or that the drop-out follows the same

pattern as it did in another similar study.

It is important to choose the method that is most appropriate to the problem. Björnstad

does not discuss when imputation is suitable. He studies only very nice and simple cases,

assuming MAR or MCAR. His main conclusion is that it is possible to develop multiple

imputation methods that do not require draws from a Bayesian posterior distribution. He

does not discuss when his alternative is suitable and could be recommended. A good

introduction to the treatment of missing data is De Leeuw et al. (2003). For those who want

a more extensive treatment of multiple imputation Schafer (1997) can be recommended.

There exist many interpretations of the concept of multiple imputation and many

procedures have been suggested. Some of these techniques are quite silly and some of

them are quite ingenious. When I use the term multiple imputation it is in the original

sense of Rubin, but I will also include some developments using MCMC techniques.

2. Imputation is Not Needed at All in the Examples

All the examples of Bjørnstad are fairly simple. He assumes MCAR or MAR. In all his

cases he can just standardise the inclusion probabilities
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(or a similar formula in the stratified cases). He can then forget the nonresponse and use

standard estimators (e.g., Horvitz-Thompson and Yates-Grundy for variance estimation).

This is by definition true for MCAR. When only MAR holds a suitable estimate that uses

the auxiliary variables must be chosen. The ratio estimator of Example 2 and the (post-)

stratified estimators in later examples are examples of such estimators. This would have

given simpler computations and no imputation errors at all.

3. Ordinary MI Is Better from a Classical Point of View

3.1. Optimality

The properties of multiple imputation are usually derived using Bayesian techniques.

Multiple imputation is thus automatically inadmissible in itself. This result requires that m

tends to infinity and that the intended procedure is efficient when the complete sample, S,

is known.

It is well known that Bayesian estimates with flat (vague) priors and symmetric

distributions are ML estimates. General results on the optimality of Bayesian methods can

for instance be found in Fergusson (1967). It is also known that ML estimates under

assumption of normality are best linear unbiased estimates (BLUE). Thus for large m the

standard multiple imputation based on Gaussian distributions and a flat prior gives the best

non-Bayesian estimate, regardless of what the true distribution is (the distribution does not

even have to exist as in finite population sampling for this result).

Bjørnstad considers only (functions of) linear estimates in Section 5. Thus his methods

are inferior to ordinary multiple imputation as described by Rubin. It must be said that

since the datasets are usually large in survey sampling asymptotic results can be used. The

asymptotic efficiency of Bjørnstad’s method is often 1 and the loss in efficiency is thus

quite small. However, another disadvantage is that the computations are slightly more

complicated and more checking has to be done.

That Bjørnstad’s method is not optimal can also be seen from the fact that the variance

V̂ðûðs*i ÞÞ has only approximately the correct expected value. Bjørnstad notices this e.g.,

when he in Example 3.1 says that
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For the large datasets of official statistics this approximation is quite acceptable but it

does not hold for small sample sizes.

Thus from a non-Bayesian classical point of view Rubin’s methods with normal

distributions and vague priors are better for all the situations that Bjørnstad considers.

3.2. Hypothesis Testing and Confidence Intervals

One of the basic ideas of multiple imputation is that it is known what to do if there

are no missing values. In order to use this, the distribution of the completed samples,

Si; i ¼ 1; : : : ;m; should, given the response set, R, be as similar as possible to the

distribution of the full sample, S. This means that the imputed samples, Si, should
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optimally be drawn from the distribution of S given R. The conclusions will then be

close to those that could have been expected if you had known S completely.

Another basic idea is that the imputation should be repeated so many times that the law

of large numbers guarantees that the mean of your estimators does not depend on the

home-made randomness. From a practical point of view it is usually sufficient with eight

or ten independent imputations. But to get exactly the same result if the whole multiple

imputation is repeated, usually far more than 100 imputations will be needed.

The fact that Bjørnstad needs to use a number k . 1; shows that the variation in his

imputed samples is less than in the full sample. If the variation is too small many common

analyses cannot be made. For instance, one may want to perform a standard hypothesis

test. In ordinary multiple imputation this is done by computing the p-value in each

completed sample and then computing the average of them. This gives the true p-value for

that hypothesis. But since Bjørnstad’s samples have too small variation, he will reject the

null hypothesis too often. It must be admitted, though, that Bjørnstad’s method is much

better than many other imputation methods like mean imputation.

4. Ordinary Multiple Imputation Solves Also More General Problems

Bjørnstad considers only uninformative sampling, only linear estimates, only unit

nonresponse and only one variable at a time. He gives no clue how to treat informative

sampling, nonlinear problems, itemnonresponse or estimation of several parameters from the

same data.

Let me describe one or two naturally occurring situations of each type. It would be

interesting to know how Bjørnstad intends to resolve these standard multiple imputation

situations.

4.1. Informative Sampling

The frame contains an auxiliary variable X. The data have been collected in two phases.

The first normal data collection phase gives the response set R1. After that a specially

selected subsample R2 is taken from the nonresponse set and complete data is obtained

from that set. Using all data the response probability is estimated by the logistic expression

pðxÞ ¼
exp ðâþ b̂xþ ĉyÞ

1þ exp ðâþ b̂xþ ĉyÞ

where c is significantly different from 0. The missing data (S –– R1 –– R2) can now be

imputed taking into account both the informative sampling and the uncertainty about the

parameters e.g., a, b and c. The population total of Y is then easily estimated using multiple

imputation.

4.2. Nonlinear Problems

Data is collected from a sample of ten-year-old children on their performance in school in

five subjects and also on their behaviour and social integration into school. Data is also

collected on the parents’ education and the home conditions. A researcher wants to study if

there is a relation between the home conditions and the performance when the influence of

Thorburn: Discussion 479



the parents’ education is removed. He intends to use a simple Structural Equation Model

(SEM). He is also willing to assume that the nonresponse is MCAR. Using ordinary

multiple imputation it is quite straightforward to impute the missing values and to use for

instance LISREL on the imputed datasets analysing the appropriate SEM model. On the

other hand the estimated covariance matrices in the imputed datasets of Bjørnstad are

severely biased. As a consequence, a use of LISREL will give biased results. I cannot see

how this problem can be remedied.

4.3. Item Nonresponse

Data is collected from a number of persons in, say, a survey on living conditions.

However, some persons refused to answer some sensitive questions or gave unreadable

answers or just forgot to fill in an answer. The data matrix thus has some holes. The data

for the other variables can often be used to give information on the missing values for the

same individual. With multiple imputation it is quite simple to use these answers to

improve the imputation of the missing values. Estimates on totals will then be much better

than if only the persons who respond to all questions are used.

Another example could be the school data mentioned above. In data of this type some

background data are often missing or children may have been sick and have not been able

to participate in all tests.

4.4. Several Parameters

Suppose that one has a register of firms with the number of employees, X. Data on the total

wage costs Y is collected from a sample of the firms. Two parameters are studied, the average

wagecost per firm 1
N

P
U yi=N and thewagecost per person in anaveragefirm 1

N

P
U yi=xi. It is

natural to estimate the first quantity with a ratio estimate as in Example 3.2 where Bjørnstad

recommends k ¼ 1=ð12 fxÞ. The secondquantity ismore natural to estimate by an arithmetic

mean as in Example 1, where Bjørnstad recommends k ¼ ð12 f Þ. This means that different

values of k ought to be used and there will be inconsistency problems. I cannot see how

Bjørnstad can estimate the covariance between these two estimators using his approach. This

is quite easy to do with ordinary multiple imputation.

Multipurpose surveys are quite common and whenever it is appropriate with different

models (k) for different variables the suggestedmethodwill have troubles. An example of this

is Bjørnstad’s Section 4.2 on stratified sampling, where he cannot get a nice expression for a

combined k. If the stratificationwere combinedwith a regressionmodel ð yi ¼ ah þ bxi þ 1iÞ;

hewould have been forced to use a common k, and I cannot see how he in a simple way could

combine population and stratum estimators. With ordinary multiple imputation this is simple

and one also obtains the covariance between all the estimators.

5. Some Further Comments on Multiple Imputation

5.1. MAR and MCAR

The notions MCAR and MAR are basically Bayesian notions. MCAR means that (Y, X)

and the nonresponse mechanism are independent and MAR means that Y and the
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nonresponse mechanism are independent conditionally on X. For example, MCAR does

not hold if the response pattern is different in different strata. But in a classical setting X is

considered to be a known parameter of the model and not a random variable. Since fixed

constants and random variables are independent per definition a classical interpretation of

probability and independence should formally imply that MCAR holds in this situtation.

The approach in the article is thus not completely free from Bayesian arguments, even

though Bjørnstad claims so.

5.2. Realistic Imputations

Many program packages and types of analysis require data of a certain type. If means and

variances are the interesting parameters, it is quite natural to impute other values than 0 or

1 for sex, but for other uses it is not an alternative. The method of Bjørnstad does not

always guarantee that realistic values are imputed (for instance in Example 3.2 where

residuals are imputed). If sensible distributions and priors are used in the multiple

imputation (like Poisson and a vague Gamma distribution) only possible values (integers)

are automatically imputed. However, if nonnormal distributions are used the result on

BLUE no longer holds, but that is not always a disadvantage (e.g., if one knows that there

are both male and female individuals in the population but that the ten-person-response set

consists of only males, it must be sensible to take into account that some of the missing

persons may be females). The only unbiased estimator is 100% male, but that is known to

be an overestimate.

5.3. Technical Aspects of Linear Estimates

If the estimates are linear in the imputed data, it is easily realised that any set

of imputed values will (asymptotically in m) be efficient as long as their conditional

covariance is the same. For example, in the first example of Bjørnstad, i.e., when

data are “missing completely at random (MCAR)” and the design is simple random

sampling (SRS), the covariance matrix of the missing values should have the diagonal

elements ŝ 2
r ð1þ 1=nrÞ and all other elements ŝ 2

r=nr: Such samples can be generated

from a multivariate normal but can also be obtained easily in other ways for

example as

ðn=ðn2 1ÞÞ1=2ð y 0j 2 �yr þ
1

nr

Xr

1

y 0iÞ

where y 0i are resampled with SRSWR from the response set R. In some situations it is

more natural to impute in this way, since the imputed values will resemble the true

values better.

The efficiency of the variance estimation depends not only on m, but also on how long

tails the distribution has, i.e., on the kurtosis. If the kurtosis of the empirical distribution is

higher than for the normal distribution (i.e. . 3), Bjørnstad’s method has a lower

efficiency in the variance estimation for fixed m. This comment is quite unimportant since

using a larger m can easily compensate a loss in efficiency.
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Björnstad’s goal is only to estimate a particular linear function, i.e., the population

average, and thus he needs only to use the correct variance of the corresponding vector.

But to make it complicated, Bjørnstad does not use this covariance matrix, but a diagonal

matrix with the diagonal elements ŝ 2
r . He must later correct for this by replacing a 1 by the

number k.

5.4. Gibbs Sampling and MCMC-methods

The imputed samples, Si, are often independent given R, but they do not need to be. In the

example with informative response above and many cases of item nonresponse the best

way to construct them is to use an MCMC technique like Gibbs sampling. In that case the

term, 1=m; in ð1þ 1=mÞ is not correct. But if many iterations are used the second term

vanishes anyway and the method can be used without any problems. When Rubin first

presented multiple imputation, MCMC methods required too much computer time to be

realistic but nowadays it is possible to use such methods also for surveys with normal

sample sizes. There is a lot of work going on in that direction.

I do not really see how this development should fit into the multiple imputation in

Bjørnstad’s sense.

5.5. Mass Imputation

In multiple mass imputation all unobserved values in the population are imputed, even

those which are not included in the intended sample. If this is done, there will formally be

no sampling variation at all but the whole variance will be imputation variance (i.e., in

Bjørnstad’s notation: V̂ðûðs*i ÞÞ ¼ �V* ¼ 0Þ: The methods of Bjørnstad seem to work here

for linear estimates under MAR and MCAR with the same reservations as previously. One

further reservation, though, is that the missing fraction f will be almost 1, and that k thus

will be extremely large.

Ordinary multiple mass imputation, with or without an MCMC step, has a further

advantage since it gives not only the variance of the estimators but also the full distribution.

In this sense multiple mass imputation is better, than standard multiple imputation. On the

other handmass imputation is not feasible in practice formany purposes since it requires too

much computer time. I cannot see how multiple mass imputation performed according to

Bjørnstad can give the whole distribution.

6. Concluding Remark

It is difficult to find any advantage of Bjørnstad’s methods over ordinary multiple

imputation.

But it is also fair to say that Bjørnstad’s methods are often better than many single

imputation methods. His methods are certainly alternatives for persons, who are allergic to

the word Bayes and do not want to use a classically sound method if the proof of this fact

involves the word Bayesian. Also religious fundamentalists who believe that any method

which in any way can be connected to Rev. Thomas Bayes must be a heresy may want to

consider Bjørnstad’s methods.
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