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Estimating Distribution Functions with Auxiliary
Information using Poststratification

P.L.D. Nascimento Silva' and C.J. Skinner!

The estimation of a finite population distribution function is considered when auxiliary
population information is available. A simple poststratification procedure is compared
to a number of more sophisticated methods which have been proposed in the literature.
Comparisons are made with respect to a number of criteria and via a simulation study
based on two real populations. Whereas some more sophisticated procedures can display
greater efficiency in certain circumstances, this can be compensated for by lack of
robustness or by other practical disadvantages. Poststratification emerges as a simple
and practical procedure offering some useful gains in efficiency.

Key words: Regression estimation; finite population; survey data; sampling; linear
weighting.

1. Introduction

The distribution function F(¢) for a variable y and a population U is the proportion of
units in U for which the value of y is less than or equal to 7. Such functions may be of
considerable interest when, for example, y is a measure of wages or income and the
units are individuals or households, or when y is a measure of size, such as number
of employees, and the units are establishments.

We consider here the problem of estimating F(¢) given sample values of y together
with auxiliary population information. One example of this problem which led to our
interest in this subject arose in the 1991 Brazilian Population Census, where measures
of income are recorded for a sample of households? and auxiliary values of a crude
measure of income and of several other variables are recorded for 100% of the
population enumerated.

Since F(¢) is simply a population proportion for any given value of ¢, conventional
methods for estimating means such as ratio and regression estimation may be used to
take advantage of the auxiliary information. In many circumstances such standard
approaches may be satisfactory. However, sometimes, such as in the Brazilian census
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example, the auxiliary information may include the population values of a variable x
which is a close proxy for y. In such a situation it seems reasonable to expect that an
estimator of F(z) should approach F() arbitrarily closely as x approaches .

This property is not possessed by the conventional ratio or regression estimators,
however, essentially because the survey variable I(y <) (where the indicator
function (- ) takes the value 1 if its argument is true and 0 otherwise) is not in general
perfectly correlated with y. This suggests that more efficient use of the auxiliary
information is possible.

One approach would simply be to take a ratio or difference estimator based on
the binary auxiliary variable I(x < ¢), or more generally I(Rx < 1), as proposed
by Rao, Kovar, and Mantel (1990), where R estimates the ratio of the y total to
the x total in the population. A series of yet more sophisticated estimators has
been proposed by Chambers and Dunstan (1986), Kuo (1988), Rao et al. (1990),
Chambers, Dorfman, and Wehrly (1993) and Kuk (1993). See also Chambers,
Dorfman, and Hall (1992), Rao and Liu (1992), Dorfman (1993) and Chen and
Qin (1993).

Here we consider instead a simpler approach, namely a poststratified estimator,
with poststrata defined by the intervals of x. Poststratification is an approach familiar
to most survey statisticians and has a number of practical advantages discussed in
Section 3. Our intention is not to attempt to show that the poststratified estimator
markedly outperforms other estimators but rather the converse: if the poststratified
estimator is taken as a simple ‘“benchmark” estimator, is there evidence that other
more complicated estimators have sufficient advantages to make their use preferable
in practice?

This paper has consequently three aims: first, to provide a theoretical comparison
of the poststratified estimator with some alternative estimators; second, to provide
a corresponding numerical comparison and third, to provide empirical evidence
regarding the effect of alternative choices of the poststratum intervals.

The alternative estimators will be defined in Section 2 and compared theoretically
in Section 3. The numerical comparison will be presented in Section 4 and our
conclusions in Section 5.

2. Alternative Estimators

Let U be a finite population of size N. Let s C U be a sample drawn according to a
known probability sampling design. Let (x;,y;) be pairs of values associated with
each unit i € U. Suppose that the values y;, i € s, and x;, i € U, are known. The
problem is how to use this information to make inference about the finite population
distribution function

F)=N"'Y Iy <1). (1)

€U

We list below a number of alternative point estimators F(¢) of F(f). Estimators
s.e.[F(#)] of the standard error of F(t) will be considered briefly in Section 3.7.
Inference would usually proceed assuming that [F() — F(1)] /s.e.[F(1)] follows the
standard normal distribution. The adequacy of this assumption as well as the
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question of how to construct uniform (as opposed to pointwise) confidence regions
for the function F(¢) will not be considered here.

The simple (ordinary) design-based estimator of F(f) which makes no use of
auxiliary information at the estimation stage is

A M Iy <t)/m
Fy(1) = g Z 1/7l'~ (2)

ies
where T; is the inclusion probability of unit i.

To define the poststratified estimator, let the G poststrata partitioning U be
denoted Uy,...,Us where i€ U, if x,_1) < x; < X(, and where x() = —o0,
X1y < X@) < ... <X@g-1 are specified values and x(g) = oo. Let sy,...,56 be the
corresponding partition of s so that s, = s N U,. Let N, be the size of U, and let
Ny =Yies, l/mng=1,...,G.

Then the poststratlﬁed estlmator of F(t) is

=N Z e I 240 ®)

where F(f) = N; Yies Ly < 0)/m;.

While it is sensible in practice to define the poststrata in such a way that the
probability that s, is empty (and hence that Ng =0 and I:"I,s(t) is undefined) is very
small, the theoretical possibility that this event occurs needs formally to be addressed
in a design-based framework. For this purpose we suppose that (as discussed, e.g., by
Little 1993) any poststrata with N = 0 are pooled with adjacent poststrata until all
N are posmve (see Fuller 1966, for an alternative approach).

Note that Fps( ) may alternatively be expressed as a multiple regression estimator
(c.f. Sirndal, Swensson, and Wretman 1992, p. 264) with G auxiliary variables
indicating poststrata membership.

Turning now to alternative estimators proposed in the literature to make efficient
use of auxiliary information, we consider first the model-based estimator suggested
by Chambers and Dunstan (1986). This estimator is based on a working model

¥ = Bx; + o(x)u; (4)

where 3 is an unknown parameter, the o(x;) are known and the u; are independent
and identically distributed outcomes of a random variable with zero mean. The
estimator proposed by Chambers and Dunstan is

fu) =N [t i+ 3 S (< 2| )

i€es jeU—-s i€s

where

O hoe b YR

i€s i€s

and U — s denotes the set of nonsampled units.
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Following instead a design-based approach, Rao et al. (1990) proposed three
estimators. The first are the ratio estimator F,(r) and the difference estimator Ey(2),
obtained by treating I(y; < 1) as the survey variable and I(Rx; < 1) as an auxiliary
variable, where

h ‘ Yi Xj
]
ies 1 ies 1
estimates the ratio R = Y/X of the population totals.
The third is the model-assisted (modiﬁed) difference estimator

ﬁdm(z)zzwl[zl(y%—z ’C+ZG] (6)

i€s ¢ ies i ieU

where

G = [;1<ﬁj< \/fixz) /WJ] [;1/75]

and 7; is the joint inclusion probability of units i and j.
The last two estimators to be considered here are the nonparametric kernel
estimators proposed by Kuo (1988) and Kuk (1993), given respectively by

Fr,(ty=N! [Z[ <)+ Z ZWyI(J’i < t)] ' (7)

ies jeU—s i€s
Fa() =N "R, (8)
jeu
where
_ Kl(x; = x;))/8]
ZK[ ‘xj — X /b]
i€s

2 .
are weights for Kuo’s estimator, K(z) = e * /2 is the standard normal density (kernel),

Z wl(x; — x;)/BIW(t = ¥;) /b]/7;

D i€s

’ ZW[(Xj = x;)/b]/m;

ies

)

where

W(z)=¢"/(1 +¢) is the standard logistic distribution function with density
w(z) = /(1 4+ ¢°)* and b is the bandwidth parameter used to control the amount
of smoothing.

3. Theoretical Comparison of Estimators

We now compare the estimators listed in Section 2 with respect to a number of criteria
which may be important in practice.
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3.1. Is E(t) a genuine distribution function?

For an estimator F(z) of F(¢) to be a genuine distribution function it should be mono-
tonic increasing and such that F(—oo) = 0, F(oo) = 1. These properties may easily be
verified for F, (1), Fps(t), F,y(1), Fi,(1) and Ey(f). However, none of the three estima-
tors of Rao et al. (1990) is monotonic increasing in general, as noted by Kuk (1993),
although this property could be achieved by suitable transformation as pointed out by
the authors.

3.2. Does F(t) = F(t) when y; = x;?

As discussed in the introduction, it seems desirable that an estimator F(¢) approaches
F(t) as x approaches y. This property clearly does not hold for the simple estimator
F, (1) since it makes no use of x information. For the poststratified estimator, if y; = x;
then it can be verified that }:"ps(t) = F(t) for t = x() for g =1,...,G — 1. For other
values of ¢, equality will not hold in general, although we may expect deviations to
be small if the poststrata are reasonably fine. The property does hold for each of
the estimators Fy(t), F, (1), F,(t) and F,,(¢) but not in general for F,(1) and Fy(2).

3.3. Is the use of auxiliary information flexible?

So far we have assumed that the auxiliary information consists of the population
values of x;. In practice, the available information will often be either less or more
than this and it is therefore important that the estimation procedure be sufficiently
flexible to adapt to such circumstances.

Sometimes the available information on a continuous variable such as age will
only consist of the numbers N, in certain intervals of values of the variable. In
such circumstances the poststratified estimator is evidently still calculable whereas
the other estimators which require individual x; values are not.

On the other hand, often not only are the x; values available but so too are the
values of other auxiliary variables. In this situation the poststratified estimator may
be extended by treating it as a multiple regression estimator. The estimators F.q(1),
F,(t) and F (1) may similarly be extended by replacing b,x; and Rx;, respectively,
by the appropriate estimated value of a linear predictor including the values of the
additional variables. The extension of the estimators F,(z), Fy,(f) and Fy(¢) seems
less straightforward, however.

3.4. Is computation simple?

Computation of an estimator F (¢) is particularly simple if it can be expressed in the
usual weighted form

F(r) = ZWiI(J’i <)

i€s

where the weights w; depend neither on the y; values nor on z. Of the estimators
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considered in Section 2, only the simple estimator F,(¢), the poststratified estimator
F »s(1) and the kernel estimator Fy, (1) possess this property.

Because of this property, the poststratified estimator can easily be calculated using
the same weights as are used for the estimation of any mean. This property is
particularly useful when there are many survey variables for which either distribution
functions or means are to be estimated.

The kernel estimator Fko(t) also has this property but the weights w; would be more
costly to compute. The computation of the estimators F,y(¢), Fy, () and Fy(7) is even
more intensive, requiring double summations over both s and U.

3.5. Is definition of F(t) automatic?

A further consideration related to simplicity of computation is whether the definition
of the estimator is automatic, in the sense that no choices are required. The estimators
F,(t), F,(¢) and F,(¢) are automatic in this sense. The poststratified estimator is not
in general automatic unless the auxiliary information is already grouped into
prespecified categories such as age groups. Otherwise the cut-off values x(,) must be
chosen.

The model-based estimator ch(t) similarly requires the initial specification of a
model of the form (4) and, in particular, of a functional form for o(x). Similarly,
the estimator F,,(z) of Rao et al. (1990) is model-dependent in the sense that they
suggest replacing /X in F,(7) by o(x) if a model of form (4) is supposed to hold
with o(x) # /x. Finally both the nonparametric estimators F,(z) and Fii(t) require
the specification of the bandwidth b, with Kuk’s estimator also requiring appropriate
scaling of the response variable.

3.6. Bias

The moments of each estimator may be evaluated either with respect to a model,
such as (4), or with respect to the sampling design. From a model-based point of
view, Chambers and Dunstan (1986) demonstrate the asymptotic unbiasedness
of ch(t). Similarly Rao et al. (1990) note the asymptotic model-unbiasedness
of F,,(t). The poststratified estimator is exactly model-unbiased under a model
for which y; has a common mean within each poststratum (e.g., Valliant 1993).
There may, however, be some model-bias under a model such as (4).

From a design-based point of view, the poststratified estimator takes the form of
a separate ratio estimator and hence will be asymptotically unbiased under
standard sampling designs. The exact bias will depend on the rule for collapsing
poststrata when Ng =0 for any g. For some sampling designs, such as simple
random sampling, F, (z) will be exactly unbiased, conditional on values of
Ng >0 for all g. Fuller (1966) indicates how poststratified estimators can be
modified to make them unconditionally unbiased in such cases. The conditional
properties of the poststratified estimator under general sampling designs are con-
sidered by Rao (1985) and Casady and Valliant (1993). ‘
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3.7. Variance and its estimation

A further desirable property of an estimator of F(z) is that both a variance expression
and an estimator of this variance are available. Rao et al. (1990) present expressions
for the asymptotic design-based variances of the estimators F.(1), Fy(¢) and F,, (1), as
well as for estimators of these design-based asymptotic variances. However, they
recognize that estimating the variance of F4,(#) may be cumbersome under unequal
probability sampling designs, since it involves computations with third order
inclusion probabilities.

An approximate expression for the variance of the poststratified estimator, derived
analogously to the results in Rao et al. (1990), is

Var[F, ()] = VII(y; < 1) = Fy (1)) ©)

where the operator notation V' is defined by

Via)=N7 > (Wiﬂj—ﬁy)(ai ﬂ)z (10)

iGeu i T

for an argument a;, where g(i) is the poststratum to which unit i belongs and where
F,(t) = N, IS e v, I(y: <) is the population distribution function of y in post-
stratum g.

Expression (9) enables us to judge when the poststratified estimator will be
most efficient. In particular, its asymptotic variance will be zero if the y values
within each poststratum are either all above ¢ (Fy(f) =1) or else all below ¢
(F,(#) = 0). This also implies that no single poststratification could be the best for
all ¢.

) The asymptotic variance of Fps(t) may be estimated by replacing Fy(;)(¢) in (9) by
Fy(;y(?) and by replacing V' in (9) by its sample analogue v

A2
va) =N72 Y (mm — my)my! (% - ﬂ) . (11)

i<jes L

A variance estimator with possibly superior conditional properties, following Rao
(1985) and Sérndal, Swensson, and Wretman (1989), is obtained by replacing g; in
(11) by Nyyai/Nygy- )

Kuk (1993) presents an expression for the design-based variance of Fy(¢), which
depends on the variances and covariances of the f{j, as well as a corresponding
variance estimator. The estimator can, however, be computationally intensive even
for small sample sizes, since it depends on calculating variances and covariances
between the N values Rj.

4. Numerical Comparison of the Estimators

In this section we present the results of a Monte Carlo comparison of the various
estimators of F(¢). The simulation study consisted of selecting 1,000 samples of sizes
30 and 50, by simple random sampling without replacement, from each of two
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populations. From each sample and for each estimator in Section 2, estimates of the
distribution function F(¢) were calculated for 11 different values of 7, namely the
quantiles 7, of the population distribution function such that ¢ = 1/12,...,11/12,
F (tq) = q.

The bias (BIAS) and root mean squared error (RMSE) of each estimator for each
quantile z, were estimated by

1 1000 1000

BIAS(,) 10002“55 fa) = F(1,) 1000Z

1000 2
RMSE(r 1000 Z t,)]

where £ (t4) is the value of a given estimator at the quantile 7, computed from
sample s.

Corresponding aggregated measures of performance used to summarize the results
for the various quantiles are the average absolute bias (AVAB) and the average root
mean squared error (AVRMSE), given respectively by

1
AVAB = ﬁz; IBIAS(t,)|

AVRMSE = \/% ; [RMSE(z,)]>.

We also consider a global measure of performance of the estimators across all 11
quantiles for each sample s, by computing the maximum absolute deviation
(MAD) statistic

MAD(s) = max | (1,) - F(t,)].

4.1. The simulation populations

The first population comprises 338 sugar cane farms surveyed in 1982 in Queens-
land, Australia, as used originally by Chambers and Dunstan (1986), and later by
Rao et al. (1990) and Kuk (1993). We took income from cane as y and area assigned
for growing cane as x. Figure 1 displays a scatterplot of the population data we
used.

The second population consists of 430 farms with 50 or more beef cattle surveyed in
the 1988 Australian Agricultural and Grazing Industries Survey carried out by the
Australian Bureau of Agricultural and Resource Economics. This population was
originally used by Chambers et al. (1993) and subsequently by Kuk (1993) for their
respective simulation studies. In this case, y is income from beef and x is the number
of beef cattle in each farm. Chambers et al. (1993) present a scatterplot of the beef
farms population data.

The two different populations enable us to investigate the relative efficiencies of
the poststratified estimator versus the other estimators in both a situation where (4)
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Fig. 1. Scatter plot of sugar cane farms data

provides a good working model of the relationship between y and x (the sugar cane
farms) and also a situation where (4) is not a good model for that relationship (the
beef farms). This second population should provide some indication of
the “robustness” of the alternative estimators. Another reason for using both
populations in our study was the availability of similar simulation results for some
of the estimators considered here which could serve as a benchmark against which
to compare our results.

4.2.  Alternative poststratification schemes

To obtain evidence on the effect of choice of poststrata we considered three alter-
native schemes:

E. Equal numbers of units in the poststrata — this corresponds to choosing the values
of x(1) < X(2) < ... < X(G_1) such that Np = N/Gforallg=1,...,G;

R. Equal aggregate square root size in the poststrata — this corresponds to defining
the values of x(;) < Xz < ... < X(g_1) such that Yiev, VXi = Yicv/Xi/G for all
g=1,...,G;

T. Equal aggregate (Total) size in the various poststrata — this implies taking the
values of Xy < X <...<Xg-1 such that ey, xi = Sicux;/G for all
g=1,...,G
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Table 1. Average Root Mean Squared Error (AVRMSE) (*) for some versions of the poststratified estima-
tor over 1,000 samples

Estimators Sugar cane farms Beef farms

‘ n =30 n=>50 n=30 n =350
Simple 756 548 748 574
Poststratified-4E 594 435 576 419
Poststratified-4R 601 435 597 444
Poststratified-4T 602 435 687 510

(*)Values multiplied by 10,000.

For each of the schemes E, R, and T, which correspond to equations (12.5.7),
(12.5.8) and (12.5.9) of Sédrndal et al. (1992, p. 461-462), respectively, the population
was partitioned into 2, 3, 4, and 5 poststrata, producing a total of 12 alternative
poststratification versions, which we shall denote by codes such as 4E, for the
poststratification using scheme E with 4 poststrata, and so on.

In Table 1 we present the results of the AVRMSE for the three versions of the post-
stratified estimator with four poststrata. The simple estimator is also included for
reference. These results indicate that there is a reasonable gain of efficiency for the
poststratified estimators compared to the simple estimator.

The same is true for other poststratification schemes and number of partitions. We
note that the biggest percentage gains are achieved going from no poststrata (simple
estimator) to two poststrata, for these populations and sample sizes. The best choice
seems to be four poststrata, with little further gain if five poststrata are used, but little
loss with only three poststrata.

We note that, because the beef farms population is very skewed, scheme T favours
leaving the largest poststrata with only a few units. This increases the chances of post-
strata having no sample units. When an empty poststratum was found in any sample,
it was collapsed with the nearest non-empty poststratum, so that the poststratified
estimator could be computed. In the extreme case, pooling corresponds to using
the simple estimator.

We also observe that scheme T always produces the largest values of AVRMSE
compared to schemes E and R for partitions of the population with the same number
of poststrata. The “best” versions of the poststratified estimator are all obtained
with scheme E, although scheme R produces only slightly worse results. Scheme E
minimizes the probability of “empty poststrata” under the sampling design adopted
and this may account for this scheme’s superior properties for samples of these sizes.

We also used the simulation results to estimate the bias of the poststratification
estimator. However, in our study we found no evidence of any significant bias, under
all simulation conditions and for all the 11 quantiles considered. The estimates for the
bias of the poststratified estimator were usually no larger than those for the simple
estimator, which is theoretically unbiased under the simple random sampling without
replacement design used to select the samples. The estimated bias was also generally
much smaller than the root mean squared error.

The simulation standard error of each bias estimate is roughly 20 (= 600/+/1,000)
and it seems that the deviations of the estimates of bias from zero for both post-
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stratified and simple estimators can largely be accounted for by simulation error.

We also note that the RMSE figures for the various versions of the poststratified
estimator are reasonably stable over the whole range of the quantiles studied, with
a slight reduction at the extremes, due perhaps to the fact that £(¢) and F(z) are
bounded above and below. It is also apparent that the “optimal” poststratification,
in a minimum RMSE sense, varies from quantile to quantile (as predicted earlier),
although in this example the optimal choice usually falls within versions of the
partitioning scheme E for different numbers of poststrata.

We conclude this section by selecting the version 4E of the poststratified estimator
which appears to give the “best” results over the set of simulation conditions, to be
compared in the next section with the other estimators from the literature.

4.3. Poststratified estimator versus competitors

In this section we compare the poststratified estimator (version 4E) with the other
competing estimators.

Note that to compute the model-based estimator F,,(z) the variance function used
was o(x;) = ,/X;. The bandwidth used for the computation of Kuo’s estimator ,(z)
was b = 1.060,n~"/°.

Note also that for the computation of Kuk’s estimator Fkk(t) the values of the
response variable had to be scaled, since the bandwidth used to control the smoothing
is the same for both variables x and y. In the case of the sugar cane data set, we
divided the values of the response variable by 1,000.

For the beef farms data set, Kuk proposed not only scaling the y values by dividing
them by 100, but he also performed a 1/4 power transformation on both variables.
In order to study the sensitivity of Kuk’s estimator to the choice of transformation
we decided for this data set to compute two versions of Kuk’s estimator: one
using the “raw’ data, only with the response variable “properly” scaled (divided
by 100), and another following Kuk’s suggestion and taking the 1/4 power trans-
formation of both scaled response and auxiliary variables. For Kuk’s estimator
Fkk(t), the bandwidth used was calculated as the rounded value of the range of the

Table 2. Average Root Mean Squared Error (AVRMSE) (*) for several estimators over 1,000 samples

Estimators Sugar cane farms Beef farms
n=30 n=>50 n=30 n=>50

Simple 756 548 748 574
Kuo — nonparametric 633 456 720 551
Poststratified-4E 594 435 576 419
Modified difference 535 406 533 396
Kuk — transformed (**) (**) 428 337
Kuk — raw data 474 350 1193 903
Chambers—Dunstan 351 299 373 299

(*)Values multiplied by 10,000.
(**)Not available for the sugar cane farms.
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auxiliary variable (x) divided by the sample size (n), after scaling and transforming
the data.

Table 2 presents the AVRMSE statistics for all the estimators, except the ratio and
difference estimators. These were excluded since they were clearly outperformed by all
other estimators considered here, except the simple one, as expected in view of the
results already obtained by Rao et al. (1990).

We see that there is considerable variation in the performance of the estimators in
terms of average root mean squared error. The best overall performance is achieved
by Chambers and Dunstan’s model-based estimator. This was expected in the case
of the sugar cane farms population, where model (4) describes the data very well.
However, in the case of the beef farms population where the model does not fit,
this result is more impressive, although the improvement over its closest competitors
is smaller than for the sugar cane farms. We shall see later that this overall perfor-
mance measure conceals some problems of bias for this estimator especially for the
lower quantiles of the distribution, something already noted by Chambers et al.
(1993) and Kuk (1993).

Kuk’s estimator, computed from the raw data in the sugar cane population and
from the transformed data in the beef farms population, shows the second best
performance. However, the raw data version of Kuk’s estimator in the beef farms
population presents the worst performance among all the estimators considered.
This is due to the huge asymmetry of the data and to the fact that a fixed bandwidth
is used for the smoothing over the whole range of values of both x and y. This suggests
that the choice of an adequate transformation of the data prior to calculating the
estimator Fj,(¢) is very important.

The modified difference estimator proposed by Rao et al. (1990) follows next, with
values for AVRMSE which still provide a great improvement over the simple
estimator. It is closely followed by the poststratified estimator, which presents only
slightly worse results.

The poststratified estimator shows results which are always better than those for
the ratio and difference estimators, the simplest competitors. It also performs better
than Kuo’s nonparametric estimator Fko(t).

An analysis of the distribution of the maximum absolute deviations (MAD) com-
puted for each estimator for each population and sample size confirms the ranking
above. As an illustration, Figure 2 presents box-plots of the distributions of the
MAD obtained for the beef farms population and samples of size 50.

We now turn our attention to the analysis of the estimated biases. Table 3 presents
the measures of average absolute bias (AVAB) for the estimators considered.

These results suggest that the differences of the estimated biases from zero
are largely accounted for by simulation error (remember the simulation standard
error is roughly 20) in the case of the simple estimator, the modified difference
estimator and the poststratified estimator (as already noted in Section 4.2).
However, there are some noticeable biases for Chambers and Dunstan’s model-
based estimator and also for both nonparametric estimators. The estimated biases
deviate significantly from zero for most quantiles, in both populations and for both
sample sizes. The estimated biases for Kuk’s estimator are usually smaller
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Fig. 2. Boxplots of maximum absolute deviation, beef farms data set, sample size =50

(in absolute terms) than those for Chambers and Dunstan’s estimator. For the beef
farms population though, the raw data version of Kuk’s estimator has some very
large estimated biases. This is not surprising given the extreme skewness in the data.

Even though Chambers and Dunstan’s estimator was often substantially biased,
especially for the lower quantiles, this did not generally lead to a poor root mean
squared error performance, as the results in Table 2 show. These results apply,
however, only to sample sizes of 30 and 50, which are small in practice. On theoretical
grounds one might expect the bias of Chambers and Dunstan’s estimator to make a

Table 3. Average Absolute Bias (AVAB) (*) for several estimators over 1,000 samples

Estimators Sugar cane farms Beef farms
n=730 n=>50 n=730 n=>50

Simple 18 10 16 10
Kuo — nonparametric 111 95 165 146
Poststratified-4E 9 4 10 8
Modified difference 12 7 10 9
Kuk — transformed (**) (**) 91 46
Kuk — raw data 137 77 945 672
Chambers—Dunstan 189 181 152 135

(*)Values multiplied by 10,000.
(**)Not available for the sugar cane farms.
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relatively greater contribution to the RMSE as the sample size increases. This was
certainly the case when moving from n = 30 to n = 50. It is perhaps also relevant
that n = 200 for the example presented by Rao et al. (1990) where Chambers and Dun-
stan’s estimator has greater RMSE than their modified difference estimator for
q=1/4.

To investigate this further we performed a limited simulation exercise by selecting
200 simple random samples without replacement of size 300 from the beef farms
population. The bias of Chambers and Dunstan’s estimator became smaller, but it
still tended to be much larger than for the poststratified estimator. For an unbiased
estimator, such as the simple estimator, we would expect the RMSE to reduce by
a factor of ,/300(1 —30/430)/30(1 —300/430)=5.5 as n increases from 30 to
300 (N = 430). This was indeed roughly the case for the simple and poststratified
estimators. However, the RMSE of Chambers and Dunstan’s estimator was reduced
only by a factor of 3.9, since the relative contribution of the bias increased. The
consequence was that, for n = 300, the poststratified estimator was roughly equally
efficient to Chambers and Dunstan’s estimator.

We next compare conditional biases, as discussed, for example, by Chambers and
Dunstan (1986). Figure 3 presents a plot of the estimated conditional bias for sev-
eral estimators of the distribution function for the first quartile (¢ = 1/4), for sam-
ples of size 30 from the sugar cane population. The conditional biases were
estimated from 20 groups of 50 samples each, formed using the ordered values of
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Fig. 3. Estimated conditional bias, q= 1/4, sugar cane farms, samples of size 30
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Table 4. Ratio of root mean squared error (RMSE) (in % ) for poststratification estimator (4E) over simple
estimator for selected population quantiles

Quantile Sugar cane Beef farms

n=230 n=>50 n=30 n=>50
t10 93.7 93.7 90.0 96.1
tos 84.0 84.0 78.3 80.4
t 50 76.1 79.1 73.3 70.4
t7s 77.3 76.0 79.7 64.3
too 96.1 90.9 96.6 90.2

means of population x ranks of the sample x values, following the approach of
Chambers et al. (1993).

From Figure 3 we see that both the modified difference and the poststratified
estimators display good conditional behaviour. Kuk’s estimator presents a downward
trend in the conditional bias, although with reasonably small values. Kuo’s estimator
displays a poor conditional performance, second only to that of the simple estimator,
which uses no auxiliary information. The model-based estimator of Chambers and
Dunstan presents a small conditional bias with little variation over the whole range
of samples. Similar results were obtained for other values of g and for the beef farms
population.

Next we briefly consider the estimation of quantiles z, by inverting the distribution
function estimators to give 2 (¢). For linear estimators, such as the simple and post-
stratified estimators, this inversion is straightforward. In Table 4 we compared the
poststratified estimator with the simple estimator in terms of the ratio of the corre-
sponding root mean squared errors for the quantiles ¢, such that ¢ = 0.10, 0.25,
0.5, 0.75 and 0.90. The poststratified (4E) quantile estimator provides some useful
gains in precision over the simple estimator. We note that other poststratification
schemes yielded even better precision for these quantiles.

For the sugar cane population (n = 30), these results are similar to those reported
by Rao et al. (1990) for their ratio and difference quantile estimators. Other quantile
estimators based on inverting nonlinear estimators of the distribution function were
not considered here because of greater computational difficulties.

In terms of bias, the poststratified estimator performed better than the simple
estimator overall. For the beef farms population, some nonnegligible biases were
observed, especially for the tail quantiles. For the sugar cane farms, relative bias
was not important, except perhaps for the lower quantile ¢ ;5.

Finally we also briefly considered variance estimation for the poststratified estima-
tor (scheme 4E), by computing two alternative variance estimates for each sample
estimate Fps(tq). Both Varjance estimators are based on expression (11), the
first with a; = I(y; <) - Fo)(t), which we call v,, and the second with a; =
[I(y; < 1) — Fg(;y(£)]Ng(iy/ Ngiy which we call v,. Note that further collapsing of
poststrata to achieve a minimum of two sample elements was needed in order for
the variance estimates to be computed.

Table 5 displays simulation estimates of average absolute bias and average root
mean squared error of these variance estimators computed relative to the simulation
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Table 5. Average absolute bias (AVAB) and average root mean squared error (AVRMSE) (*) for alter-
native variance estimators under poststratification scheme 4E

Simulation population AVAB AVRMSE
and sample size

Va Vb Va Vb
Sugar cane, n = 30 7.4 5.6 12.4 13.9
Sugar cane, n = 50 2.6 1.8 4.8 5.2
Beef farms, n = 30 7.5 5.9 12.8 14.7
Beef farms, n = 50 2.2 1.5 5.1 5.5

(*)Values multiplied by 10,000.

variances of the point estimators. These estimates were obtained by averaging over
the 11 variance estimates for the quantiles considered.

The variance estimator v, performed slightly better than v, in terms of root mean
squared error, although the reverse was true in terms of bias. Some bias was observed
for samples of size 30 in both populations, possibly due to the higher rates of
collapsed poststrata. Bias was substantially smaller for samples of size 50.

The main finding is that both variance estimators perform satisfactorily. The sizes of
their biases relative to their standard deviations decline as n increases. The sizes of their
standard deviations correspond roughly to conventional variance estimation. For
example, the relative standard deviation of the usual variance estimator of the sample
mean in a random sample from a normal population is 1/2/(n — 1) or about 0.20 when
n = 50. For the AVRMSEs in the sugar cane population the corresponding figure for v,
is4.8 x 10,000/435% = 0.25. This would be reduced somewhat if the bias was excluded.
The variance estimators are also convenient in practical terms, for being simple to
implement, especially under simple random sampling.

5. Conclusions and Discussion

In this paper we have compared a poststratified estimator with several other estima-
tors of the finite population distribution function. The poststratified estimator
possesses a number of desirable properties, such as yielding a genuine distribution
function, asymptotic unbiasedness, availability of variance estimator, simplicity of
computation, etc. Three estimators — the simple, ratio and difference estimators —
possess some of these properties, but appear to be inferior in terms of efficiency.
This leaves four other estimators that we have considered — Chambers and Dunstan’s,
the modified difference estimator and both nonparametric estimators of Kuo and
Kuk — as potentially serious competitors.

Chambers and Dunstan’s estimator can be very efficient when the model upon
which it is based is appropriate. However, as noted by Rao et al. (1990), Chambers
et al. (1993) and Dorfman (1993), this estimator can perform poorly under model
misspecification. It thus appears to be an estimator which may be more suited to
applications where detailed model checking can be performed, rather than to routine
use in surveys, where a poststratified estimator may be preferable.

Kuk’s estimator also performed well, although the results appeared to be somewhat
sensitive to the choice of transformation and there were some biases which might be
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more important for larger sample sizes. It would be useful to obtain further empirical
evidence on whether the gain in efficiency displayed by Kuk’s estimator compared
to the modified difference estimator holds up in other settings. Some evidence which
suggests that this might not be the case is provided by Chambers et al. (1993); they
show that some nonparametric estimators, which bear some resemblance to Kuk’s
perform fairly similar to the modified difference estimator.

Kuo’s estimator was clearly outperformed by all the other estimators that use
auxiliary information. It seems that such nonparametric estimators may be worthy
of further research to clarify the choice of transformations and bandwidth, but
they are likely to remain fairly complicated estimators, suited mainly to special
applications.

Finally, there is the modified difference estimator of Rao et al. (1990). This estimator
seems to offer a fairly consistent slight improvement in efficiency compared to poststrati-
fication. For example, poststratification offers a 21% reduction in average root mean
squared error for the sugar cane farms with n = 50 compared to the simple estimator
which uses no auxiliary information (Table 2), whereas the modified difference estimator
offers a 26% reduction. Against this slight gain in efficiency stands a number of practical
disadvantages. The modified difference estimator is not necessarily monotonic; it requires
fairly heavy computation with algorithms which differ from the ones usually adopted in
survey estimation and variance estimation can be complicated.

In conclusion, we suggest that in many standard survey settings poststratification
and more generally regression estimation provide a simple and practical approach
to incorporating auxiliary information into the estimation of distribution functions
which can offer some useful gains in efficiency. We found no evidence, for simple
random sampling, to indicate that greater efficiency can be obtained by creating
the poststrata by a scheme other than that for which equal sample sizes are expected
within poststrata. Our (limited) evidence also suggests that little efficiency can be
gained by having more than three or four poststrata.
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