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Estimating Interpolated Percentiles from
Grouped Data with Large Samples

Edward L. Korn', Douglas Midthune®, and Barry 1. Graubard®

The possible values for the percentiles of a discrete distribution are the same as the possible
values of the distribution itself. When data are discrete due to grouping or rounding, there is
frequently interest in the percentiles of the underlying continuous distribution. Simple inter-
polation methods are discussed that smooth the empirical cumulative distribution function to
obtain estimates of these underlying percentiles. Some limited simulations are used to exam-
ine the properties of these methods. Modifications are discussed for survey data that are
obtained with complex sampling designs. Three examples are presented from the second
National Health and Nutrition Examination Survey and the 1987 National Health Interview
Survey.
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1. Introduction

Percentiles (or quantiles) offer an easy-to-interpret description of the location, spread, and
tails of a distribution. The sample percentile, which is based on one or two appropriately
chosen order statistics, is easy to calculate and is nonparametric, but will be less efficient
than an estimator derived from a (correctly-specified) parametric model. Harrel and Davis
(1982) and Kaigh and Lachenbruch (1982) suggested estimators utilizing more of the
order statistics to improve the efficiency whereas Azzalini (1981) suggested estimating
percentiles from a distribution function derived from a kernel density estimator; see
Keating and Tripathi (1986) for a review and further references.

The problem addressed in this article is the potential bias of the sample percentile
calculated from a large data set of grouped or rounded observations. For example, consider
the selected sample percentiles of the blood lead distributions for boys and girls aged five
years or less displayed in Table 1. These sample percentiles are estimated from data from
the second National Health and Nutrition Examination Survey (NHANES II) conducted in
1976-1980 in the United States. The sample percentiles are weighted by the sample
weights of the survey so that the estimates represent the U.S. population of boys and girls
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Table 1. Weighted sample and interpolated percentiles (pg/dl) of blood lead distributions for boys and girls
aged =5 years based on data from NHANES 11

Percentile Boys (n = 1,283) Girls (n = 1,162)
Sample Interpolated Sample Interpolated
10 9 9.4 9 9.0
25 (lower quartile) 12 11.9 11 11.2
50 (median) 15 15.2 15 14.9
75 (upper quartile) 20 19.9 20 19.6
90 25 25.3 25 24.7

aged five years or less; see Section 4 below. Note that the sample percentiles are integers.
This is because the data for blood lead levels on the public use data tape (Hematology and
Biochemistry, catalog number 5411, Version 2) are recorded as integers (of pg/dl).
Although this level of precision may be appropriate for individual values, one feels
that estimates based on a thousand values as in Table 1 should have more precision.
For comparison purposes, the detailed description of the blood lead levels from this survey
(National Center for Health Statistics et al. 1984) displays means to the nearest 0.1 pg/dl.
Table 1 also displays estimated interpolated percentiles that will be defined below in
Section 2. These interpolated percentiles, which have been rounded to the nearest
0.1 ug/dl, show that the distribution of boys’ lead values is shifted to the right compared
to the distribution of the girls’ values.

As a second example, consider Figure 1, which displays the (sample-weighted) histo-
grams of the family income distributions of individuals living in the Northeastern versus
the Southern regions of the United States. These data are also taken from NHANES II, in
which sampled individuals were asked to classify their family income into one of twelve
categories: under $1000, $1000-$1999, $2000-$2999, ..., $6000-$6999, $7000-$9999,
$10,000-$14,999, $15,000—$19,999, $20,000—$24,999, and $25,000 and over. (In Figure
1 and in what follows, the category ‘‘$25,000 and over’’ has been arbitrarily given an
upper endpoint of $35,000.) From Figure 1, we see that the distribution of incomes
for the Northeastern region (sample size = 4,219) is shifted to the right compared to
the distribution of incomes for the Southern region (sample size = 5,283). In contrast,
the sample percentiles that utilize the midpoint of a category to represent individuals
in that category show only a difference at the upper quartile (Table 2). The interpolated
percentiles, which have been rounded to the nearest $10 in Table 2, give a better description
of the populations displayed in Figure 1.

In the next section we describe two methods of interpolating the sample cumulative
distribution function to estimate interpolated percentiles. These are compared with each
other and with the sample percentiles via some limited computer simulations. Section 3
discusses constructing confidence intervals and standard errors for interpolated per-
centiles. Since many large data sets are derived from surveys with complex designs, in
Section 4 we discuss the added complications in using such data. We return to the
examples described above in Section 4 and present a more complex example involving
data from a food frequency questionnaire administered in the 1987 Natignal Health
Interview Survey. We end with a discussion of some of the inherent limitations of the
proposed methods.
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Table 2. Weighted sample and interpolated percentiles (U.S. dollars) of family income distributions for the
Northeastern and Southern regions of the United States based on data from NHANES 11

Percentile Northeast (n = 4,219) South (n = 5,284)
Sample Interpolated Sample Interpolated
25 (lower quartile) 8,500 8,740 8,500 7,300
50 (median) 12,500 14,020 12,500 11,040
75 (upper quartile) 22,500 21,680 17,500 18,180

2. Estimation

We assume that the underlying latent variable Y has a continuous cumulative distri-
bution function (CDF), F(y), but that the observed variable X can equal only the discrete
values X; <X, <...<Xg. We additionally assume that the grouping endpoints
—e0=gy<a <..<ag = oo are given, such that if Y € [a;_1,q;) then the observation
X = X;. We will refer to X; as the ‘‘midpoint’’ of the interval [a;_,q;), even though it
may not equal (a;_; + @;)/2; in fact, its value can be chosen by the analyst. The target
parameter is the sth percentile of the Y distribution, F ~!(5). The observed data are
X1,X2, ..., X,, With associated order statistics denoted by x;) =<xp = '+ =x,. For
ungrouped data, the sample sth percentile is usually defined as some linear combination
of x;+) and x;+ 1), where j * is the greatest integer less than or equal to ns (SAS Institute
Inc. 1990). In the present context of discrete data and large sample sizes, x(j+, and x(;+4 1
will usually be equal, so that the particular linear combination chosen is not important. To
be definite, we will define the sample sth percentile as (x(j+ + xj«4+1))/2 if ns is an integer,
and x(j+4 1) otherwise; see also Schmeiser and Deutsch (1977).

Chaddock (1921) and Woodruff (1952) discussed a method for estimating a percentile
with discrete data based on a linear interpolation of the empirical CDF of X as an estimator
of F(y). Let p = (py, p2,...pg) be the observed proportions of the data in the different
grouping intervals. The sth percentile is estimated by F;\(s; p), where

FLyip)=p1+p2+ ... +Picy-1 +Lly)_l—lh(y) 2.1

i(y) — di(y~-1
and i(y) is defined as the i such that y € [a;_, a;). Figure 2 gives a graphical example
of the linear interpolation. This interpolation can be interpreted as a distribution uni-
formly of the mass observed at z; over the interval [a;_1,a;). If ay = —ec o1 ag = oo, then
a, and ag are set to arbitrary specified finite values aj < a; and ax > ag_ in the definition
(2.1).

To potentially improve upon the linear interpolation method, we consider an aver-
age quadratic interpolation. The idea is (1) to use a quadratic interpolation of the CDF
for the interval containing the sample percentile and the interval to its immediate left,
(2) to do the same using the interval containing the sample percentile and its imme-
diate right-hand neighbor, (3) to average the two CDF estimates, and (4) to estimate
the percentile from this average curve. A graphical example is given in Figure 3. In
the real data example shown in Figure 3, the fitted quadratic curves do not differ sub-
stantially over the range considered; thus, averaging has only a minor effect on estimated
percentiles in this context. Formally, we estimate the sth percentile by f’Q_ I(s; p) where
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Fig. 2. Demonstration of linear interpolation for the cumulative distribution function around the 10th
percentile. The straight dashed line between the points A and B is used for the interpolation. (Data are
from boys sampled in NHANES II)

Fo(y:p) = [Fg1(y:p) + Fga(y; p)/2 and for h = 1,2,
y
FQh(y;p) =pi1+p2t+... +Pig-1+ J (@i(y)—14h T Biy—14nD) dt
i(y)-1
=p1+p2+t ... FPiy-1 T iy—144(Y — i(y)-1) +:3i(y)—1+h(y2/2 - a?(y)-1/2)
where o; and §; are given by the solution to
a_)
P = | (kB = ata - a0 + 8@ 2 o)
a;_,
aj
pj = J (Ol + Bt) dt = oz(aj — aj_l) + 6(012/2 — a]?_I/Z)

aj_y
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Fig. 3. Demonstration of average quadratic interpolation for the cumulative distribution function around the
10th percentile. The average of the quadratic fit through the points A, B, and C (+’s) and the quadratic fit between
the points B, C, and D (x’s) are used for the interpolation. (Data are from boys sampled in NHANES II)

which is
B; = 2lp;/(a; — a;_1) — pj1/(aj_1 — a;2))(a; — a;3)
o = pi_i/(a_1 — a;_y) — (@, + a;_1)B;/2

Wheni(y) =1, F o is defined to be F 02> when i(y) = K (the last interval), F o is defined to
be F, 01- Note that the values of the midpoints X; are not used for either the linear or average
quadratic estimators. An alternative locally quadratic estimator of the CDF could be
obtained by integrating a frequency polygon (Scott 1985). However, this would require
equal-length grouping intervals, and is therefore not pursued here. An estimator based
on a cubic interpolation was also considered, but did not offer an improvement over the
average quadratic estimator.

To compare the behavior of the sample, linear and average quadratic percentile estima-
tors, simulations were done with three symmetric distributions (normal, Caucﬁy, and uni-
form) and one asymmetric distribution (lognormal) for Y. The scales of the distributions
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were chosen so that the difference between the 90th and 10th percentiles was always equal
to 2.56 (corresponding to standard normal values), except for the uniform distribution
where it was set equal to 4.8. Since the simulation results would be expected to be sensitive
to the proximity of the percentile to a midpoint, a range of medians was chosen for each
distribution. For the symmetric distributions, the medians were chosen to be —0.5 t0 0.5 by
0.1; for the lognormal, 1.5 to 2.5 by 0.1. For each distribution, the results presented below
are averaged over the eleven choices of median, with 10,000 data sets simulated for each
choice of median.

Table 3 presents the simulation results for data sets of size 1,000 and grouping intervals
typically of length 1.0; see the footnote to the table for the exact interval and midpoint
definitions. As expected, the sample percentiles behave poorly in terms of mean squared
error, and will not be discussed further. For the median, the average quadratic estimator
has somewhat lower mean squared error than the linear estimator for the Cauchy and log-
normal distributions, and slightly higher mean squared error for the uniform distribution.
The superiority of the linear estimator for the uniform distribution is expected since this
estimator is assuming the density is locally uniform. For the 10th and 90th percentiles,
the average quadratic estimator is substantially better than the linear estimator for the
non-uniform distributions, and somewhat worse for the uniform distribution. The slightly
different results for the 10th and 90th percentiles for the symmetric distributions reflect
simulation error.

Table 4 presents the corresponding results for grouping intervals typically of length
0.5. Except for the 10th percentile of the lognormal distribution, for which the average

Table 3. Simulated square root of average mean squared error of three percentile estimators for estimating
median, and 10th and 90th percentiles with four underlying distributions based on data sets with n = 1,000
grouped into intervals of length 1.0° (see text)

Normal Cauchy Uniform Lognormal
Percentile estimator Median
Sample 314 314 324 315
Linear .039 .068 .090 .056
Average quadratic .037 .057 .093 .046
10th percentile
Sample .285 .305 .280 275
Linear 127 178 057 .168
Average quadratic .057 .140 .067 .080
90th percentile
Sample 285 .305 280 313
Linear 128 178 .057 125
Average quadratic .057 139 .067 .092

#For the symmetric distributions the grouping intervals were taken to be (—ee, —2.5), [-2.5, —1.5), [-1.5, =0.5),
[-0.5,0.5), [0.5,1.5), [1.5,2.5), [2.5, =), with midpoints —3, —2, —1, 0, 1, 2, and 3. When it was necessary to
interpolate in the first or last interval, the infinity endpoints were taken to be —3.5 and 3.5, respectively. For
the lognormal distribution, the grouping intervals were taken to be [0,.5), [.5,1.5),...,[4.5,5.5), [5.5, ) with-=
midpoints 0.25, 1, 2,...,5, 6. When it was necessary to interpolate in the last interval, the infinity endpoint
was taken to be 6.5.
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Table 4. Simulated square root of average mean squared error of three percentile estimators for estimating
median, and 10th and 90th percentiles with four underlying distributions based on data sets with n = 1,000
grouped into intervals of length 0.5% (see text)

Normal Cauchy Uniform Lognormal
Percentile estimator Median '
Sample .161 .160 179 .161
Linear .038 025 .092 .037
Average quadratic .038 .023 .094 .036
10th percentile
Sample 145 .186 153 .146
Linear .058 .130 .053 .048
Average quadratic .052 132 .054 .028
90th percentile
Sample .145 .186 153 173
Linear .058 130 .053 .092
Average quadratic .052 132 .054 .093

For the symmetric distributions the grouping intervals were taken to be (—eo, —3.0), [-3.0, —2.5), ..., [2.5,3.0),
[3.0, %) with midpoints —3.25, —2,75, ..., 2.75, 3.25. When it was necessary to interpolate in the first or last
interval, the infinity endpoints were taken to be —3.5 and 3.5, respectively. For the lognormal distribution, the
grouping intervals were taken to be [0,.5), [.5, 1.0),...,[5.5,6.0), [6.0, ) with midpoints 0.25, 0.75, 1.25, ...,
5.75, 6.25. When it was necessary to interpolate in the last interval, the infinity endpoint was taken to be 6.5.

quadratic estimator is substantially better, the differences are slight. Table 5 presents the
results for the median based on grouping intervals that are of length 0.5 to the left of the
median, and of length 1.0 to the right of the median. The average quadratic estimator is
somewhat better for the Cauchy and lognormal distributions, with the other differences
slight.

Based on these simulation results, we recommend using some form of interpolated
percentile estimator. The average quadratic estimator appears generally superior to the
linear estimator, and is essentially as easy to calculate.

Table 5. Simulated square root of average mean squared error of three percentile estimators for estimating
median with four underlying distributions based on data sets with n = 1,000 grouped into intervals of length
0.5 to the left of 0.0 for the symmetric distributions, and to the left of 2.0 for the lognormal distribution, and length
1.0 to the right of 0.0 or 2.0, respectively® (see text)

Normal Cauchy Uniform Lognormal
Percentile estimator Median
Sample 227 226 .239 227
Linear .038 .050 .091 .049
Average quadratic .038 .041 .093 .038

*For the symmetric distributions the grouping intervals were taken to be (—e, —3.5), [—3.5, —3.0), ..., [—0.5,0),
[0, 1.0), [2.0,3.0), [3.0, e0) with midpoints —3.75, —3.25, ... —0.25, 0.5, 1.5, 2.5, 3.5. When it was necessary to
interpolate in the first or last interval, the infinity endpoints were taken to be —4.0 and 4.0, respectively. For
the lognormal distribution, the grouping intervals were taken to be [0,.5), [.5,1.0), [1.0, I5), {1.5,2.0),
[2.0,3.0), ...,[5.0,6.0), [6.0, ) with midpoints 0.25, 0.75, 1.25,1.75,2.5, 3.5, ..., 5.5, 6.5. When it was necessary
to interpolate in the last interval, the infinity endpoint was taken to be 7.0.
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3. Confidence Intervals and Standard Errors

We describe a method of confidence interval construction following Woodruff (1952). Let
F(y; p) be a continuous interpolated estimate of the distribution function F(y) based on p.
In particular, the linear interpolation [F;(y:p)] or average quadratic interpolation
[f’Q(y; p)] of the last section could be used. Assume that we are interested in the sth
percentile, and let 6 = F “I(s) and 6 = F'(s; p) be the true and estimated percentile.
Let var[F (y; p)] be an estimator of the variance of F (y;p). If F (0; p) were an approxi-
mately unbiased estimator of F(f) with an approximate normal distribution, then with
approximately 1 — o probability

F(0) € F(0;p) = z2_opn V var[F(9; p)]

and therefore
9 € F7'{F(0;p) * 21_on V var[F(9;p)]}

where z;_,, is the 1 — /2 quantile of a standard normal distribution. An approximate
1 — « level confidence interval for § could then be given by substituting 6 for 6 and
EF~! for F~! in the above expression to yield

0 € F st z_opVvarlFO:p)lo_s} o

since s = F(6; p). Since both the linear and average quadratic interpolated distribution
functions are linear combinations of the multinomial cell proportions p, the estimated
variances var[F,(y;p)] and v&r[ﬁQ(y; p)] are easy to calculate. For example, when
b € [a,a5)

A 2
an . R . 0—a N
var F1(0,p)|g_p = var(py) + var(py) + 2 cov(py,pa) + ( 2 ) var(ps)

az —a
6 — a ~ ~
+2 [cov(p1,p3) + cov(py, p3)] (3.2)
az —ap

and since p has a multinomial distribution, var(p;) =pi(1 —py)in, cov(py,p2) =
—p1p2/n, etc. If a standard error for 9 is required, one can use the half-width of a .6826
level confidence interval, since for a standard normal distribution this is the proportion
of mass that falls within one standard deviation of the mean.

One problem with the above approach is that F(6; p) may not be a good estimator of F(6)
for large sample sizes. In fact, except for special F(y) (e.g., a uniform distribution with
linear interpolation), the interpolated distribution functions will be asymptotically biased.
This is not surprising since there is no sample information about F(6) in between grouping
endpoints. An implication of the asymptotic bias is that the coverage probability of the
intervals (3.1) will go to zero with increasing sample size. For example, Table 6 displays
simulated coverage probabilities for the intervals (3.1) based on the linear and average
quadratic interpolations using the same simulated data sets as the ones used for Table_
3. For this sample size of 1,000, the coverage probabilities can be dramatically lower
than the nominal value of 90 per cent.
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Table 6. Simulated coverage probabilities for nominal 90% confidence intervals for the median, and 10th and
90th percentiles with four underlying distributions based on data sets with n = 1,000 grouped into intervals of
length 1.0° (see text)

Normal Cauchy Uniform Lognormal

Percentile estimator Median
Linear .88 .36 .90 .66
Average quadratic .90 45 90 77

10th percentile
Linear 31 .64 .87 .14
Average quadratic .84 77 .82 .30

90th percentile
Linear 31 .64 .87 .69
Average quadratic .84 77 .82 .90

?See the footnote to Table 3.

However, even in this setting we believe that confidence intervals still have a useful role
in describing the variability of the percentile estimators. To see how well the intervals
(3.1) are accomplishing this task, we examine the probability that the intervals cover
0, = F_l(s; ) where m = (my, ™, ..., Tx) are the probabilities (based on F(y)) that an
observation falls into the different grouping intervals. The parameter 6; can be thought
of as the “‘true’’ interpolated percentile; its value depends on F(y) and the interpolation
method. Using the same simulated intervals as described in Table 6, the simulated
coverage probabilities of the true interpolated percentiles are .90 to two significant digits
for all combinations listed. Thus, the confidence intervals do accurately reflect the
variability of the estimator about the quantity it is estimating; we return to this point in
the Discussion.

The intervals (3.1) are an example of what is referred to as a ‘‘reflected’” confidence
interval; other possible constructions (Slud, Byar, and Green 1984) are not pursued
here. It should be noted that if one were interested in a confidence interval for the
percentile of the grouped data distribution () instead of F(y), then one could modify a
standard nonparametric interval based on the inversion of a nonparametric test by closing
the interval (Noether 1972).

4. Survey Data

Large data sets are frequently acquired from surveys using multistage designs involving
unequal probabilities of selection and stratification. When a survey samples individuals
in the population with unequal probabilities of selection, the sample weights effectively
represent the number of individuals in the population that each sampled individual
represents. The sample weight associated with an individual is the inverse of that
individual’s probability of being included in the sample, adjusted, if necessary, for non-
response. There is often an additional poststratification to ensure that the sum of the
sample weights equals known population values for various subgroups, e.g., age/race/
sex subgroups. Weighted estimators, which are weighted by the sample weights, are
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approximately unbiased for their corresponding population quantity (Kish and Frankel
1974), whereas unweighted estimators that ignore the sampling design can be badly
biased. In the present application, the weighted proportions of observations in the different
grouping intervals, p,, = (Py1,Pw2s - - - » Pwi)» €Stimate the population proportions, and can
be substituted for p in the estimators described in Section 2.

The sample design also has implications for the calculation of confidence intervals for
the percentiles. Complex multistage designs can induce a correlation structure among the
observations. Treating the observations as if they were from a simple random sample can
therefore lead to incorrect confidence intervals. Fortunately, there are variance estimation
techniques to correctly account for the sample design (Wolter 1985). In the present
application for either the linear or average quadratic estimators, all that is required for
the confidence interval construction of Section 3 is the estimated covariance matrix of
P, Which is readily available from standard survey computer software, e.g., Shah et al.
(1991). The estimated var(p,,1), cov(pPy1,Py2)» LC., can be substituted into (3.2) to esti-
mate the variance of £(8; p,,), which can be substituted into (3.1). An alternative approach
is to estimate the variability of F(9;p,,) directly using a resampling method such as the
jackknife, balanced repeated replication, or the bootstrap (Kovar, Rao, and Wu 1988).
One additional modification of (3.1) is sometimes advisable. Even though the sample sizes
are large, the degrees of freedom for survey variance estimators are limited by the number
of primary sampling units. Therefore, in (3.1) we advise using the 1 — /2 quantile of
a t-distribution with d degrees of freedom instead of z; _,/,, Where d equals the number of
sampled primary sampling units (PSUs) minus the number of strata from which they are
sampled (Korn and Graubard 1990). When considering estimation for a subset of the
population, we recommend letting d equal the number of sampled PSUs that contain
sampled observations in the subset minus the number of strata that contain observations
in the subset.

We now return to the two examples presented in the Introduction. NHANES II sampled
persons aged six months through 74 years. The sampling design can be approximated by
the sampling of 64 PSUs from 32 strata, where the PSUs are counties or small groups of
contiguous counties; see McDowell et al. (1981) for details. People living in poverty areas
were oversampled, as were individuals five years or younger, or 60 years or over. The base
sample weights, which were the inverses of the selection probabilities, were adjusted for
nonresponse based on income and age groupings, geographic region, and whether or not
the individual was within a standard metropolitan statistical area. These adjusted weights
were poststratified by 76 age/race/sex categories to yield the final sample weights
(National Center for Health Statistics et al. 1984). The sample percentiles presented in
Tables 1 and 2 were based on weighted data using these final sample weights; the
interpolated percentiles used the average quadratic interpolation based on the weighted
proportions of observations in the grouping intervals.

To see the effect of the sample weighting, Table 7 displays the percentiles for
blood lead for boys from Table 1 along with unweighted estimators that ignore the sample
design. The confidence intervals for the interpolated percentiles are also presented using
the sample design as described above, and ignoring the sample design. The estimators
ignoring the sample design, i.e., the unweighted estimators, are shifted to the right.
Additionally, the confidence intervals that ignore the sample design are much narrower
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Table 7. Average quadratic interpolated percentiles (pg/dl) with 90% confidence intervals of blood lead
distributions for boys aged <5 years (n = 1,283) based on data from NHANES 11, using and ignoring the sample
design

Percentile Using the sample design Ignoring the sample design
Estimate 90% con. int. Estimate 90% con. int.
10 9.4 (8.5, 10.1) 9.7 (9.4, 10.0)
25 11.9 (11.1, 12.6) 12.2 (11.9, 12.5)
50 15.2 (14.4, 16.1) 15.7 (15.3, 16.0)
75 19.9 (18.9, 21.0) 20.3 (19.9, 20.9)
90 25.3 (23.8, 27.5) 27.0 (25.8, 28.0)

than the ones that appropriately incorporate it into the variance estimation. This is
primarily due not to the sample weighting but rather to the intraclass correlation of the
blood lead values at the PSU level (data not shown). Confidence intervals that ignore
the sample design should not be used for this example.

We now present a more complex example that involves interpolation of CDFs on
several scales. The food frequency questionnaire of the 1987 National Health Interview
Survey (1987 NHIS) was administered to 22,080 persons ages 18 years or older (Block
and Subar 1992). The design of the 1987 NHIS sampled 198 PSUs with oversampling
of black and Hispanic respondents within certain PSUs. There was a household non-
response adjustment to the base sampling weight, as well as poststratification to 60
age/race/sex categories; see National Center for Health Statistics et al. (1988) for details
of the survey and a copy of the food frequency questionnaire. Individuals administered
the food frequency questionnaire were asked to state how often they ate a variety of foods
(during the past year) as the number of times per day, per week, per month, or per year.
There was also a category ‘‘less than 6 a year or never.”’

To calculate (weighted) sample percentiles without interpolation, each person’s answers
were first converted to a weekly basis. For example, ‘‘one time per day’’ equals seven,
“‘two times per week’’ equals two, ‘‘three times per month’’ equals .75, etc. Individuals
reporting less consumption than six times per year or the category ‘‘less than 6 a year
ornever’’ were assigned the value 0. (Some authors, e.g., Patterson et al. (1995), calculate
percentiles only for those individuals reporting more consumption than six times a
year.) The sample percentiles were then calculated from the cumulative distribution
function using these converted values weighted by the sample weights. These are
displayed for ‘‘Potatoes, baked, boiled, or mashed’’ in Table 8 for the 16,841 White
respondents (Hispanics excluded) with non-missing potato consumption data. The
discreteness of the sample percentiles is not surprising since 72 per cent of the individuals
reported their potato consumption on a ‘‘per week’” basis.

To calculate interpolated percentiles, we first grouped the individuals by which time
scale they use to report their consumption. Then we used average quadratic interpolation
to estimate the CDF for that time scale. In doing this interpolation for the 5,812 men who
reported on a ‘‘per week’’ basis, for example, intervals endpoints of (1.5 times per week,
2.5 times per week) were taken for a reported value of two times per week, etc. The sample
weights were used in estimating each CDF. An overall interpolated CDF for men was
calculated by taking the weighted average of the interpolated CDFs for each of the
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Table 8. Weighted sample and interpolated percentiles (number of servings per week) of consumption of
potatoes (baked, boiled, or mashed) for men and women based on data from the 1987 NHIS (Whites, Hispanics
excluded)

Percentile : Men (n = 7,159) Women (n = 9,682)
Sample Interpolated Sample Interpolated

(90% con. int.) (90% con. int.)

25 (lower quartile) 1.0 0.98 1.0 0.89
(.95, 1.02) (.86, .92)

50 (median) 2.0 2.01 2.0 1.92

(1.96, 2.06) (1.87, 1.97)
75 (upper quartile) 3.0 332 3.0 3.20

(3.26, 3.39) (3.14, 3.26)

time scales. (A step function at zero was used for the CDF for men reporting consumption
less than six times a year or never.) The weights for this weighted average were the sum of
the sample weights of the individuals reporting on that time scale. For example, the sum of
the sample weights of the men reporting on a ‘‘per week’’ basis was 73 per cent of the sum
of the sample weights of all the men with usable data. The interpolated percentiles for
potatoes displayed in Table 8 were obtained from the overall interpolated CDFs for
men and women, and suggest that men consume more servings of potatoes than women.
This latter statement is supported by the fact that men consume on average .14 more
servings per week than women (p = .0017, test of means using SUDAAN).

5. Discussion

Without some assumption on the form of the underlying distribution function, there is an
obvious identifiability problem in estimating percentiles from grouped data. The sample
percentiles, which estimate the percentiles of the discrete distribution accumulated from
the underlying continuous distribution, can be thought of as the right answer to the wrong
problem. The interpolated percentiles offer an approximate answer to the right problem.
To quote Tukey (1962, pp.13-14): “‘Far better an approximate answer to the right
question, which is often vague, than an exact answer to the wrong question, which can
always be made precise.”” If one knows a parametric family containing the underlying
distribution function, however, then a parametric estimation of the percentile will be
asymptotically unbiased (unlike the interpolated percentiles) and more efficient. For
example, suppose in the simulations in the first column of Table 3 that one knew that
the underlying distribution was normal (with unknown mean and variance). One could
then estimate the mean and variance using maximum likelihood for the grouped data,
and use these parameter estimates to estimate the percentiles. When this was done, the
simulated square root of the average mean squared error was .033 for the median and
.045 for the 10th and 90th percentiles, compared to .037 and .057 using the average
quadratic interpolation. The obvious risk in using a parametric family is that one might
assume the wrong family. For example, if one incorrectly assumed an underlying normal,
distribution when it was truly uniform, the simulated errors were .109 for the 10th and 90th
percentiles, compared to .067 using the average quadratic interpolation.
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Even if one agrees that interpolated percentiles offer a better description of an under-
lying distribution than sample percentiles, one could argue with our calculation of
confidence intervals. After all, the coverage probability for the underlying percentile 6
may be far from the nominal coverage, even though the coverage probability for the inter-
polated percentile ; is approximately correct. However, what is the choice? We are
reluctant to present percentile estimators with no measure of variability. All in all, we
believe that the presentation of the confidence intervals is beneficial if one is careful in
that they are interpreted as a measure of variability of a possibly biased estimator.

Although interpolated percentiles and their confidence intervals may offer a good
nonparametric description of distributions, they are unneeded for certain inferential tasks.
For example, consider testing the null hypothesis that the underlying distributions for two
different groups of individuals are equal. If the null hypothesis were true, then the
discrete grouped-data distributions would be equal also. Therefore, one could test directly
the equality of the grouped-data distributions. As usual, the choice of the test statistic
would depend upon the alternative hypothesis of interest. For example, one could
test the equality of the blood lead distributions for boys and girls displayed in Table 1
by testing the equality of the means for a location shift alternative, or the equality of
the means of the log lead values for a scale shift alternative. In either case, there would
be no need for interpolation. Standard survey software could then provide a p-value as
well as a standard error of the difference in means. Of course, the interpolated percentiles
would still provide a useful description of the underlying distributions.
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