
Discussion

Alan H. Dorfman1

Rod Little is to be congratulated for giving us an article which is likely to galvanize a

renewed discussion on the very basics of survey sampling. There is much to agree with, in

particular the point captured in his catch-phrase “inferential schizophrenia” to characterize

two opposed approaches to handling survey data that get embraced, not only by one and

the same statistical agency, but by individual statisticians. The small area versus large

sample divide has an element of irony: precisely where there is least data on which to

assess our models where we need to, models are leaned on; where there is ample data with

which to assess and possibly improve the model, the modeling (predictive) approach is

commonly eschewed.

Little is Bayesian but very sympathetic to design-based protocol – at bottom what he

mainly means by “calibrated” is to use a “robust model” which he takes to mean a model

which automatically reflects the (probabilistic) sample design. In the currently dominant

model-assisted approach (Särndal et al. 1992), an estimate based on a model is modified by

a sum of sample-weighted residuals that is intended to correct for model failure. In the case

of some models, the adjusting sum is algebraically zero; these are the robust models that

Little prefers. Thus calibrated Bayes sample estimation can be viewed, in large samples, as

a particular version of model-assisted sample estimation. (It may be noted that the basic

device, of guarding against model failure by adding weighted sums of residuals at the price

of some possible loss in efficiency, also has its place in pure prediction-based sampling

(Chambers et al. 1993; Dorfman 1993)).

Outside the sampling context, the calibrated Bayes protocols of Box (1980), Rubin

(1984) and others have a much stronger diagnostic edge than we see in this article. In that

very interesting “hybrid” tradition, inference is Bayesian, based on models for prior and

data, but these models can be called into question by the data at hand through tests in the

frequentist tradition. Little’s frequentist “formulating and assessing the model” means

primarily making sure it fits the sample protocol, quite apart from bringing to bear residual

analysis, the predictive distribution, or other post-collection data scrutiny. The models he

prefers could be chosen before any data is seen.

In general terms, Little refers to diagnostics favorably. In particular, he notes the idea of

comparing sample-weighted and non-sample-weighted estimates under a given model, as

a test of the validity of the model, and cites Dumouchel and Duncan (1983). The place of

this sort of diagnostic in Little’s calibrated Bayes is a little puzzling: the approach
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advocated would do estimation using a “robust model” that embodies the sampling

structure. Suppose a test or inspection shows marked discrepancy of the estimates between

this robust version and an alternative version. What does one then do? In particular, does

one simply fall back on the weighted “robust” version of the model? Or must one seek

another “more robust” model, and if so how?

But more worrisomely puzzling is the fact that Little cites favorably the famous paper

by Hansen et al. (1983) (HMT), on the ineffectiveness of diagnostics in the sampling

context (Section 4.2). Compare also Little (2004, Example 8), where he simply dismisses

the counter-study in Valliant et al. (2000, Section 3.7), that refutes the HMT contention.

The HMT paper has been a clarion call for design-based samplers for thirty years, but it is

best regarded as a naı̈ve, misleading paper. What HMT actually shows is that inference

does not stand well in the presence of half-baked diagnostics. The sampling world could

stand much more use of the tools of regression diagnostics, especially those that can be

automated.

Little recognizes the existence of a model-based theory that ignores prior distributions

(option (b) in Section 2), often referred to as the prediction-based approach, as in Valliant

et al. (2000). One of the important implications of the prediction-based theory of sampling

is that sample designs that eschew randomization not only can be acceptable, but are under

some circumstances preferable. Robustness is often to be sought in various forms of

balanced design, chosen purposively. From this point of view, focus on choosing priors

and incorporating the random design into the chosen model seems like a major distraction.

Little talks about the advantages of combining standard survey data with administrative

data, etc., but it is not obvious how his version of robust models, which accommodate the

sample weights, enfold this non-random-design data. This same worry applies to small

area estimation.

Small area estimation is a central consideration in this article. A special virtue of

calibrated Bayes is said to be that it reaches down to where the sample is small, in contrast

to both the design-based and standard prediction-based approaches. Credible intervals

based on hierarchical Bayes will tend to be larger and therefore better than other

approaches to small area estimation, including the direct approach. (In effect, Little is

saying that “calibrated Bayes” boils down to “Bayes” in the small area context.)

“Better” however is not equivalent to “good”. Although the field of small area

estimation seems well established and has drawn on the ingenuity of many very talented

statisticians and economists, must it not in general be regarded as one of the more tenuous

of statistical activities? It is typically carried out under a great deal of budgetary and, often,

political pressure. Here is a quote from a report on SAIPE:

“Although the Census Bureau’s 1995 estimates of poor school-age children have

potentially large errors for many school districts, the [National Academy of Sciences]

panel nonetheless concludes that they are not inappropriate or unreliable to use for direct

Title I allocations to districts as intended by the 1994 legislation. In reaching this

conclusion, the panel interprets ‘inappropriate and unreliable’ in a relative sense. Some set

of estimates must be used to allocate funds : : : . [these] estimates are generally as

good as–and, in some instances, better than– estimates that are currently being used.”

(The National Academies 1999).
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But are they good enough? I venture that, despite a lot of theoretical work, it is very

difficult in small area estimation to verify the validity of our models. Few small area

projects are able, as in Beresovsky et al. (2011), to verify the coverage of their prediction

or credible intervals, if they produce them at all. Without such verification, must not our

inferences remain dubious? Do we not need some good criteria by which to recognize

occasions when the data are simply insufficient for sound inference? I am therefore in

doubt that wrapping small area estimation in the protective mantle of an overall “Bayesian

philosophy” would indeed be a positive thing.
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