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Complex designs are often used to select the sample which is followed over time in a panel
survey. We consider some parametric models for panel data and discuss methods of
estimating the model parameters which allow for complex schemes. We incorporate survey
weights into alternative point estimation procedures. These procedures include pseudo
maximum likelihood (PML) and various forms of generalized least squares (GLS). We also
consider variance estimation using linearization methods to allow for complex sampling.
The behaviour of the proposed inference procedures is assessed in a simulation study, based
upon data from the British Household Panel Survey. The point estimators have broadly similar
performances, with few significant gains from GLS estimation over PML estimation. The
need to allow for clustering in variance estimation methods is demonstrated. Linearization
variance estimation performs better, in terms of bias, for the PML estimator than for a GLS
estimator.
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1. Introduction

A broad class of “regression-type” models has found a wide range of useful applications

with panel survey data (e.g., Wooldridge 2001; Diggle et al. 2002). Such data often consist

of repeated observations on the same variables for the same individuals across equally

spaced waves of data collection. The “regression-type” models considered here are

broadly concerned with representing the relationship between one of the variables, treated

as dependent, and a number of the other variables, treated as covariates. A typical example

of the kind of panel survey considered here is the British Household Panel Survey (BHPS),

in which a sample of households was selected at Wave 1 and then individuals in this

sample were followed up at annual intervals.

It is common for the selection of the initial panel sample at Wave 1 to involve a complex

sampling scheme. For example, stratification and multistage sampling were employed in

the selection of the initial BHPS sample. In addition, sample individuals are often selected

with unequal probabilities and weights are constructed to compensate for these unequal
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probabilities as well as for different forms of wave nonresponse and other complexities

(Kalton and Brick 2000). In the mainstream panel data modelling literature there is little

consideration of such sampling schemes other than through extensions of models to

capture clustering effects (e.g., Wooldridge 2001).

A number of methods have been developed in the survey sampling literature to take

account of complex sampling schemes in the regression analysis of cross-section survey

data. See Chambers and Skinner (2003) for references. One broad approach which has

increasingly been implemented in statistical software packages is pseudo maximum

likelihood estimation (Skinner 1989), where maximum likelihood point estimators are

adapted using survey weights and the variances of these point estimators are estimated

using survey sampling methods, such as Taylor series linearization.

In this article we shall extend this broad approach to the estimation of panel data model

parameters, allowing for complex sampling designs. We shall discuss methods of statis-

tical inference for models with parametric assumptions about the covariance structure of

errors over time. We shall incorporate survey weights into alternative point estimation

procedures, including maximum likelihood, generalized least squares and asymptotically

distribution free (ADF) approaches. We shall also consider standard error estimation

approaches using linearization methods to allow for complex sampling, and indicate

connections with some established ADF methods. We shall adopt an aggregate modelling

strategy (Skinner, Holt, and Smith 1989) rather than a multilevel covariance modelling

approach. For developments of the latter approach see Muthén and Satorra (1995,

Section 5).

Some previous work on estimation for panel data models under complex designs has

been undertaken by Feder, Nathan, and Pfeffermann (2000), who propose combining

multilevel modelling, time series modelling and survey sampling methods; by Sutradhar

and Kovacevic (2000), where a generalized estimating equations approach is developed

by considering an autocorrelation structure in a multivariate polytomous longitudinal

survey data context; by Skinner and Holmes (2003), who study two approaches for

dealing with sampling effects, either considering the repeated observations as

multivariate outcomes and adopting weighted estimators that account for the correlation

structure, or considering a two-level longitudinal model and to modify weighting

strategy proposed by Pfeffermann et al. (1998); and by Skinner and Vieira (2007), who

present some empirical evidence that the variance-inflating effects of complex sampling

schemes can be higher for longitudinal analyses than for corresponding cross-sectional

analyses.

This article is organized as follows. The basic structure of the data and sample are

described in Section 2. The models are given in Section 3. Point estimation methods,

including weighted estimation of covariance matrices are reviewed in Section 4.

Estimation of model parameters using least squares methods and pseudo maximum

likelihood estimation is also considered. The article proceeds in Section 5 to the

consideration of variance estimation methods, by adopting linearization methods to allow

for complex sampling and also by considering ADF variance estimation techniques. Two

simulation studies, based upon data from the British Household Panel Survey, will be

presented in Section 6 to assess the behaviour of the different estimation procedures. We

make brief remarks in the concluding discussion in Section 7.
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2. Sampling and Data

We suppose that the data consist of the values yit of an outcome variable and 1 £ q vectors of

values xit of covariates for each individual i in a sample, denoted s, and each wave of data

collection t ¼ 1; : : : ; T . We shall sometimes write s ¼ {1; : : : ; n}, without loss of

generality, where n is the sample size. The sample is assumed to be selected from a specified

finite population at Wave 1 according to a (without replacement) probability design for which

the inclusion probability pi of each individual i in s is known and the sample and the

population are fixed thereafter. The design may be complex, for example involving

stratification and multistage sampling. We suppose that sampling weightswi are available for

estimation. In the absence of nonresponse, these may be design weights, i.e., the reciprocals of

the sample inclusion probablities pi. In practice, nonresponse will occur at each wave,

especially as a result of attrition. In this case, we suppose that s denotes the set of individuals

providing values yit and xit at each of the T waves of data collection and we suppose that

weights wi are available to adjust not only for the sampling but also for the nonresponse.

3. Models

We consider standard kinds of models for the repeated measurements (Diggle et al. 2002,

Chapters 4 and 5) in which the yit obey the (superpopulation) linear model:

E yit
� �

¼ xitb ð1Þ

in the population, where xit is treated as fixed (or conditioned upon), b is a q £ 1 vector

of unknown parameters (and we make no distinction between the realized yit and

the underlying random variables). We allow for serial correlation in the measurements

by writing the repeated measurements for individual i as the T £ 1 vector yi ¼

yi1; : : : ; yiT
� �

0 and allowing for nonzero off-diagonal elements of the covariance matrix

S of this vector:

S ¼ covðyiÞ ¼ E{½yi 2 Xib�½yi 2 Xib�
0} ð2Þ

where Xi ¼ xi1
0; : : : ; xiT

0
� �

0 is the T £ q matrix of covariate values.

We consider two possible structures for the matrix S. The first is referred to as the

uniform correlation model (UCM), where all the off-diagonal elements of S are s2
u and all

the diagonal elements are s2
u þ s2

v . This corresponds to the multilevel model:

yit ¼ xitbþ ui þ vit ð3Þ

where ui and vit are random effects with zero means and variances s2
u and s2

v respectively,

which are uncorrelated over time. In this case the correlation between yit and yit 0 for any

two occasions t and t 0 for t – t 0 is given by r ¼ s2
u=ðs

2
u þ s2

vÞ.

In our second structure, referred to as the AR1 model, the correlation is allowed to decay

over time. We again assume that all diagonal elements are s2
u þ s2

v but now suppose that

the covariance between yit and yit 0 for occasions t and t 0 takes the form

covðyit; yit 0 Þ ¼ s2
u þ g jt2t 0 js2

v , where g is an additional parameter (jgj , 1). This model

corresponds to the following first-order autoregressive process for the vit:

vit ¼ gvit21 þ 1it ð4Þ
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where the 1it are mutually independent disturbances with zero mean and variance

s2
1 ¼ ð1 2 gÞ2s2

v . Note that in both models it is assumed that S does not depend upon i.

To emphasize the fact that the covariance matrix S takes a particular parametric

structure for each model, we write S ¼ SðuÞ, where u is a b £ 1 parameter vector. In

particular, u ¼ s2
u;s

2
v ; g

� �
0 for the AR1 model and u ¼ s2

u;s
2
v

� �
0 for the UCM model.

Note that the UCM model is a special case of the AR1 model where g ¼ 0.

We have so far only made assumptions about the correlation of the yit between different

time points t but not between different individuals i. We shall, indeed, assume that the

parameter vector u governing the inter-temporal covariance matrix S(u) is of scientific

interest, but that any correlation between values of yit for different individuals is a

“nuisance.” In the UCM and AR1 models we shall assume that the correlation between yit
and yi0t0 is zero for any two distinct individuals i and i0 and any two occasions t and t0. We

shall also consider a UCM(C) model, where C denotes cluster, for which this correlation is

given by a fixed quantity, t, for any distinct individuals i and i0 in the same cluster and any

two occasions t and t0 and zero otherwise, where the inter-temporal covariance structure

S(u) is the same as for the UCM model.

4. Point Estimation

We shall suppose that b is estimated following an established approach for repeated

survey observations, as implemented for example in the software SUDAAN (Shah et al.

1997), by:

b̂ ¼
i[s

X
wiX

0
iV

21Xi

0
@

1
A

21

i[s

X
wiX

0
iV

21yi ð5Þ

where V is a specified “working” covariance matrix of yi (Diggle et al. 2002, p. 70) and the

wi are the survey weights introduced in Section 2. Provided (a) the linear model in (1)

holds, (b) the weights wi have the property that weighted sample moments are consistent

for population moments with respect to the joint sampling/nonresponse probability

distribution, i.e.,
P

s wizi=
P

s wi is consistent for the finite population mean of zi (an

arbitrary variable) and (c) V is constant, b̂ will be consistent for b with respect to the joint

model/sampling/nonresponse distribution as the sample size n increases (cf. Fuller 1975;

Isaki and Fuller 1982; Liang and Zeger 1986).

Note that this result allows for the possibility that the sampling/nonresponse scheme is

“informative” with respect to the model, in the sense that the selection of individuals into

the sample s is dependent upon yit conditional on the xit. In this case, weighting by wi (e.g.,

if they are inversely proportional to the probabilities of inclusion in s) in (5) may adjust for

bias arising from such selection. In contrast, the omission of the weights from (5) could

lead to bias in large samples in the presence of such selection.

In practice, condition (c) that V is constant will not hold. In the simulation study we shall

suppose that V is estimated using the UCM model as the working model. This just requires

estimating the intra-individual correlation r since s2 ¼ s2
u þ s2

v cancels out the two places

where V appears in (5). We shall estimate the correlation r by iterating between GLS
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estimation of b and survey-weighted moment-based estimation of the intra-individual

correlation (Liang and Zeger 1986; Shah et al. 1997). Following standard large sample

arguments (Liang and Zeger 1986) b̂ will remain consistent for b when V is estimated in

this way, even though there may be a loss of efficiency if the model underlying V is not

well specified.

As in Section 3, let u denote the b £ 1 vector of parameters of interest which determine

the covariance structure S ¼ SðuÞ of yi, as given in (2). In order to define a class of

estimators u, we first define the weighted residual covariance matrix:

Sw ¼ N̂21

i[s

X
wi yi 2 Xib̂
� �

yi 2 Xib̂
� �

0 ð6Þ

where N̂ ¼
Pn

i¼1 wi estimates the population size, N. The matrix Sw is a consistent

estimator of S with respect to the joint model/sampling/nonresponse distribution,

provided that the model assumptions in (1) and (2) hold and that the weights enable

consistent estimation of population moments (Condition (b) under Equation (5)).

Having defined Sw, we now define the class of estimators û of u to be considered,

as those that minimize different measures of “distance” between Sw and SðûÞ

(Jöreskog and Goldberger 1972). More precisely, if FðSw;SÞ denotes the fitting

function, which measures the distance between Sw and S, then û is defined as the value

of u which minimizes FðSw;SðuÞÞ across values of u in a specified b-dimensional

parameter space.

The simplest example of a fitting function is the unweighted least squares (ULS)

function:

FULSðS;SÞ ¼
1

2
�tr{½S2 S�2} ð7Þ

The resulting ULS estimator ûULS is uniquely defined and is consistent for u, given

that S (Sw in our setting) is consistent for S (Browne 1982; Browne 1984). However,

ûULS is not in general an asymptotically efficient estimator of u. Moreover, it is not

scale invariant (Jöreskog and Goldberger 1972), although this does not seem a serious

problem when the elements of yi are repeated measurements of the same variable. With

the aim of improving efficiency, we consider also a class of generalized least squares

fitting functions:

FGLSðS;SÞ ¼ vechðSÞ2 vechðSÞf g
0U21 vechðSÞ2 vechðSÞf g ð8Þ

where vech is the vector of distinct elements of a symmetric matrix (Fuller 1987). For

the T £ T matrices considered here, vech is of dimension k £ 1, where k ¼ TðT þ 1Þ=2.

The “weight” matrix U remains to be specified. For efficient estimation, we should like

U to correspond (approximately) to the covariance matrix of vechðSÞ, for the relevant

matrix S, which is Sw in our setting. A traditional approach to the specification of U,

which ignores the complex sampling scheme and is motivated by a working

assumption of normality and independent and identically distributed observations, is:

U ¼ 2KðW^WÞK 0 ð9Þ
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where K is the so-called “elimination” matrix, W is any consistent estimator of S, and

^ is the Kronecker product operator (Muthén and Satorra 1995). Expression (9) may

alternatively be written elementwise as (Jöreskog and Goldberger 1972):

Utt 0;t00t000 ¼ Wtt00Wt 0t000 þWtt000Wt 0t 00 ð10Þ

where Utt 0;t00t000 represent the typical element of U.

Expressions (8) and (9) imply (Browne 1982) that FGLSðS;SÞ takes the form:

FGLS2NORMðS;SÞ ¼
1

2

� �
�tr{½ðS2 SÞW 21�2} ð11Þ

where GLS-NORM indicates that this choice of fitting function is based upon an

underlying normality assumption. There are two natural choices of W. The first is given by

S, since this (Sw in our setting) is assumed consistent for S. In this case we may write:

FGLS2NORM1ðS;SÞ ¼
1

2

� �
�tr{½ðS;SÞS21�2} ¼

1

2

� �
�tr{½I 2 SS21�2} ð12Þ

An alternative choice is to set W equal to S, leading to:

FGLS2NORM2ðS;SÞ ¼
1

2

� �
�tr{½SS21 2 I �2} ð13Þ

We denote the resulting estimators of u as ûGLS2NORM1 and ûGLS2NORM2. An alternative

approach, not based on the working assumption of normality, is to set U equal to an

estimator of the asymptotic covariance matrix of vechðSÞ, making no assumption about the

underlying distribution. Such an approach is often called asymptotically distribution free

(ADF). See e.g., Browne (1982, 1984). We shall consider the use of linearization methods

of variance estimation for this purpose in the next section, following some earlier

applications of this idea in Skinner (1989), Satorra (1992), and Muthén and Satorra (1995).

Another approach to estimation is achieved by adopting the pseudomaximum likelihood

(PML) approach (Skinner 1989) in which a census log-likelihood (assuming independent

and identically distributed observations) is replaced by a weighted log-likelihood given by

(ignoring constants):

2Nlog SðuÞj j2
i[s

X
wi½yi 2 Xib�

0SðuÞ21½yi 2 Xib� ð14Þ

If this weighted likelihood is first “concentrated” by replacing b by b̂, maximizing

Expression (14) becomes equivalent to minimising the value of the following fitting

function:

FPMLðS;SÞ ¼ tr SS21
� �

2 log SS21
�� ��2 T ð15Þ

with S evaluated at Sw to take account of the complex design and nonresponse.

Alternatively, if this initial concentration does not take place, u could be estimated

simultaneously with b by maximizing Expression (14). If N is unknown, it might be

replaced in (14) by N̂ ¼
Pn

i¼1 wi.
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The properties of the GLS-NORM1 and PML approaches may be compared by noting

first that (12) may be alternatively expressed as (see Fuller 1987, p. 334)

FGLS2NORM1ðSw;SÞ ¼
1

2
ðn2 1Þ

XT
t¼1

ðlt 2 1Þ2

where l1; : : : ; lt are the eigenvalues of S21=2
w SS21=2

w . Similarly, (15) may alternatively

be expressed as

FPMLðSw;SÞ ¼
XT
t¼1

ðloglt þ l21
t Þ

Moreover if the model holds, i.e., if S ¼ SðuÞ, both GLS-NORM1 and PML estimators

are obtained by minimizing (see Fuller 1987, p. 335)
PT

t¼1 ðlt 2 1Þ2. Thus the GLS-

NORM1 and PML estimators may be considered asymptotic-equivalent.

5. Variance Estimation

In this section, we consider variance estimation for two purposes: first, to determine

possible matrices U to use in the generalized least squares fitting function in (8). Second, to

estimate standard errors of the estimators of u considered in the previous section.

As a preliminary step, we consider estimation of the variances and covariances of the

elements of Sw, i.e., we seek to estimate the asymptotic covariance matrix of the vector

vechðSwÞ. To establish the asymptotic covariance matrix with respect to the sampling

design, nonresponse and the underlying model requires defining a sequence of

populations, sampling designs/nonresponse mechanisms and samples. We suppose that

this sequence is such that there exists a nonnegative definite matrix C such that the limiting

distribution of
ffiffiffi
n

p
{vechðSwÞ2 vechðSÞ} is normal with a mean vector consisting of zeros

and covariance matrix C (cf. Isaki and Fuller 1982), i.e.,ffiffiffi
n

p
{vechðSwÞ2 vechðSÞ} !L Nð0;CÞ ð16Þ

We seek an estimator of the asymptotic covariance matrix n21C. From (6), we may

write

vech½Sw� ¼
Xn
i¼1

wi

 !21Xn
i¼1

wiĉi ð17Þ

where ĉi ¼ vech 1̂i1̂i
0

� �
and 1̂i ¼ yi 2 Xib̂. In order to employ the linearization method of

variance estimation, we first linearize Expression (17) to obtain:

vechðSwÞ ¼ mz=mw þ n21
Xn
i¼1

ui ð18Þ

whereui ¼ m21
w wiðci 2 mz=mwÞ,ci ¼ vech 1i1

0
i

� �
,1i ¼ yi 2 Xi

~b,mz ¼ Eðn21
Pn

i¼1 wiciÞ,

mw ¼ Eðn21
Pn

i¼1 wiÞ and ~b ¼ plimðb̂Þ. A linearization estimator of the asymptotic

covariance matrix of vechðSwÞ may then be obtained (Wolter 2007) by constructing an

estimator of the covariance matrix of the linear statistic n21
Pn

i¼1 ui, allowing for the
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complex design, and then replacing ui by ûi ¼ �w21wiðĉi 2 �z= �wÞ where �w ¼ n21
Pn

i¼1 wi

and �z ¼ n21
Pn

i¼1 wici.

Any feature of a complex design could, in principle, be handled in this linearization

approach. Here, however, we only consider the case of a multistage stratified sampling

scheme, where primary sampling units (PSUs) are sampled with replacement at the first

stage within H strata independently, and sampling with or without replacement is used at

subsequent stages. In this case, we rewrite n21
Pn

i¼1 ui as n21
PH

h¼1

Pmh

j¼1

Pnhj
i¼1 uhji,

where the triple suffix refers to elements within PSUs within strata, mh is the sample

number of PSUs in stratum h, nhj is the sample number of elements in PSU j in stratum h,

and uhji is the k £ 1 vector for element i in PSU j in stratum h. A standard estimator for the

covariance matrix of n21
PH

h¼1

Pmh

j¼1

Pnhj
i¼1 uhji under this sampling scheme, assuming the

uhji are observed and ignoring finite population corrections, is given by (Shah et al. 1995)

vL n21
XH
h¼1

Xmh

j¼1

Xnhj
i¼1

uhji

" #
v;l

¼n22
XH
h¼1

mh

Xmh

j¼1

uhjþ;v2 �uh;v

� �
0 uhjþ;l2 �uh;l

� �" #	�
mh21

�( )

ð19Þ

where uhjþ¼
Pnhj

i¼1uhji, �uh¼m21
h

Pmh

j¼1uhjþ and the subscripts v and l denote respectively

v¼ðt;t 0Þ and l¼ t00;t000
� �

. Finally, to obtain a linearization estimator vL vechðSwÞf g of

var{vech½Sw�}, the values uhji in (19) need to be replaced by values ûhji, defined in the

same way that ûi was defined above in terms of ui. The asymptotic validity of this variance

estimator depends on each mh being large if H is regarded as fixed.

In the special case when the population consists of only one stratum and each individual

i is a PSU, we rewrite (19) as

vL n21
Xn
i¼1

ui

" #
v;l

¼
Xn
i¼1

ui;v 2 �uv

� �
0 ui;l 2 �ul

� �" #	
½n n2 1ð Þ�

where �u ¼ n21
Pn

i¼1 ui. When ui is replaced by ûi, we find �u reduces to zero and the

linearization estimator of var{vech½Sw�} is:

vL vechðSwÞf g ¼
n

ðn2 1Þ

Xn

i¼1
wi

�2

Xn
i¼1

w2
i

�
1̂it1̂it 0 2 Swtt 0

��
1̂it00 1̂it000 2 Swt00t000

�
ð20Þ

corresponding to the estimator proposed by Browne (1984) when the sampling weights are

constant.

Replacing U by vL vechðSwÞf g in (8) gives a fitting function and a point estimator which

we denote FGLS2LðS;SÞ and ûGLS2L, respectively. In the classical setting of independent

and identically distributed observations the latter estimator is usually referred to as the

ADF estimator. The estimator may allow for the complex design both through weighting

in Sw and through the choice of linearization variance estimator vL vechðSwÞf g.

We now turn to the estimation of the variance of GLS estimators of u. Assuming (16)

and using linearization again (Skinner and Holmes 2003), the asymptotic variance of the

GLS estimator based upon the fitting function in (8) with a specified matrix U is:

varðûÞ ¼ n21ðD 0U21DÞ21D 0U21CU21DðD 0U21DÞ21 ð21Þ
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where

D ¼
› vech SðuÞ

� �� 
›u

The linearization estimator of this variance is then obtained by replacing D in (21) by D̂,

defined as D evaluated at u ¼ û, and by replacing n21C by a variance estimator

vL vechðSwÞf g as discussed above. When there are no covariates, this approach corresponds

to estimation methods proposed by Skinner (1989), Satorra (1992), Muthén and Satorra

(1995), and Skinner and Holmes (2003).

If U is chosen to be consistent for n21C, Expression (21) reduces in the limit to:

varðûÞ ¼ n21ðD 0U21DÞ21 ð22Þ

Let us now consider estimation of the asymptotic covariance matrix of the PML

point estimator ûPML. Following Binder (1983), we may write this asymptotic covariance

matrix as:

varðûPMLÞ ¼ IðuÞ½ �21var wðuÞ
� ��

IðuÞ
�21

ð23Þ

where wðuÞ is the b £ 1 pseudo-score function with jth element given by:

fjðuÞ ¼
›FPMLðuÞ

›uj
¼ tr SðuÞ21 SðuÞ2 Sw

� �
SðuÞ21 ›SðuÞ

›uj

� �
ð24Þ

using (14), and IðuÞ is the b £ b pseudo information matrix IðuÞ ¼ 2›wðuÞ=›u.

To estimate the asymptotic covariance matrix of ûPML it is therefore necessary to estimate

the covariance matrix of wðuÞ. We may write:

wjðuÞ ¼ tr SðuÞ21 ›SðuÞ

›uj

� �
þ

Xn

i¼1
wizjiXn

i¼1
wi

ð25Þ

where

zji ¼ 21 0iSðuÞ
21 ›SðuÞ

›uj
SðuÞ211i ð26Þ

Linearizing the ratio in (25) gives:

fjðuÞ ¼ tr SðuÞ21 ›SðuÞ

›uj

� �
þ

maj

mw

þ
1

n

Xn
i¼1

aji 2
maj

mw

� �
1

mw

where aji ¼ wizji, maj ¼ Eð�ajÞ and �aj ¼ n21
Pn

i¼1 aji.

The covariance matrix of fðuÞ may thus be approximated by

var{wðuÞ} ¼ var

�
n21

Xn
i¼1

ui

�
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where u i is the b £ 1vector with jth element given by:

1

mw

�ðaji 2
maj

mw

Þ ð27Þ

This covariance matrix may be estimated for a complex design as above, for example

using (19), where ui is, as above, replaced by ûi, which is obtained by replacing u by û and1i
by 1̂i in (26) to give ẑij, setting âji ¼ wiẑji and replacing âji, maj and mw in (27) by âji,

n21
Pn

i¼1 âji and �w respectively. The linearization estimator of the variance of ûPML is then

obtained from (23) by replacing var½wðuÞ� by this estimator and by replacing u by û in IðuÞ.

Notice that the evaluation of the information matrix IðuÞ requires differentiating

FPMLðuÞ and hence SðuÞ with respect to u twice. Some simplification is achieved by

assuming that the model is correct, i.e., that E½Sw� ¼ SðuÞ. If we then replace the

information matrix in (23) by

~IðuÞ ¼ E 2
›wðuÞ

›u

� �

which is asymptotically equivalent, we find from (24) that the element jkth of ~IðuÞ may be

expressed as:

~IðuÞjk ¼ tr SðuÞ21 ›SðuÞ

›uj
SðuÞ21 ›SðuÞ

›uk

� �

and we only need to differentiate SðuÞ once.

6. Simulation with British Household Panel Survey Data

In this section we shall assess the properties of the point and variance estimation

procedures of Sections 3 and 4 using a simulation study. In order to simulate from a

realistic model, we shall base our study upon a regression analysis undertaken by

Berrington (2002), with individual women as units of primary analytic interest and a

measure of attitude to gender roles as the outcome variable, y.

The data come from Waves 1, 3, 5, 7, and 9 (collected biannually between 1991 and

1999) of the British Household Panel Survey (BHPS) and these waves will be coded

t ¼ 1; : : : ; T ¼ 5 respectively. Respondents were asked whether they “strongly agreed,”

“agreed,” “neither agreed nor disagreed,” “disagreed” or “strongly disagreed” with a series

of statements concerning the family, women’s roles, and work outside of the household.

Responses were scored from 1 to 5. Factor analysis was used to assess which statements

could be combined into a gender role attitude measure. The attitude score, yit, considered

here is the total score for six selected statements for woman i at Wave t. Higher scores

signify more egalitarian gender role attitudes. Covariates for the regression analysis

were selected on the basis of the discussion in Berrington (2002) and include economic

activity, which distinguishes in particular between women who are at home looking

after children (denoted “family care”) and women following other forms of activity

in relation to the labour market. Variables reflecting age and education are also

included since these have often been found to be strongly related to gender role attitudes

(e.g., Fan and Marini 2000). All these covariates may change values between waves.
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A year variable (scored 1, 3, : : : , 9) is also included. This may reflect both historical

change and the general ageing of the women in the sample.

The BHPS is a household panel survey of individuals in private domiciles in Great Britain

(Taylor et al. 2001). The sample was selected by means of a stratified multistage design,

with individuals being selected with (approximately) equal inclusion probabilities. Given

the interest in whether women’s primary labour market activity is “caring for a family,” our

study population is defined as women aged 16–39 in 1991. This results in a subset of data on

n ¼ 1,340 women. This subset consists of the longitudinal sample of women in the eligible

age range for whom full interview outcomes were obtained in all five waves.

The simulation study consisted of simulating D replicate samples. Two approaches to

generating the replicate samples were considered. The first involved both drawing a sample

and generating yit from a specified model, independently for each replicate. The second only

involved the latter part, i.e., generating yit. Since we found the results virtually identical for

the two approaches we only report the results for the second. For simplicity, we ignored

stratification and survey weights. We considered only two sampling schemes: simple

random sampling of individuals and two-stage sampling, consisting of simple random

sampling of msim primary sampling units (PSUs) followed by simple random sampling of

nsimj individuals within each sampled PSU j. The population PSUs were defined to be 47

geographically contiguous clusters, formed by aggregating the original PSUs which

consisted of 248 postcode sectors. The 1,340 women were spread fairly evenly across these

47 PSUs. This aggregation was undertaken to strengthen the potential effect of clustering for

the methodological purposes of this study, as in Skinner and Vieira (2007).

In the first approach, the values xit for the 1,340 women were held fixed and subsamples of

specified size nsim ¼ 100; 200; 500 were drawn from these 1,340 women according to the

sampling scheme. The yit were then simulated from specified models, independently for

each replicate given these xit values. The distribution across replicate samples may then be

interpreted as joint with respect to both the sampling design and the model (for yit
conditional on xit). In the second approach a single sample was drawn in the same way, but

then retained across all replicates. The distribution across replicate samples may then be

interpreted as being with respect only to the model. That the two approaches gave virtually

the same results appears to be attributable to the fact that the xitb term in the model is

assumed to be correctly specified and therefore the choice of sample has little effect on the

distribution (with respect to the model) of Sw and hence of û for the sample sizes considered.

The yit were generated from either the UCM model or the UCM(C) model from

Section 2, with parameters set at the values obtained from fitting these models to the BHPS

subset and errors following either the normal distribution or a t distribution. When

simulating from the UCM(C) model, the clusters consisted of the actual 47 PSUs above so

that the clustering displayed by the xitvalues corresponded to that in the actual BHPS data,

whereas the clustering in the yitvalues was generated from the (fitted) UCM(C) model.

The implementation of the estimation procedures in Sections 3 and 4 generally required

iterative numerical methods, although explicit expressions for computation could be

obtained in some special cases. The numerical minimization of the fitting functions or

maximization of the pseudo likelihood was generally achieved through the numerical

solution of equations obtained by differentiating the fitting functions. Several alternative

methods for arriving at the numerical solution were considered. We eventually adopted an
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iterative Newton-type algorithm, similar to that suggested by Pourahmadi (1999) and

available in the function nlm of the statistical computer software R (R Development Team

2003). The use of several other alternatives for performing the necessary numerical

minimizations was also considered, but their performances were either the same as

or worse than that of the Newton-type algorithm. In a small number of cases for

the ûGLS2L and ûGLS2NORM2 estimators, the iterative algorithms failed to converge. The

nonconvergence rates for the ûGLS2L estimator varied across simulation set-ups between

0.1% and 1.0% of the replicate samples, while these rates varied from 0.1% to 0.3% for the

ûGLS2NORM2 estimator. For all the remaining estimation methods convergence was always

achieved. The cases of nonconvergence are omitted from the tables presented below.

6.1. Point Estimators

In this subsection, we aim to present results based on D ¼ 1; 000 replicate samples,

derived as set out above. Five point estimators were considered: ULS, GLS-NORM1,

GLS-NORM2 and PML, defined in (7), (12), (13), and (15) respectively, and GLS-L,

defined by (8) with U given by the estimator in (20). It was in fact found that the ULS and

PML estimation methods produced virtually identical results for the UCM model and

similar results for other models, a finding corresponding to that of Bollen (1989, p. 112).

We therefore do not present the ULS results and focus instead on the remaining four

estimators, assessing their properties in terms of relative bias and coefficient of variation

(cv), estimated from across the replicate samples.

Table 1 presents results produced when the UCM model with normal errors is used

both to generate the yit values and as a basis for model fitting. The parameter vector

u ¼ ðs2
u;s

2
vÞ

0 contains two parameters of interest. In this case, we might expect the

estimators ûGLS2NORM1, ûGLS2NORM2 and ûPML which exploit the normality to outperform

the estimator ûGLS2L which does not. In fact we observe little difference between the

performance of this estimator and that of ûGLS2NORM1. We do observe that ûGLS2NORM2

performs consistently better than ûGLS2NORM1 (though sometimes only slightly) with

respect to relative bias and to a lesser extent with respect to coefficient of variation. The

estimator ûPML has a similar performance to ûGLS2NORM2 with respect to coefficient of

variation but displays different patterns of relative bias, being worse for s2
u but slightly

better for s2
v . We repeated the simulation in Table 1 using the AR1 model and found

similar results, which are not reported here.

In Table 2, we consider the effect of clustering, with the data now generated from the

UCM-C model. The UCM model continues to be the fitted model. We considered both

normal and t-distributed errors and present the results for t-distributed errors in Table 2.

We expected the main difference between Table 2 and Table 1 to be an increase in cv from

the clustering, but we also noticed an appreciable if not entirely consistent increase in

relative bias. We again find that ûGLS2NORM2 performs consistently better than ûGLS2NORM1

with respect to relative bias, but this is now not necessarily the case with respect to cv.

As the sample sizes increase, we note that again ûGLS2NORM2 and ûPML appear to be the

preferred methods with respect to relative bias. In particular, ûPML performs especially

well for the relative bias of ŝ2
v . There does not appear to be a large difference between the

four methods with respect to cv, but there was a slight tendency for ûGLS2NORM2 to be
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Table 1. Properties of point estimators when both fitted model and true model are UCM

n ¼ 100 n ¼ 200 n ¼ 500 n ¼ 1; 340

Estimator rel bias cv rel bias cv rel bias cv rel bias cv

ûGLS2NORM1 ŝ2
u 216.76% 17.77% 29.21% 12.14% 23.40% 7.16% 21.42% 4.29%

ŝ2
v 29.70% 8.41% 24.68% 5.56% 21.74% 3.39% 20.74% 1.90%

ûGLS2NORM2 ŝ2
u 26.43% 17.69% 23.77% 11.77% 21.18% 7.12% 20.60% 4.27%

ŝ2
v 6.41% 7.19% 3.51% 5.20% 1.59% 3.27% 0.47% 1.88%

ûGLS2L ŝ2
u 215.79% 19.44% 29.23% 12.76% 23.41% 7.19% 21.46% 4.33%

ŝ2
v 29.89% 9.04% 24.60% 5.83% 21.72% 3.44% 20.74% 1.93%

ûPML ŝ2
u 29.94% 17.18% 25.61% 11.68% 21.92% 7.08% 20.88% 4.26%

ŝ2
v 0.89% 6.84% 0.74% 5.09% 0.47% 3.25% 0.06% 1.87%
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Table 2. Properties of point estimators when fitted model is UCM and true model is UCM-C with t-distributed errors

n ¼ 100 n ¼ 200 n ¼ 500 n ¼ 1; 340

Estimator rel bias cv rel bias cv rel bias cv rel bias cv

ûGLS2NORM1 ŝ2
u 216.73% 29.27% 28.75% 22.07% 24.05% 12.10% 21.63% 7.54%

ŝ2
v 212.30% 10.98% 27.13% 8.08% 22.65% 5.23% 21.02% 3.28%

ûGLS2NORM2 ŝ2
u 27.11% 29.26% 23.32% 22.28% 21.78% 12.17% 20.76% 7.53%

ŝ2
v 9.45% 14.00% 4.83% 9.92% 2.18% 6.08% 0.92% 3.66%

ûGLS2L ŝ2
u 221.82% 29.11% 213.00% 18.55% 26.16% 11.72% 22.56% 7.44%

ŝ2
v 217.18% 11.74% 211.54% 8.23% 25.58% 5.16% 22.75% 3.21%

ûPML ŝ2
u 210.33% 28.91% 25.16% 22.00% 22.54% 12.10% 21.05% 7.53%

ŝ2
v 1.56% 10.84% 0.62% 8.62% 0.51% 5.55% 0.26% 3.47%
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outperformed by the other three methods. Simulation results produced for AR1 model

fitting in the current situation, which are not presented again, generally agreed with results

presented in Table 2.

We focus on the effect of clustering in Table 3, where the inflation of mean squared

error (MSE) arising from the incorporation of cluster effects in the data generation process

is considered, in the case when nsim ¼ 100 and the errors are t-distributed. There are no

major differences between the estimation methods in terms of the MSE inflation, although

the effect appears to be least for the GLS-L method.

Overall, these simulation results produced for the ADF method GLS-L generally agree

with the covariance structure modelling literature (e.g., Bollen 1989, p. 432; Satorra 1992),

where it is recommended that those methods should be adopted only in situations with

large sample sizes (1,000 or more), for dealing with situations where departures from

normality conditions are evident. We may emphasize that ADF methods have in several

situations had good general performance, even though these methods have not shown

“good” levels of bias. PML point estimators have in general produced very good

performances in terms of bias and variance, particularly the former. The good performance

of PML is particularly marked for the relative bias of ŝ2
v .

6.2. Variance Estimators

We now consider the properties of the linearization variance estimators denoted vL in

Section 4. We restrict attention to their use in the estimation of the variance of the two

point estimators: ûGLS2NORM1 and ûPML. To provide benchmarks for comparison, we also

consider the variance estimator,varnð:Þ, which is based upon the assumption of both

Table 3. Ratios of MSEs of estimators with data generated

from UCM 2 C model (numerator) and from UCM model

(denminator) (n ¼ 100 and t-distributed errors)

Estimator UCM model AR1 model

ûULS ŝ2
u 1.44 1.46

ŝ2
v 0.89 0.93

ĝ – 1.01

ûGLS2NORM1 ŝ2
u 1.27 1.27

ŝ2
v 0.93 0.92

ĝ – 1.01

ûGLS2NORM2 ŝ2
u 1.52 1.53

ŝ2
v 0.95 1.06

ĝ – 1.10

ûGLS2L ŝ2
u 1.22 1.23

ŝ2
v 0.86 0.89

ĝ – 0.82

ûPML ŝ2
u 1.44 1.45

ŝ2
v 0.89 0.99

ĝ – 1.04
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normality and independent and identically distributed observations, and the estimator

vardfð:Þ, which allows for nonnormality but still assumes independent and identically

distributed observations. The subscript n denotes naı̈ve. In the case of ûGLS2NORM1, varnð:Þ

and vardfð:Þ are obtained from (22) and (21) respectively, with U given by (10) and

W ¼ Sw. In the case of ûPML, varnð:Þ is given by IðuÞ½ �21.

To evaluate the properties of these variance estimators, the replicate samples were

obtained from two-stage sampling, as described earlier. The number of sampled PSUs,

m sim, was set to be 15, 20, or 47. The number of individuals sampled in the jth selected

PSU is denoted nsimj . The UCM-C model was used to generate the values of yijt now using

D ¼ 10; 000 replicates. The parameters of the UCM-C model were the same as in the

simulations in Section 5.1., except that there were some different choices for s2
h:

s2sim;C
h ø 0:15, s2sim;C

h ø 0:45, and s2sim;C
h ø 0:75, to enable the evaluation of different

effects of clustering on the variance estimation procedures. The fitted model was taken as

the UCM model.

Table 4 displays results produced when considering msim ¼ 47 and nsimj ¼ 15. The first

three variance estimators do not take the clustering into account and, as anticipated, clearly

underestimate the variance. The degree of underestimation increases with s2
h, i.e., the

more clustering the more downward relative bias.

Both methods that allow for clustering have improved properties in terms of relative

bias, as compared to the first three methods in Table 4. They still tend to be biased

downwards, however, corresponding to other findings for linearization variance

estimation (Wolter 2007, Chapter 8; Kott 1991). Furthermore, these two methods had

larger variances than the first three methods, as expected as a result of the reduced degrees

of freedom for variance estimation.

Table 5 includes results that were produced when considering msim ¼ 20 and nsimj ¼ 15,

i.e., 300 cases. Under this situation, the linearization variance estimators which allow for

the complex sampling again led to noticeable improvements in terms of relative bias as

compared to methods that ignored the sampling scheme. The smaller number of sample

clusters does, however, seem to have led to some increases in relative bias, although these

are still smaller than the cvs. Neither the relative bias nor the cv were found to vary greatly

with s2
h.

Table 6 includes results that were produced when msim ¼ 15 and nsimj ¼ 10, i.e., the

number of SSUs selected per cluster was further reduced, and the sample size was

diminished to 150. Further increases in relative bias were observed although again the

relative biases were smaller than the cvs. As in Table 5, there was no strong relationship

between either the relative bias or the cv with s2
h.

In summary, the linearization method which allows for clustering appears to perform

reasonably well for both the PML and the GLS-NORM1 point estimators for a range of

possible clustering effects, although there is a tendency for the variance to be seriously

underestimated if the number of sampled clusters is small, say 20 or below.

7. Conclusion

This article has proposed some methods for making inferences about parameters in panel

data models, allowing for complex sampling schemes. Methods have been evaluated
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Table 4. Properties of variance estimators when UCM is fitted model, UCM-C is true model, m sim ¼ 47 and nsimj ¼ 15

rel bias cvðvarðûÞÞ

Variance estimator s 2
h ¼ 0:15 s 2

h ¼ 0:45 s 2
h ¼ 0:75 s 2

h ¼ 0:15 s 2
h ¼ 0:45 s 2

h ¼ 0:75

varnðûPMLÞ varðŝ2
uÞ 20.39% 27.75% 211.43% 14.07% 14.27% 14.54%

varðŝ2
vÞ 1.78% 22.44% 20.30% 8.54% 8.54% 8.59%

varnðûGLS2NORM1Þ varðŝ2
uÞ 21.54% 28.96% 212.47% 10.71% 11.14% 11.37%

varðŝ2
vÞ 25.18% 210.25% 27.14% 5.39% 5.54% 5.47%

vardf ðûGLS2NORM1Þ varðŝ2
uÞ 21.51% 29.07% 212.60% 14.13% 14.34% 14.61%

varðŝ2
vÞ 24.14% 29.20% 26.01% 8.62% 8.70% 8.69%

vLðûPMLÞ varðŝ2
uÞ 0.27% 24.58% 23.55% 24.65% 25.41% 26.85%

varðŝ2
vÞ 2.53% 22.35% 0.99% 22.01% 21.86% 21.98%

vLðûGLS2NORM1Þ varðŝ2
uÞ 20.85% 26.02% 24.91% 24.78% 25.51% 27.00%

varðŝ2
vÞ 23.48% 29.13% 24.80% 22.33% 22.24% 22.43%
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Table 5. Properties of variance estimators when UCM is fitted model, UCM-C is true model, m sim ¼ 20 and nsimj ¼ 15

rel bias cvðvarðûÞÞ

Variance estimator s 2
h ¼ 0:15 s 2

h ¼ 0:45 s 2
h ¼ 0:75 s 2

h ¼ 0:15 s 2
h ¼ 0:45 s 2

h ¼ 0:75

vLðûPMLÞ varðŝ2
uÞ 25.17% 25.25% 24.69% 38.07% 39.03% 40.75%

varðŝ2
vÞ 21.54% 20.69% 20.49% 33.55% 33.79% 34.44%

vLðûGLS2NORM1Þ varðŝ2
uÞ 27.31% 27.60% 26.55% 38.42% 39.17% 40.83%

varðŝ2
vÞ 214.17% 212.87% 212.23% 34.26% 34.39% 35.00%

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

3
6

0



Table 6. Properties of variance estimators when UCM is fitted model, UCM-C is true model, m sim ¼ 15 and nsimj ¼ 10

rel bias cvðvarðûÞÞ

Variance estimator s 2
h ¼ 0:15 s 2

h ¼ 0:45 s 2
h ¼ 0:75 s 2

h ¼ 0:15 s 2
h ¼ 0:45 s 2

h ¼ 0:75

vLðûPMLÞ varðŝ2
uÞ 25.48% 26.11% 24.87% 47.86% 47.80% 50.19%

varðŝ2
vÞ 23.41% 22.68% 21.38% 41.05% 40.43% 40.87%

vLðûGLS2NORM1Þ varðŝ2
uÞ 29.26% 29.63% 28.64% 48.57% 48.09% 50.85%

varðŝ2
vÞ 223.34% 224.21% 221.92% 42.07% 41.22% 41.86%
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using a simulation study based upon data from the British Household Panel Survey.

The study indicated that: (i ) overall, most of the proposed point estimation methods

perform satisfactorily; (ii ) the asymptotically distribution-free point estimator performed

reasonably well but did not show significant improvements on the other methods and did

occasionally suffer from lack of convergence; (iii ) pseudo maximum likelihood (PML)

estimators produced satisfactory performance in terms of bias and variance, even when

the normality assumption was violated.

Linearization methods for variance estimation for GLS and PML point estimators were

considered. The results of the simulation study suggested that: (iv) methods that do not

take the sampling scheme into account underestimate the variance, in some situations very

gravely; (v) underestimation tends to increase rapidly with inflation in the effects of

clustering; (vi ) the linearization estimator of the variance of the PML point estimator has

an evidently better performance in terms of bias than the linearization estimator of the

variance of the GLS estimator.

Overall, the most satisfactory results in the simulation study were obtained from the

combination of the PML point estimator (defined via Expression (15)) and the associated

linearization variance estimator (defined below Expression (23)). The advantages of this

combined approach were that: computation did not lead to problems of convergence; the

point estimator had good relative performance in terms of both bias and variance,

particularly the former; the bias performance of this variance estimator was more

favourable than that of the GLS estimator.
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