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Editing Statistical Records by Neural Networks

Svein Nordbotten'

Editing records to ensure quality in statistical surveys is an expensive and time-
consuming process. Since the introduction of computers in statistical processing,
development and use of automated editing have been important objectives. In this article,
editing is reformulated as a neural network problem. The use of such a network is
demonstrated and a preliminary evaluation is presented.
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1. Introduction

The aim of editing in statistical surveys is to check each record to determine whether it
is acceptable and if not to take action to make it acceptable. When computers are used
in the process, this is called automated editing.

Programmed electronic computers were introduced in official statistics more than
40 years ago. The first international group for exchange of experience and coopera-
tion was the UN/ECE Working Group on EDP. One of the first problems discussed
was automated editing (Nordbotten 1963). Three steps in editing were identified,
(1) determine which records are unacceptable, (2) determine which values of such
records need to be corrected and (3) correct the values. Different approaches such
as unconditional and conditional editing, cold deck, hot deck, and functional
correction were discussed.

Fellegi and Holt (1976) formalized editing and imputation problems. They showed
that any edit statement could be expressed as a series of edits in the normal form and
proposed a method which could identify the minimal set of values in a record which
need to be changed to satisfy all edits. This work also developed methods for
sequential and joint imputation of values for the minimum set and has provided a
framework for the development and implementation of a number of methods for
automated editing of survey data during the last two decades.

Fellegi and Holt assumed that the edit specification would be given explicitly by
subject matter experts, that as few values as possible should be changed and that
the imputation is of the hot deck type. Recent progress in the field of artificial neural
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networks and continued development in capacity and speed of computers indicate
that editing can be reformulated as neural networks which can be trained to edit
and impute from a sample of records edited by experts rather than use of explicit
edit and imputation rules.

The purpose of this article is to reformulate editing as a neural network problem,
explore the application of neural networks as an approach to automated editing and
present preliminary conclusions about the feasibility of using such methods in survey
processing.

2. New Paradigms

Work on what has later become known as artificial intelligence also started in the
early 1950s. Two different paradigms emerged (Sowa 1984).

According to the first paradigm, Artificial Intelligence (AI), a powerful inference
engine or computer was envisaged based on the principles of symbolic logic.
The inference engine should process problems based on logical principles and human
knowledge represented in a machine accessible knowledge base, frequently as rules.
For these systems it was an essential requirement that they be able to present an
explanation for the results generated. Around 1970, implemented application
versions of these systems became known as expert systems. An acknowledged bottle-
neck problem for practical application of expert systems was, and still is, how to
capture the human knowledge needed as rules in the knowledge base.

The second paradigm, Artificial Neural Networks (ANN) used the human brain as
a starting point. A simple model of neurons was the basis of this approach, which
showed how different tasks could be solved by connecting a number of neurons in net-
works. Knowledge in these networks is represented as the strengths of connections
between neurons, and the processing is considered distributed in parallel to a number
of simple processing units rather than to a complex central unit. Compared to the
models of Al, Artificial Neural Networks do not represent knowledge in a form which
can easily be interpreted, and an ANN cannot readily explain the rationality of its
results. Development of neural networks has made great progress during the last dec-
ade. Learning algorithms for neural network models were developed early and
reduced the knowledge acquisition bottleneck. Important milestone contributions
in the development of ANN are collected in two impressive volumes by Anderson
and Rosenfeld (1988) and Anderson, Pellionisz, and Rosenfeld (1990).

The common aim of both the above paradigms is to capture the knowledge of
experts and represent it in computerized systems to solve non-trivial mental tasks
requiring expert knowledge. This is exactly the problem in the control and imputation
of individual survey records. If the knowledge of an editing expert can be
“implanted” into control and imputation systems, then automated editing of indivi-
dual statistical records may be carried out with the same quality as if scrutinized by a
human expert.

Attempts have also been made to apply methods similar to those of artificial
intelligence in automated editing. Early in the 1960s, the automated editing of the
U.S. Census of Agriculture was specified in the form of decision tables which was a
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kind of rule based system approach. The present author used a similar rule based
system in simulating automated editing of individual records for enterprise statistics
(Nordbotten 1965).

More recently, Creezy, Masand, Smith, and Waltz (1992) have reported applica-
tion of an approach related to ANN for classification of units in the U.S. census, while
Schafer, Khane, and Ezzali-Rice (1993) reported on multiple imputation of missing
data by an approach related to ours.

A highly relevant paper in the present context is a proposal by Roddick (1993)
about an edit system based on neural networks. The ideas proposed by Roddick
are similar to those in the present article.

It is obvious that the control and imputation of individual records can be modelled
as an ANN and benefit from recent developments in this field. In the following
sections, editing as a neural network problem is discussed and some of the potential
of this approach for statistical processing investigated.

3. Reformulation

3.1. The problem

Let us consider a statistical survey comprising M statistical units with 4 attributes
observed and recorded. Each attribute has a finite number of mutually exclusive class
categories, C,. A record for each unit is represented as a binary vector with N = XC,
binary elements, one for each category of the attributes.

Assume that the records which we ideally want to obtain can be represented by
rows in the “true” matrix T = {¢[1,1],...,¢[M, N]}. In collection and pre-processing
of data, elements may be lost or incorrectly recorded for a number of reasons. The
observations obtained can be depicted by the matrix R of actual raw data. We assume
that R has the same dimensionality as T.

Human editing experts have some knowledge about structural relations between
the columns of T. They know that some row patterns are more frequent than others,
while some patterns cannot occur because of logical or other reasons. Experts utilize
this knowledge to transform the matrix R to the desired matrix T. At this stage,
we discard the fact that even the best expert knowledge is incomplete and that the
transformation of R can at best be an approximation to T.

We assume that R; and R, are two random and exhaustive partitions with sizes M
and M,, from the rows of R such that M, + M, = M and large enough to produce
plausible results of the tests introduced. Assume that the row samples R, and R,
both are edited by expert editors with matrices T; and T, as the final results. The
set of pairs of corresponding rows in R; and T; is called the training set while the
set of pairs of corresponding rows in R, and T, will be called the test set.

The tasks we want to investigate are:

Can a computer implemented model of a human expert be constructed as an ANN? Can
such a model be trained from the pair of matrices Ry and T, to transform matrix R, to a
new matrix O, which will not differ significantly from matrix T,?
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3.2.  The neural network paradigm

A large number of different ANN models have been developed. We concentrate on a
class called feed-forward models. Recurrent models are another class which we do not
discuss in this connection. This should not lead to the false conclusion that recurrent
models are considered irrelevant for the problem considered.

Figure 1 illustrates the main components in a simple, single-layer feed-forward
neural network model. We will look at this model in relation to our editing
problem. The model consists of a set of input sources through which the network
gets the input vectors. An input vector corresponds to a row of R and is denoted
r={r(l],...,r[i],...,r[N]}. Processing is carried out in parallel by a layer of
simple processing units called neurons which produce an output vector
o= {o[l],...0[j],...,0[N]}, a row in the output matrix O.

All input sources are connected to all neurons. The strengths of the connections are
represented by the weights, w[7, /], between the input source i and the neuron j. The
total input to a neuron, called the net input, is the scalar product sum of the input
vector multiplied with the weight vector of the connections to the respective neuron

net[j] =Y wli, j]"r[i].

1

Each neuron can be considered a small, simple processor. Its processing is represented
by a transfer function which takes the net input as its argument and provides the value
of the function as the output of the neuron to the output vector. We use the sigmoid
function which has many attractive properties as a transfer function
olj] = 1/(1 + Uy,

An ANN model is used in two modes. In the learning mode, the model adjusts itself to
the input and true target vectors of the training matrices in an iterative cycling
through the rows of the matrices. In the second mode, the trained model is used to
compute output vectors as a function of input vectors which were not used in training.
If a set of true output vectors also exists for this set of input vectors, the trained model
can be tested and evaluated by comparing the computed output vectors with the
corresponding true vectors. Typically, the training of ANN models may be very
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Fig. 1 Single-layer neural network
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Fig. 2 A learning cycle in the ANN model

resource and time-consuming because of the adjustment calculations and the many
iterations frequently required. On the other hand, the use of a trained model is fast
and requires relatively limited resources per input vector.

Our editing model learns by observing the examples of pairs of records before and
after expert editing, i.e., rows from R; and the corresponding from T; matrix as
indicated in Figure 2. For each row of the matrices, the connection weights are
adjusted based on the differences between computed output and true records. The
adjustment is done in such a way that the differences are reduced. This adjustment
is carried out for each row in the training set, and repeated for the whole set until
some stopping condition is satisfied. The weights represent the memory of the model.
Before training starts, the weights are given small random initial values. During train-
ing, they approach values which represent knowledge contained in the training set. It
is difficult, a priori, to state the conditions for successful learning, and, if a model has
been trained with success, to give an interpretation to the individual weights with
reference to the empirical world.

The adjustment is done according to learning functions. We use learning function
expressed by

wli, j1' = wli, j] + p" A[j]"r[i]
where p is a pre-set learning rate which may be kept constant or systematically
changed during the iterations. It usually has a value between 0 and 1; w[i,j] and

wli,j] are weight values before and after an adjustment based on a presentation of
a training pair of records and

Alj] = (tj] = olj])-
After each completed iteration, an evaluation of all outputs from the training input
records is carried out. If the result is within pre-set tolerance limits, the learning is
considered complete and terminated.

Because of the limited possibilities of a single-layer model (as indicated in Figure 1)
to adjust to training sets of complicated records, we shall use a two-layer model in this
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Fig. 3 Two-layer network

investigation. Two-layer ANN models are formed by considering the output vector of
one layer to be the input source of a second layer. A multi-layer model has great
ability to learn, but usually requires a considerable learning time. Layers of neurons
in a multi-layer model, except for the last producing the final output, are called hidden
layers, because their output cannot be compared with observations in the application
world. A typical two-layer model is indicated in Figure 3.

The two-layer model also has a second connection weight matrix between the
output of the neurons in the hidden layer of neurons, and the second layer of
neurons. Useful learning algorithms for these multi-layer models have been available
for less than 10 years. The Back Propagation (BP) learning algorithm which is
outlined and used below, was introduced by Rumelhart and McClelland (1986),
but the model was suggested by Werbos in a paper on generalized multivariate
regression (Werbos 1974).

The learning functions of the BP algorithm for the two-layer model are generaliza-
tions of the single-layer functions described above. They can be presented as

Alj] = o[j]"(1 = o[j])*(¢[j] — o[j]) for adjusting the second matrix
and
Alj] =o[j]"(1 — o[j])*Ew[j, k]" Alk] for adjusting the first matrix.

In adjusting the weights of the first matrix, the index & refers to the neurons of the
second layer and A[k] to the deltas used for changing the weights of the second
matrix.

The above can easily be generalized to higher-layer networks. Empirical experience
indicates, however, that a two-layer network performs as well as a higher level net-
work for many applications. We concentrate therefore on a two-layer model because
of reduced computational resource requirements.

Three problems remain, specification of initial values for the weights, learning rate
and the number of neurons of the hidden layer. At the present stage of development,
little supporting theory exists. Selections of values used in this study have been made
mainly based on experience and experimentation.

The ANN must justify its use. First, we need to test that the specified model is able
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to extract and learn editing knowledge from the training set. Second, the trained
model has to prove that it can also carry out satisfactory editing of survey records
that it has not previously been presented with.

A relative tolerance contrast ¥ between 0 and 1, must be specified. If the
algebraic difference between the true target value and the computed output value
for any element of R, is less than V after a cycle of presentations of the training
records, the model is considered to be trained satisfactorily. Frequently a model is
unable to learn the training set completely. Still, it may be useful.

The main test of a model is its ability to edit a new and unknown file of records.
For editing models, it is reasonable to compare statistical tables produced from the
raw, edited and true matrices in a final evaluation.

4. Empirical Experiments

The editing performance of the model introduced in the previous section can be
studied in two different ways. One approach requires access to both raw records
and matching records edited by experts from a real survey. This may be impossible
for several reasons. The records may not exist in a form which is suitable or there
may be legal reasons which prevent a researcher access to the data, and so on. Finally,
uncertainty about the quality of the edited records may prevent a researcher from
using available edited records.

The second approach to studying the editing performance of the model is to use
synthetic data generated in such a way that they represent characteristics similar to
the survey objects for which the model is considered. Concern about accessibility
and quality of edited individual records is circumvented in this approach.

Since the aim of this article is to introduce and demonstrate a new model for editing
rather than testing a method for a particular survey or census, we used the second
approach. The data generated have not been derived from any particular survey,
but were designed with a demographic or labour force survey in mind. Final decisions
about applying models of the type discussed in real survey work should therefore
require more specific testing on real data from target surveys. The process outline
for the experiments is shown in Figure 4.

4.1. Generation of raw and edited data records

To generate the required synthetic data, an imaginary structure of a person with nine
attributes was first defined. Each attribute was specified as a set of mutually exclusive
categories. Attributes with continuous value ranges were approximated by categories
as for the attributes age and income shown below

1. Sex: {male, female}

2. Age: {-19, 20-49, 50-69, 70+}

3. Marital status: {unmarried, married}

4. Region: {city, coast, inland, mountains}
5. Children born: {0, 1, 2, 3, 4+}

6. Education: {7, 8-12, 13+}
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7. Industry: {None, agriculture, fishery, manufacturing, trade, ser-
vices}

8. Employment status: {employed, unemployed}

9. Income: {99, 100-249, 250—499, 500+}

The properties of an individual were represented by a record with one binary
field for each category. In our application, there were 32 different categories. Each
attribute must have two or more exclusive categories of which only one can be marked
by 1, the remaining must all be 0.

The attributes of an individual are not independent of each other. A set of struc-
tural relations exists among the attributes. It is acquired knowledge about this
structure which makes it possible for editing experts to scrutinize and correct
identified errors in the individual record.

Population model Generation of

true records

specification

2,000 true 10,000 true
N records
records
Error model Generation of
specification raw records
2,000 raw 10,000 raw
records records
ANN model Training of
specification ANN model
Trained
ANN model
Testing ] Testing of H
specification trained ANN model ————————
Results for
evaluation

Fig. 4 Outline of the experiments
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The knowledge about the structure was expressed as a stochastic model consisting
of a set of probability rules. A rule states the conditions, if any, for assigning
probabilities to the individual categories. The rules used for generating synthetic,
individual records are listed in List 1 in the Appendix.

In real surveys, raw records must be transformed to true records applying
some background knowledge about the general structure of the objects concerned
and about the error risks associated with collection and pre-processing. In our
experiments we went the opposite way. From the generated true records, we
introduced random errors to obtain the raw files. Two error types, non-response
and interchange errors, were introduced. The risk probabilities for the two types
of errors were specified by rules similar to those used for generating the true
population records. These rules, the stochastic error model, are presented in List 2
in the Appendix.

The reason for introducing only these two error types is that they are supposed to
be the most frequent. The non-response error identifies itself by leaving all category
fields for an attribute blank with an obvious need for imputation. The interchange
error, on the other hand, leaves no unique identification. The error identification,
as well as the correction, must in this case rely completely on background knowledge.
A third type of error, overlap error not considered in this article, is characterized by
more than one category mark for an attribute. It is similar to non-response error
because it identifies itself. It is different from interchange error because one of the
marked categories may be true.

The two models, the statistical unit and the error generation models, were imple-
mented in a computer program developed for generation of these individual records.
We wanted to study the effects of each of the two error types separately as well as their
joint effects. Three different sets of raw records, S-, C- and R-files, were therefore
generated. The first set, the S-files, included records which were subjected only to
the risks of non-response errors, while the second set, the C-files were subjected
only to interchange error risks. The last set, comprising the R-files, included records
which were exposed to both non-response error and interchange error risks. Each of
the three sets has two files, one with 2,000 and a second independent file with
10,000 records.

The S-files were generated from the true T-files by exposing each set of attribute
fields in all records of the true files to the risk of non-response according to the error
model. A random process determined whether a non-response error would occur, and
if so all the category fields of the current attribute were marked 0 in the S-file being
generated. Similarly, the C-files were generated with the difference that if the random
process gave an error outcome, the marked category of the current attribute was set
equal to 0, and another category was randomly chosen and marked 1.

To obtain R-files containing both errors, all attributes in records of the generated
T-files were exposed to a risk for non-response. If the outcome of the random process
was a non-response error, all categories of the attribute being processed were set equal
to 0 in the R-file. In this case, an interchange error could obviously not occur. If the
attribute was not determined to have non-response error, the attribute was exposed to
a risk of an interchange error. If the random process resulted in such an error, the
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mark of the true attribute category was substituted with the mark of another
randomly selected category in the corresponding attribute of the R-file.

4.2. [Editing experiments

The purpose of this study was to investigate whether a neural network model could
be used for automated editing of individual records from a statistical survey. It is
important to bear in mind that manual editing of records without access to the
corresponding real statistical units is possible only if the editing experts possess
some background knowledge, not about each individual object, but about some
general structure shared by the units, and about the general mechanisms of errors
occuring during data capture.
Three different experiments were carried out:

Experiment |

The objective of the first experiment was to investigate a situation in which only non-
response errors were present. How well could the ANN model learn the background
structure from the training files and apply this knowledge for imputing missing values
in the test file? In the experiment, the 2,000 pairs of S;- and the T};-records were used
to train the ANN model to impute missing attribute values. The trained model was
then used to impute non-response in the 10,000-record S,-file using the T,-file as a
control reference.

Experiment 11

A situation with interchange errors presented a greater challenge than the non-
response errors. In the experiment we wanted to investigate whether the model could
be trained to learn from the C;- and Tj-files to recognize and correct interchange
errors. Even a highly experienced editing expert cannot be expected to carry out
this task without mistakes. There will be identical records, some of which are
correct while others are the results of interchange errors. The trained model was
subsequently tested on the 10,000 C,-records to see how well it performed on an
unfamiliar record set.

Experiment 111

The third experiment focused on a situation in which both non-response and inter-
change errors occur. The model was trained to recognize the relationships between
the raw records of R;-file and the corresponding true records of T;-file. The result
of the training was tested against the 10,000 records of R,-file and checked against
the corresponding records of T,-file.

The editing model was implemented using a standard commercial program for
neural networks. Before running this program, the data generated (Section 4.1)
were standardized. All attributes were allocated 6 category fields even though not
all attributes used all fields. For example, the first attribute, sex, only needed the first
2 of the assigned 6 fields. The remaining 4 were always set equal to 0. For attribute 7,
industry, on the other hand, all 6 fields were needed and used. Each standardized
record of the S-, C-, R-, and T-files then contained 54 fields.
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There exists little theoretical support for selection of model type, number of layers,
learning rate, neurons in hidden layers, tolerances and maximum number of training
cycles. The back propagation algorithm has been in general use for nearly 10 years
and some heuristic knowledge has been acquired and made available. Our specifica-
tions were based on experience reported in the literature and on personal experience
in using this type of network.

We used changing learning rates in all experiments. The rate p changed linearly
from 1.0 to 0.1 as the percentage of records correctly learned by the models varied
from 0% to 100%. The tolerance factor V' was set to 0.2 during the training, and
the number of neurons in the hidden layer was specified to 300 in all experiments.
The stopping rules for repeating presentations were that all training records had
been correctly learned or that the number of cycles reached 300.

With 54 element input and output vectors and 300 hidden neurons, up to 32,000
connections had to be evaluated, and adjusted if necessary for each training record
presentation. In each training cycle of 2,000 training records, about 65 million
connection weights had to be evaluated and recalculated. Each experiment ran for
300 cycles and required up to 18,000 million weight evaluations/recalculations.

5. Numerical Results

5.1. Files generated

Two files, T; and T,, with 2,000 and 10,000 true records were the backbone of all our
experiments. Statistics from the T,-file are summarized in Table 1, and were used as a
basis for comparison of the results.

Table 2 displays the differences between statistics based on 10,000 records in the
non-response S,-file and the T,-file with true records. A count that 2,902 or almost
30% of the records of S,-file had one or more non-response attributes. Compared
with observations made in labor force surveys, this seems to be a high non-response
rate (Thomsen and Siring 1980). The table also indicates that the partial non-response
varies among the attributes from 116 for employment to 636 for marriage.

Table 3 gives the main net deviations of statistics using the C,-file with interchange
errors from those in Table 1. As can be expected, all figures in this table are smaller
than the numbers in Table 2 for several reasons. First, the risk probabilities are

Table 1. Population of 10,000 persons by attribute categories in T,

Attribute Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6
Sex 5031 4969

Age 3002 3961 2003 1034

Marriage 6954 3046

Region 4048 2511 2455 986

Children 7161 1344 945 360 190

Education 2998 5958 1044

Industry 4247 474 283 1171 1814 2011
Employment 5329 4671

Income 5087 3297 1522 94
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Table 2. Differences between the records in the Sy~ and the Ty-files

Attribute Cat. 1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Total
Sex —260 —245 —505
Age —160 -200 —53 =27 —440
Marriage —488 —148 —636
Region —-100 —54 —55 -19 —228
Children -103 -36 =25 —15 —4 —183
Education —109 —218 —38 -365
Industry —127 —15 -6 =31 -50 —60 —289
Employment -57 -59 -116
Income -394 —111 —44 -7 —556

Table 3. Differences between the records in the Cy- and the T,-files

Attribute Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Total
Sex 3 -3 0
Age -52 —117 36 133 0
Marriage —109 109 0
Region —47 -28 —14 89 0
Children —119 -7 18 38 70 0
Education 27 —-212 185 0
Industry —-38 -5 -2 —4 11 38 0
Employment 4 —4 0
Income —68 —82 33 117 0

Table 4. Differences between the records in the Ry- and the T,-files

Attribute Cat. 1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Total
Sex =212 -313 —525
Age -227 —332 11 113 —435
Marriage -536 —82 —618
Region —140 —81 —80 55 —246
Children -219 —54 -22 11 83 -201
Education -120 —407 136 -391
Industry —163 =23 -17 -36 -37 -32 -308
Employment =72 —28 —100
Income —502 —161 =23 98 —588

Table 5. Deviations

between edited S,-records and true Ty-records

Attribute Cat. 1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Total
Sex 36 -36

Age 36 =7 -23 =22 —-16
Marriage 19 —19

Region 17 -2 -8 -16 -9
Children —15 -26 31 —15 4 =21
Education -37 50 -13

Industry 13 =7 -6 —16 34 —24 —6
Employment 10 -12 . -2
Income -12 37 -37 -7 -19
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different. Second, the interchange errors are randomly distributed among categories
of each attribute and the net deviations will approach zero in large populations.
The count of erroneous records in this file was 2,201.

Table 4 summarizes statistics based on the R-file including records which were
exposed to the risks of both types of errors compared with Table 1. The count of
records with one or more errors in this file was almost 4,500 records. Editing this
file will obviously be highly challenging for our model.

The 8 different files established and used in the experiments were:

T;: File with 2,000 records with true attribute categories.
T,: File with 10,000 records with true attribute categories.

S): File with 2,000 records with raw attribute categories with only non-response
errors.

S,: File with 10,000 records with raw attribute categories with only non-response
errors.

C,: File with 2,000 records with raw attribute categories with only interchange
errors.

C,: File with 10,000 records with raw attribute categories with only interchange
errors.

R;: File with 2,000 records with raw attribute categories with both types of errors.
R,: File with 10,000 records with raw attribute categories with both types of errors.

5.2.  Results from model editing

It has already been pointed out that the model training was a resource and time-
consuming process. The experiments required 300 training cycles and in total about
50 hours on a 486/25 desktop computer were spent training the models.

After 300 training cycles in Experiment I, the model was able to edit correctly most
of the records in the training file. The real test of the trained model was how well the
statistical results of the 10,000 edited records matched the corresponding true records.
Table 5 gives the answer to this question. The model did the imputation surprisingly
well. The negative figures in the Total column indicate that there were still records for
which the non-response remained unresolved.

The model in Experiment II was trained for identifying and correcting the
interchange errors and then tested against the file of 10,000 true records. Table 6 gives
the results from this experiment. For all, but two attributes, there were units
unclassified. The most difficult to resolve seemed to be Age for which 78 records
were unclassified. Still, compared to the figures in Table 3, Table 6 indicates a
substantial overall improvement. However, the editing model made two distributions,
sex and employment, worse.

The R,-file represented the most challenging task with both non-response and
interchange errors in the records. In Experiment III, the model was trained by means
of the raw records R; and the corresponding true records in T;. The model learned the
first 50% of the training records fast, but continued slowly and ended up having
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Table 6. Deviations between edited Cy-records and true T,-records

Attribute Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Total
Sex -57 57

Age 9 -89 39 -37 -78
Marriage 37 -37

Region -2 -17 -3 -19 —41
Children —18 10 -12 1 —45 —64
Education 34 -T2 -23 —61
Industry 3 -2 7 6 -31 -31 —48
Employment 46 —58 —12
Income —16 -26 —16 —12 -70

Table 7. Deviations between edited Ry-records and true T,-records

Attribute Cat. 1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Total
Sex 96 -97 -1
Age 0 —83 21 —45 -107
Marriage 136 —136

Region -2 =23 -12 —40 =77
Children =31 20 =27 —24 —44 -106
Education 90 —88 =70 —68
Industry —4 —14 -18 2 -30 -26 -90
Employment 42 -50 -8
Income -58 55 -95 =27 —125

learned to recall correctly only about 1,600 of the 2,000 records of the training files
during the 300 cycles it was allowed to run. However, when the trained model was
applied to the R, test file, the results were encouraging. The edited results compared
with the T, file, and are shown in Table 7. The trained model failed to handle all records
and the table indicates, for example, that 125 records were not categorized by Income.

6. Discussion

All models behind the reported results were trained using 300 cycles. Additional
experiments with up to 500 cycles were carried out without significant improvement.
Other experiments with 200 neurons in the hidden layer instead of the 300 used in the
reported experiments required less computing time per cycles but gave unacceptable
results. Other experiments with 400 neurons in the hidden layer indicated that slightly
better results might have been obtained at the price of higher training time.

Two main factors influencing the editing results are the errors in the raw files to be
edited and the editing power of the trained editing mode. We used the numbers in
Tables 2, 3, and 4 squared and summed, as a general metric for the errors in the files.

The error measures for the three raw test files used were:

S, raw file: 2,336,095
C, raw file: 168,914
R, raw file: 3,598,117.
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The exponential nature of the metric should be born in mind when interpreting these
measures.

The effect of the interchange errors in C, was less than the effect of the non-
response errors in S,. As already pointed out, interchange errors may quite well
produce a raw record which looks acceptable. Because the metric used is squared
differences of aggregates, the effect of the interchange errors has a tendency to
approach zero when the population increases. The relative effect of the interchange
errors is, for example, more serious in the training file with 2,000 than in the test
file with 10,000 records. For the R,-file, the joint effect of the non-response and the
interchange errors is greater than the sum of the two. The explanation is the effect
of squaring the differences.

We used the same metric on the edited files:

S, edited file: 16,547
C, edited file: 32,920
R, edited file: 150,501.

The error measures show a significant reduction in all experiments. The editing
models gave the best results for the records with non-response errors only. As could
be expected, the records influenced by both types of errors had the highest error
measures after editing.

The figures cannot, however, be compared directly for evaluation of the models’
abilities to edit raw statistical records. As a metric to express the power of the editing
models, the error measures of the edited files were considered in relation to the error
measures of the corresponding raw files. The ratios obtained were:

S, edited/S, raw file: 0.007
C, edited/C, raw file: 0.195
R, edited/R, raw file: 0.042.

The first measure indicates that the model trained to impute non-response errors had
the power to reduce the error measure of the edited file to about 1/100 of the error
measure of the raw file. Even though much less, the model trained for correcting
interchange errors gave a reduction of the error measure for the edited file to
about 1/5 of the error measure in the raw file. Most encouraging is, however, the
editing power of the model trained to correct mixed types of errors. It reduced the
size of the error measure for the edited file to about 1/25 of the error measure in
the raw file.

7. Concluding Remarks and Future Tasks

The purpose of this article was to present a reformulation and investigation of the
automated editing problem in statistical surveys by means of the ANN paradigm.
Compared with editing methods based on the Fellegi-Holt framework and many
others, the ANN approach has the advantage that we do not need to specify detailed
editing rules and explicit assumptions about imputation functions prepared by
subject matter experts. The ANN editing models can be trained to adjust themselves
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to the record structures represented in a sample of records in both raw and edited
forms. The editing of the sample must of course be done by experts.

The results of this study indicate the ANN editing models can be trained with
success, and perform well with records distorted with frequent and mixed types of
errors. The software and hardware resources required are commercially available
and at prices which should not be prohibitive for statistical agencies. Still there are
many methodological aspects that need further study.

We have not discussed how training and editing performance of ANN models
depend on the size of the training sample of records. Because of the complex structure
of the models, no function has yet been established for calibrating the training set.
The decision about the size of the training set must therefore be approached
empirically. When practical experience is gained in the different subject matter fields,
it may be possible to establish some approximate rules to be used as a guidance for
calibrating the training samples.

In the experiments reported only a limited number of categorical attributes were
used. The ANN approach can also be used for editing records with both categorical
and continuous attributes. An important future research task will be to study how
well ANN editing models perform on records with mixed types of data. The second
still unanswered question is how efficient ANN editing will be when the number of
attributes increases to a size of hundred or more. These questions are currently being
studied on real survey data.

The choice of a good ANN architecture for an editing model, including type of
network, number of hidden layers, number of neurons in hidden layers, type of
transfer function in the neurons, learning rate, tolerances and many other parameters
not mentioned in this article need to be studied further on a varied set of editing
applications.

The experiments reported in this article were based on synthetic data. All results
rely on the validity of the assumptions made for the data and error generating models.
If our assumptions are not upheld by situations met in editing of real survey data, our
conclusions fail. It is therefore extremely important to test the ANN editing approach
on real data records.

Because no adequate data have been available, comparison between the
performances of ANN editing and alternative methods has not been possible. If we
acknowledge that even human experts make errors, an objective test would be to
apply all alternative editing methods on the same set of synthetic data with raw
and true versions included.

Appendix

LIST 1: Rules for generating population records.
1. Sex:

‘sex = male’, probability = 0.50,
‘sex = female’, probability = 0.50.
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2. Age:

‘age = —19 years’  probability = 0.30,
‘age = 20—49 years’, probability = 0.40,
‘age = 50-69 years’, probability = 0.20,
‘age = 70+ years’, probability = 0.10.

3. Marital status:

if ‘age = —19 years’ then:
‘marital status = unmarried’, probability 0.90,
‘marital status = married’”,  probability 0.10.

if ‘age = 20+ years’ then:
‘marital status = unmarried’, probability 0.60,
‘marital status = married’,  probability 0.40.

4. Region:
‘region = city’, probability = 0.40,
‘region = coast’, probability = 0.25,

‘region = inland’, probability = 0.25,
‘region = mountains’, probability = 0.10.

5. Children born:

if ‘sex = male’ then:
‘children = (’,  probability = 1.00
‘children = 1’,  probability = 0.00
‘children = 2’,  probability = 0.00
‘children = 3°,  probability = 0.00
‘children = 4+’, probability = 0.00.

if ‘sex = female’ AND ‘age = —19’ then:
‘children = 0°,  probability = 0.85,
‘children = 1I’,  probability = 0.10,
‘children = 2’,  probability = 0.05,
‘children = 3°,  probability = 0.00,
‘children = 4+°, probability = 0.00.

if ‘sex = female’” AND ‘age = +20’ then:
‘children = 0’,  probability = 0.25,
‘children = 1’,  probability = 0.35,
‘children = 2°,  probability = 0.25,
‘children = 3°,  probability = 0.10,
‘children = 4+’, probability = 0.05.
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6. Education:
if ‘age = —19’ then:
‘education = 7’, probability = 0.30,
‘education = 8-12’, probability = 0.70,
‘education = 13+’, probability = 0.00.

if ‘sex = male’ AND ‘age = 20+’ then:
‘education = 7, probability = 0.30,
‘education = 8—12’, probability = 0.50,
‘education = 13+°, probability = 0.20.

if ‘sex = female’ AND ‘age = 20+’ then:
‘education = 7, probability = 0.30,
‘education = 8-12°, probability = 0.60,
‘education = 13+’°, probability = 0.10.

7. Industry:

if ‘age = —19° OR ‘age = 70+’ then:
‘industry = none’, probability = 0.90,
‘industry = agriculture’, probability = 0.00,
‘industry = fisheries’, probability = 0.00,
‘industry = manufacturing’, probability = 0.00,
‘industry = trade’, probability = 0.00,
‘industry = services’, probability = 0.10.

if ‘sex = male’ AND ‘age = 20-69, AND ‘region = (coast OR city), then:
‘industry = none’, probability = 0.10,
‘industry = agriculture’, probability = 0.00,
‘industry = fisheries’, probability = 0.15,
‘industry = manufacturing’, probability = 0.20,
‘industry = trade’, probability = 0.25,
‘industry = services’, probability = 0.30.

if ‘sex = male’ AND ‘age = 20—-69, AND ‘region = (inland OR mountain), then:
‘industry = none’, probability = 0.10,
‘industry = agriculture’, probability = 0.30,
‘industry = fisheries’, probability = 0.00,
‘industry = manufacturing’, probability = 0.15,
‘industry = trade’, probability = 0.30,
‘industry = services’, probability = 0.15.

if ‘sex = female’ AND ‘age = 20—69’ then:
‘industry = none’, probability = 0.10,
‘industry = agriculture’, probability = 0.05,
‘industry = fisheries’, probability = 0.00,
‘industry = manufacturing’, probability = 0.20,
‘industry = trade’, probability = 0.35,

‘industry = services’, probability = 0.30.
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8. Employment status:

if ‘age = —19 years’ then:
‘employment status = employed’, probability = 0.20,
‘employment status = unemployed’, probability = (.80.

if ‘sex = male’ AND ‘age = 20-69 years’ AND ‘education = —12’ then:
‘employment status = employed’, probability = 0.90,
‘employment status = unemployed’,  probability = 0.10.

if ‘sex = female’ AND ‘age = 20—69 years’” AND ‘education = —12’ then:
‘employment status = employed’, probability = 0.60,
‘employment status = unemployed’, probability = 0.40.

if ‘age = 20-69” AND ‘education = 13+’ then:
‘employment status = employed’, probability = 1.00,
‘employment status = unemployed’, probability = 0.00.

if ‘age = 70+ years’ then:
‘employment status = employed’, probability = 0.10,
‘employment status = unemployed’, probability = 0.90.

9. Income:

if ‘employment status = unemployed’ then:
‘income = —99’, probability = 1.00,
‘income = 100—249’, probability = 0.00,
‘income = 250-499’, probability = 0.00,
‘income = 500+°,  probability = 0.00.

if ‘employment status = employed” AND ‘education = —12’ then:
‘income = —99’, probability = 0.10,
‘income = 100-249’, probability = 0.70,
‘income = 250-499’, probability = 0.20,
‘income = 500+°,  probability = 0.00.

if ‘employment status = employed” AND ‘education = 13+’ then:
‘income = —99°, probability = 0.00,
‘income = 100-249’, probability = 0.20,
‘income = 250-499°, probability = 0.70,
‘income = 500+°,  probability = 0.10.

409
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LIST 2: Probabilities for non-response and random errors in different attributes.

Error risk probability

Attribute Non-response Interchange!
1 2
1. Sex 0.05 0.03
2. Age
if ‘sex = female’ AND ‘age = —49 years’ then:  0.07 0.05
if ‘sex = female’ AND ‘age = 50+ years’ then:  0.02 0.04
if ‘sex = male’ then: 0.04 0.06
3. Marital status:
if ‘age = —19’ then: 0.10 0.01
if ‘age = 20+’ then: 0.05 0.05
4. Region: 0.02 0.01.
5. Children born:
if ‘sex = male’ then: 0.01 0.01.
if ‘sex = female’ then: 0.03 0.03.
6. Education:
if ‘sex = male’ AND ‘age = —49 years’ 0.05 0.07
if ‘sex = male’ AND ‘age = 50+ years’ 0.01 0.01
if ‘sex = female’ 0.04 0.03
7. Industry: 0.03 0.01
8. Employment status: 0.01 0.01.
9. Income:
if ‘income = —99” OR ‘income = 500+’ then: 0.08 0.02
if ‘income = 100-499’ then: 0.03 0.03.

! Random interchange errors appear only in the absence of non-response error
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