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Empirical Bayes Estimation of U.S. Undercount
Based on Artificial Populations
Noel Cressie' and Aref Dajani®

Abstract: Estimators of undercount are
difficult to assess and compare because true
population counts are not available. Isaki
et al. (1988) made the comparison by con-
structing an artificial population where
“true” population counts were known.
We show that the synthetic estimator they
used is a special case of an empirical Bayes
estimator of undercount, derived from
a compound-distribution model for the

1. Introduction

The ability of a nation to count itself
accurately is of paramount importance in
“chronicl[ing] its past, describ[ing] its
present, and illuminat[ing] its future” (part
of the U.S. Census Bureau’s mission state-
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undercount mechanism. The validity of this
model, for the artificial population, can then
be examined.
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ment; Bureau of the Census Strategic Plan-
ning Committee, 1985). Any errors in census
counts need to be identified and their effect
evaluated. If the various errors were homo-
geneous across the nation, the effect would
be minimal. Experience with past censuses
in the U.S.A. has indicated a consistent
undercount that is differential according to
age, race, and sex, and perhaps also urban/
rural and geographical factors (Tukey 1981;
Ericksen and Kadane 1985). This is a prob-
lem shared by all countries who census
their population (over 200 in the 1975-1984
decennium), although few do anything to
assess the coverage of their counts. Of those
that do, Australia, Canada, Israel, and the
United Kingdom produce post-censal esti-
mates that are used by the government in
one official way or another. The U.S.A. has
not in the past adjusted its census counts to
account for undercoverage. However, those
cities and states that stand to lose most from
not adjusting are attempting, through
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various means, to require the U.S. Bureau
of the Census to adjust the 1990 census
counts.

Census undercount is defined simply as
the difference between the true count and
the census count, expressed as a percentage
of the true count. Since the true count is
unknown, the assessment of undercount
from the census is impossible without some
source of extra information. This may come
in the form of birth-death records, or
administrative lists such as tax records, or a
survey taken after the census. To obtain this
information, the U.S. Census Bureau con-
ducts a post-enumeration survey (PES)
based on matching people counted in the
census and people counted in the survey.
Using statistical capture-recapture methods,
the true population counts can be estimated
(e.g., Wolter 1986).

Various undercount estimators based on
PES data have been developed, but how can
the performance of these estimators be
compared? One way is to build a statistical
model and compute the mean squared
errors of the estimators based on the model
(Ericksen and Kadane 1985; Cressie 1989).
Another way is to simulate undercount
using a statistical model and compare the
estimates to the known simulated population
counts (Schirm and Preston 1987). The first
method is highly model dependent, although
diagnostics can be used to check the fit of
the model; the second method loses the
veracity of how real data interrelate between
and within (not necessarily contiguous)
small areas.

A third method, the method featured in
this article, is to construct an artificial
population by replacing the undercount
variable with a known variable that is
thought to correlate highly with it. Isaki
et al. (1988) use census substitutions, the
number of persons imputed into housing
units, as a proxy for persons missed in the
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census. We shall do the same, concentrating
on their artificial population 4P3.

In order to reduce variation of the under-
count estimators, the 1990 Post Enumeration
survey (PES) attempts to stratify the nation
so that the undercount is as homogeneous as
possible for areas within each stratum. The
stratification with which we shall work is
called Syn 2 by Isaki et al. (1988), and
consists of 96 strata defined by geographic
regions, racial composition, and urbanicity.

The estimators we shall evaluate here are
based on a compound-distribution model
explained briefly in Section 2. Section 3
describes the artificial population AP3 and
the Syn 2 strata construction. An empirical
Bayes analysis of these data is given in
Section 4. Section 5 contains discussion and
conclusions.

2. The Compound-Distribution Model

"We consider the true population count in

any well-defined stratum of the U.S. to be
unknown. After observing the correspond-
ing census count, the uncertainties about the
true count are updated. In other words, all
inference will be performed conditional on
the observed census counts.

Suppose that there are j=1,..., J
strata, and i = 1,..., I areas; for the
purposes of this article, J = 96 and I = 51
(the number of states, including Washington,
D.C.). Think of stratum j as fixed. Then, as
i ranges from 1, . . ., I, a sequence of sub-
areas is generated; the subarea indexed by
“ji” refers to that part of the ith area that
has stratum j in it. For the Syn 2 stratifi-
cation (Section 3) there are 451 state-strata
combinations with nonzero census counts.
At the state level, a zero census count is
taken to mean that the stratum within the
state in question does not exist. This is a
reasonable assumption, but at lower4evels
of aggregation (e.g., the block level) one
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might want to do otherwise. In all that is to
follow, only areas with nonzero census
counts are considered.

Define
Y, = true count in the jth

stratum of area i 2.1
C; = census count in the jth

stratum of area i (2.2)
F; = Yj!/ G

i=1,...,L j=1,...,J.

(2.3)

Suppose for the moment that we know the
ratios {F;: j = 1, ..., J} for the ith area.
Then, from the census counts, the true count
Y; can be calculated:

24

J
Y, = Z Fji C]l
j=1

The F; are often called adjustment factors.
The strata are constructed so that these
adjustment factors {F;: i = 1,..., I} are
as homogeneous as possible within strata.

Based on the results presented in Cressie
(1989), we propose the following model

E; ~ N(F, /C;);

1 =

L..., j=1,...,J
(2.5

where “~” denotes “is distributed as,”
N(u, 6?) is a normal distribution with mean
p and variance o2, and all the distributions
are assumed independent. We shall refer to
(2.5) as a compound or mixing distribution.
The normality assumption is made for con-
venience and can be omitted if it is specified
instead that linear estimators will be used
(Cressie 1989). Here, F; is a fixed but unknown
mean to be estimated, and 1 = var(C}*F;)
is a parameter we shall call the (standardized)
stratum variance.

In the PES, the {F;} are observed imper-
fectly. Let the observation be X; (e.g., X is

the ratio of the PES capture-recapture esti-
mator to census count, for the jth stratum in
the ith area), and, conditional on F;, we
propose the model

X; ~ N(F;, 63/Cy);

i=1,...,L j=1,...,0 (26

where F; is the unknown mean parameter
to be predicted, and all the distributions
are assumed independent. Here, o =
var(C}> X;) is the parameter we shall call the
(standardized) sampling variance. Should
the variance assumption in (2.6) (a conse-
quence of probability-proportional-to-size
sampling) not be appropriate, the theory
that follows is still applicable but the algebra
becomes more complicated (Cressie 1989,
section 6).

Assuming squared error loss, the optimal
estimator of F; is the Bayes estimator (e.g.,
Lindley and Smith 1972)

EF;|X;) = FE+ D(X, — F) (27
where
D, = tf/(r} + 0}). 2.8)

To convert (2.7) into an empirical Bayes
estimator, the unknown model parameters
{F;) and {D;) have to be estimated from the
data {X;}. This we do in Section 4, but
first we describe the construction of the
artificial population and how to emulate
PES sampling on it.

3. The Artificial Population,
Stratification, and Sampling

3.1.  Artificial population

The artificial population AP3 (Isaki et al.
1988) provides (census and “true’) counts
for all enumeration districts (EDs) of the
United States; its construction is given
below. There were approximately 300,000
EDs in the 1980 U.S. Census, averaging
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about 800 people per ED. Counts at the ED
level can be aggregated unambiguously to
county, state, and national levels. Further,
AP3 provides (census and true) counts within
each ED across five age, three race, and the
two sex categories, where the three race
groups are black, Hispanic, and non-black
non-Hispanic (called white in this article).
Therefore, artificial undercount can be
calculated for all areas of the U.S., large or
small, and for 30 age/race/sex groups within
these areas.

Within an ED, the true (AP3) count
Y, census count C, and number of substi-
tutions S, of a particular age/race/sex
combination, are connected (up to integer-
ization) by

Y = C+dS 3.1)

where d is a demographic factor (obtained at
the national level) for that particular age/
race/sex combination. The demographic
factors guarantee that the artificial under-
counts match the observed undercounts at
the national level; the 30 values of d ranged
between —1.27222 and 7.84316. Substi-
tutions are the result of imputing people
into housing units because no census form
for the housing unit was completed, or
because the form had incomplete infor-
mation, or because of machine failure, etc.
The undercount is then
C -1
{ES—' + 1} .

But, since substitutions are included in
census counts, 0 < S < C. Hence,

lul < 14l/(1 + d) (32)

provided d > —1. Also, the AP3 adjust-
ment factor F = Y/C is bounded

u = (Y- Q0JY =

1 —|d < F<1+]dl. (33)

Cressie and Dajani (1988) examine further
the assumptions upon which the artificial
population is based. They conclude that, at
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the state level, AP3 is a realistic proxy for
the true population.

3.2. Stratification

The 96 adjustment strata (called Syn 2) were
designed by Isaki et al. (1988), following
suggestions by Tukey (1981). The United
States is divided into distinct, homogeneous
areas, cross-classified by census division,
race, and the size of place where the ED is
located (urban/suburban/rural).

Cressie and Dajani (1988) discuss this
stratification from the perspective of the
compound-distribution model presented in
Section 2. They find that a stratum with a
large average adjustment factor also has
large within-stratum variation. That is, F;
and t} in (2.5) are related. Figure 1 shows a
plot of (t})' versus stratum mean F;., which
illustrates the mean-variance relationship;
the fourth-root transformation was chosen
because it gives an approximately linear
relation, but it is not as strong as the log
transformation. The quantities F;. and T
are weighted means and variances of {F;:
C; > 0;i = 1,...,I}, weighted according
to {C;: C; > 0;i=1,...,I}; see (41)
and (4.2). Thus, it is only possible to draw
Figure 1 when the true (artificial) popula-
tion is known.

3.3. Sampling

In practice, the way the U.S. Census Bureau
estimates true population counts for both
large and small areas is through a post-
enumeration survey (PES) that produces
dual-system estimates of the true U.S.
population. Stratified sampling in the PES
was emulated in the artificial population
through artificial sampling of the EDs.
Isaki et al. (1988) and Huang (1987)
explain how 1440 EDs were chosen from the
approximately 300,000 possible EBs, by
random sampling within strata. Then the
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I=

Plot of (fourth-root) stratum variances versus stratum means. Membership in

the size-4 grouping is given in the figure key,; Central City White (k = 1), Central City
Non-White (k = 2), Non-Central City White (k = 3), and Non-Central City Non-White

(k =4).
data are defined by

Xﬁz(z n/z ce); 6= C
ecE; e

eeE; €E;

where the eth ED sampled has true count Y,
and census count C,, and E; is a subset of
the 300,000 EDs consisting of those sampled
ED’s in the (i, j)th state-stratum combination
G=1,...,Lj=1,...,J). Notice that
the only source of error in Xj is, by defi-
-nition, sampling error. Thus, the artificial-
population approach ignores nonsampling
error.

In order to obtain PES-like variances of
synthetic adjustment factors, the whole
sampling procedure was carried out 90 times.

Some of the sampling variances for the 96
adjustment strata were very high. Two of
the highest were of Hispanics in Southern
central cities and for blacks in Chicago and
Detroit. Two ways to lower variances would
be either to change the stratification scheme
(where one would perhaps separate Chicago
and Detroit into two separate strata) or to
alter the sampling plan to oversample EDs
in known “problem” areas and undersam-
ple EDs in areas where problems in census
coverage are not anticipated.

Of the 90 sampling replicates, only one
was used by Isaki et al. (1988) for synthetic
estimation. For comparability, we $hall use
the same replicate.
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4. Analysis of Sampled Undercount
4.1. Pooling strata to estimate variance
parameters

The Bayes estimator given by (2.7) requires

v I L
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»4.2.  Empirical Bayes estimators of

adjustment factors

Define,

Z |: ’ QI(XII - Xj~)21(cji > 0) — A? {(i I(Cji > O)) - 1}]

B s H(E o))

estimation of {trj:j = 1,..., 96}, which
can be achieved by pooling the 96 strata.
Define a partition of the stratum index set
{1, 2,..., J} into A,,..., Ax, where
Ut 4, ={1,2,...,J}and 4,n4, = &
(k #1). Then assume T, = f;, for all
je A, k=1,..., K In other words, we
model equal T} in each of 4,, . . ., A,.

After some experimenting, we chose
K = 4, the stratum groups being Central
City White (k = 1), Central City Non-
White (kK = 2), Non-Central City White
(k = 3), and Non-Central City Non-White
(k = 4). Because the true population counts
are available, we can check whether our
pooling was sensible by plotting (t})",
versus Fi.; j = 1,..., 96, where

¢ ={3 6@ - Brig > ol
i=1

(£ 5e>0) -}

F.= {i F,C,I(C, > 0)}/

{Z GI(C; > 0)} 4.2)

The plot is given in Figure 1, with the k in
our size-4 grouping identified. Clearly,
we have captured the large differences in
variation from stratum to stratum, but there
still remains a positive relationship between
variance and mean within the groups,
particularly for k = 2 (Central City Non-
White) and k& = 4 (Non-Central City
Non-White).

@.1)

where {67:j = 1, ...,96} is obtained from
the 90 sampling replicates referred fo in the
previous section. Then, forj = 1, ..., 96,
define
¥ =max(0,i});je 4, k=1,...,K
4.1
Finally, the empirical Bayes estimator,
which is motivated by the Bayes estimator
(2.7, is
= X9+ (B + &))"
x (X; = X9) 42)
and the synthetic estimator is

F}?y“ = Xj(_s) 4. 3)

where Xj(.‘) is a sample-based estimator of F},
given by

Ag(s) = {Zl: Xicil(c; > O)}/
{i cil(c; > 0)}

4.4

Notice that when T} = 0, F{™ = F";
i.e., the synthetic estimator (4.3) is a special
case of (4.2). Notice also that (4.2) and (4.3)
differ slightly from the empirical Bayes and
synthetic estimators presented in Cressie
(1988a, 1988b, 1989), through (4.4). There,
sampled {c; } were unavailable, so they were
replaced with {C;} in (4.4), to define a
model-based estimator of F,. Isaki et al.
(1988) used the synthetic estimator (4.3) in
this artificial-population setting.
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4.3. Comparing estimators of the true
population

Let {F;*} be any estimator of {F;}. Define
the ith area’s true-count estimator Y to be

~

est —
Yo =

J

F GGy > 0). .5)
1

Since the true counts are available, it is
possible to determine the “distance” from
census counts {C;:i = 1,..., I} to true
counts {¥;:i = i,..., I}, which can then
be compared to the “distance” from esti-
mated counts {¥*":i = 1,..., I} to true
counts {Y;:i = 1, ..., I}. Various sugges-
tions have been made for measures of
improvement. Cressie and Dajani (1988)
used 14 such measures (including the first 10
of 11 used by Isaki et al. 1988) and replicate
Isaki et al.’s results in places where the two
studies overlapped.

For brevity, we shall concentrate on four
measures of improvement, which yield an
area’s contribution to the total loss that
reflects the size of its population (National
Academy of Sciences 1985, recommendation
7.2, p. 282). That is, in these measures an
undercount of 3% in California (population,
approximately 23,700,000 in 1980) receives
considerably more weight than an under-
count of 3% in Delaware (population,
approximately 600,000 in 1980). Such
measures of improvement summarize a
national concern for undercount. Define

1

M =Y (% - YYC (4.6)
i=1
1

M= Y IYE - YGE @.7)
i=1
1

M =Y (- N)Y, (4.8)
i=1
1

Mt = Y Y~ Y (4.9)

where Y™ is given by (4.5), Y, is given by

24), and C;=%_,C;; i=1,..., L
Here the areas under consideration are the
states of the U.S.A. (including Washington,
D.C.), so that I = 51. Weighting the dif-
ferences by ¥,"'? was considered by Isaki
et al. (1988); Cressie (1989) suggested a
modification that substitutes C, ' for
Y,~'2. The empirical Bayes (eba) and syn-
thetic (syn) estimators are compared to
census counts (cen) via M, M,, M;, and
M,, in Table 1.

From the table, eba has a slight advan-
tage over syn and both are considerably
better than cen, the unadjusted census
counts. We then asked: Which of the states
were contributing substantially to M, . . .,
M, presented in Table 1? For every measure,
California did poorly; for the eba (syn) esti-
mator, the percentage contribution of
California was 34.4% (36.6%) to M,,
13.7% (13.9%) to M,, 34.5% (36.8%) to
M, and 13.8% (13.9%) to M,. On average,
each state should contribute about 2% to
these M, which indicates that California’s
undercount has been estimated badly.
Because only one sample was available, it
cannot be ascertained whether California is
a hard state to count or whether the sample
taken was unrepresentative. (For the sample

-taken it should be noted that every stratum

within California was sampled).

Table 1. Measures of improvement for eba
(eq. (4.2)), syn (eq. (4.3)) and cen (no
adjustment ). Small values are preferred

Estimators

eba syn cen
M, 19,594 19,607 84,744
M, 597 611 1,447
M, 19,173 19,172 82,339
M, 591 605 1,430
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5. Discussion and Conclusions

5.1. Discussion

One of the advantages of using an artificial
population is that various conjectures about
the undercount mechanism can be tested.
Since this artificial population was con-
structed at the enumeration-district (ED)
level, questions of aggregation and dis-
aggregation of estimators can be addressed.

Under the model (2.5) and (2.6), Cressie
(1988b) proved that if the synthetic esti-
mator has smaller risk than the census at
any one-level, then it will always have smaller
risk at a lower level, and that the risk-gap
widens; here risk is calculated with respect
to M,. By analogy, a similar result should
hold for M;. For the artificial population,
the risk-gap (i.e., M5™ minus M3$")is 59, 743
at the national level, it is 63,167 at the state
level, and it is 73,092 at the county level.

=—_
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However, as a percentage of M35™, the risk-
gap drops from 99% (national level) to 77%
(state level) to 54% (county level). In other
words, as disaggregation proceeds, although
the synthetic estimator and the census
counts are getting further apart in the
absolute sense, it appears as if they are
getting closer in a proportionate sense. This
observation partly resolves conflicting
claims about the performance of adjusted
counts vis ¢ vis census counts, as a function
of the level of aggregation.

A consequence of making the model
assumption (2.5) at a particular level (e.g.,
counties) is that it will hold at all aggregated
levels (Cressie 1988a). But what is the level
at which it is a reasonable assumption? To
check (2.5) at the ED level, we chose stratum
1 and made a histogram of the values

(CIP(Fy — F.):C;>0; i=1,...,I}
(5.1)

Count Midpoint
1208 -50
2606 .25
91 1.00
19 175 3

6 250 -

1 325 =

[ 4.00 ~

2 475 -1

1 5.50 -

0 6.25 -

0 7.00 —

0 7.75 B

o 8.50 .

0 9.25 ©

o 10.00 -

[ 10.75 -1

] 11.50 -1

0 12.25 -1

0 13.00 -

0 13.75 B

1 14.50 -

T | T
0 600

1200 1800 2400 3000

Histogram Frequency

Fig. 2a. Histogram of 3,935 normalized adjustment factors (given by (5.1))
at the ED level, for stratum 1 (White population in New England Central cities =
of over 50,000 people); there are 96 possible strata.
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Count  Midpoint

1 -4

o -37

o -33

8 «29
62 -25
261 -21
504 -17
563 13
520 -09
566 -.05
400 01
161 03
130 07
120 Bi
92 15
60 19
55 23
45 27
31 31
42 .35
" 39

120

I ! I i I T
240 360 480

Histogram Frequency

600

Fig. 2b. Central portion of the histogram presented in Figure 4a, showing 3,631
of the 3,935 normalized adjustment factors shown in Figure 2b.

Count Stem

2 -4
-3

5 -2
13 -1
23 -0
16 0
8 1
4 2
1 3
1 4
5

1 6

Leaf

31

94111

9888854333210
99988877766543332110000
1222345556667778
00112334

0133

2

6

Fig. 3. Histogram (stem-leaf plot) of 73 normalized adjustment
factors (given by (5.7)) at the state-strata level, for the k = 1
group (Central City White) of strata; there are 4 possible groups.
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where j = 1, and I ~ 300,000. Figure 2a
shows the histogram of all the values and
Figure 2b shows the central portion of it.
Clearly, some of the F}, are badly biased and
the distribution is skewed towards high
values. Some of this could be cured by
modeling transformed adjustment factors
(Cressie 1986); indeed, Figure 1 suggests a
relationship between mean and variance that
might be accounted for by transformation.

To see whether these features disappear at
higher levels of aggregation, we made a
histogram, at the state-stratum level, of the
values

(G (F, — E.):G > 0;

jedg;i=1,...,1) (5.2)

where k = 1, and I = 51. Figure 3 shows
that the outliers have been reduced and
the central portion of the distribution is
Gaussian in shape, as we had hoped.

5.2. Conclusions

In view of the consistency of results over a
wide variety of measures of improvement
(Cressie and Dajani 1988), some recommen-
dations can be made. Estimation of census
coverage can be made at the state level using
statistical procedures that yield counts
superior to the census counts. Although
empirical Bayes estimators hold a slight
edge over synthetic estimators, the latter are
much easier to explain and implement
(Schirm and Preston 1987). Apart from
comparing the two estimators, this article
has set about to gain a deeper understand-
ing of the undercount mechanism. Figures
1, 2, and 3 illustrate the limitations of recent
model-based approaches to estimating
undercount.
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