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In some states in the U.S.A., if citizens are dissatisfied with certain laws or feel that new laws
are needed, they can petition to place proposed legislation on the ballot. For the petition to be
certified for the ballot, its sponsor must circulate the complete text of the proposal among
voters and obtain signatures of those in favor. Petitions will contain both invalid and valid
signatures. Valid signatures from registered voters can appear more than once. To qualify a
petition as a ballot measure, the total number of distinct valid signatures collected must
exceed a required number. We are considering the case when a simple random sample of
signatures is drawn from the entire petition, and all signatures in the sample are verified. The
problem is to estimate the total number of distinct valid signatures based on the sample
information and the knowledge of the total number of signatures collected in the petition. We
consider several linear estimators and one nonlinear estimator. Expressions for the variance of
the linear estimators are provided. The performance of the estimators is evaluated using data
from several Washington State petitions that have been completely verified.
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1. Introduction

Some state constitutions in the U.S.A. give initiative and referendum power to the people.

If citizens from these states are dissatisfied with certain laws or feel that new laws are

needed, they can petition to propose legislation, either to the legislature or to the ballot.

The sponsor of the petition must circulate the complete text of the proposed legislation

among voters and collect signatures of those in favor.

After signatures are collected they are filed as a petition with the state office in charge,

usually the Secretary of State. The office in charge determines, by some procedure

established by state law, if the petition is certified or not. A petition is certified by state law

if the number of distinct valid signatures in the petition is equal to or exceeds the minimum

required.

In this article, we are considering the case when a petition of known size contains both

invalid and valid signatures. Valid signatures from registered voters can appear more than

once. It is assumed that a simple random sample of signatures is drawn from the entire

petition and all signatures in the sample are verified. Our interest is to estimate the number

of distinct valid signatures in the petition based on the sample information and the
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knowledge of the petition size. Many states use this approach, including California,

Illinois, Oregon, and Washington (Hauser 1985).

When no invalid signatures are present, the estimation problem reduces to one known as

estimation of the number of classes in a finite population. A class here is equivalent to a

unique valid signature. Goodman (1949) showed that the linear unbiased estimator for the

total number of classes in a finite population is unique under the assumption that the

sample size is no smaller than the maximum number of elements in any class. Deming and

Glasser (1959) proposed an estimator for the number of classes on matching sampling

frames. Chao and Lee (1992) proposed a nonparametric estimator for the unknown

number of classes based on sample coverage. Bunge and Fitzpatrick (1993) provided a

review of applications and techniques proposed to estimate the number of classes in finite

and infinite populations. Haas and Stokes (1998) proposed nonlinear estimators, based on

the generalized jackknife technique, for the number of classes in a finite population with

small variation in the population size classes. Recently, Stokes (2003) proposed an

estimator for the number of distinct species in a finite population that incorporates

auxiliary information correlated with the class size.

Following Goodman’s approach, we consider a linear unbiased estimator for the

number of distinct valid signatures in the petition. Several other linear estimators and one

nonlinear estimator are also considered. In Section 2 we introduce terminology and

notation pertinent to our problem. The estimators are described in Section 3. Expressions

for the variance of the linear estimators are also provided. In Section 4 we compare the

performance of all estimators, and in Section 5 we give a summary.

2. Terminology and Notation

After petition signatures are collected, the state elections office reviews each sheet and

removes all the signature pages obtained that do not satisfy state regulations. This

procedure leads to a subset of the total number of signature pages originally collected,

which will be subject to a verification procedure. This subset of signatures is called the

petition here.

Signatures in the petition can be classified as valid (from registered voters) or invalid

signatures, for example: illegible writing and signatures different from the ones contained

in the registration records. Let N denote the size of the petition, and U and V the unknown

number of invalid and distinct valid signatures in the petition, respectively. Further, let D

denote the total number of duplicates (replicates) of valid signatures in the petition. Note

that “duplicate” is used here to describe all signatures by an elector after his or her first

signature. Therefore, N ¼ U þ V þ D:

In this article we are interested in estimating the unknown number of distinct valid

signatures in the petition, V, which can also be expressed as:

V ¼ N 2 U 2 D ð1Þ

Since N is known, an estimator for V can be obtained by determining estimators for U and

D. As an unbiased estimator for U under simple random sampling design is given by

U
_
¼ N

n
u, our problem reduces to the estimation of D.
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Let Nj be the number of times the jth distinct valid signature appears in the petition,

j ¼ 1; : : : ;V . Therefore, the jth distinct valid signature has Nj 2 1 duplicated signatures

in the petition, j ¼ 1; : : :; V , so D can be expressed as

D ¼
XV
j¼1

ðNj 2 1Þ

Usually, one would expect Nj to be small, such as 1 or 2 for most registered voters

(electors) signing a petition.

Let Fj be the number of electors with i valid signatures in the petition,

i ¼ 1; : : : ;N 2 U. Observe that by definition 0 # Fi # V , and satisfies the equation

Fi ¼
XV
j¼1

IðNj ¼ iÞ ð2Þ

where I (·) denotes the indicator function. Based on Equation (2), we obtain expressions for

N and V

N ¼ U þ
XN2U

i¼1

iFi ð3Þ

V ¼
XN2U

i¼1

Fi ð4Þ

From Equations (3) and (4) we can rewrite D as

D ¼
XN2U

i¼2

ði2 1ÞFi

Assume a sample ofn signatures is drawn at random without replacement from the petition.

Let u be the observed number of invalid signatures in the sample and fi be the number of

electors in the sample with i valid signatures. Then n can be written as n ¼ uþ
Pn2u

i¼1 if i

3. Theoretical Background

3.1. Estimators for D

First, the form of the unbiased estimator, D̂unbias, for D is determined. Let

k ¼ maxðN1; : : : ;NV Þ. Suppose a sample of n ðn $ kÞ signatures is drawn without

replacement from a petition of size N. Let Pij denote the hypergeometric probability,

Pij ¼

j

i

 !
N 2 j

n2 i

 !

N

n

 !
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that i signatures from an elector who signed j times in the petition of size N will be

observed in a random sample of size n,

c2 ¼ 1; and cj ¼ ð j2 1Þ2
Xj21

i¼2

ci
Pij

Pii

for j ¼ 3; 4; : : : ; n

Then, under the assumption that n $ k, an unbiased estimator of D is given by

D̂unbias ¼
Xn
i¼2

ci

Pii

f i ð5Þ

The proof of this result is given in Lemma 1 of the Appendix. It can be shown that D̂unbias

is equivalent to the unique unbiased estimator for D derived by Goodman (1949). Goodman

proved that the unbiased estimatorofDexists only whenn $ k. In large state initiative petitions

k is expected to be very small relative to n, for example see Table 1 where k # 12.

Observe that the expansion factors, ci=Pii, for fi, can take positive or negative values.

These expansion factors can be very large in absolute value, because the selection

probabilities Pii can be very small depending on the petition and sample sizes. As a result

the estimator V̂unbias obtained by using D̂unbias in Equation (1) can be unreasonable. This

characteristic of the unbiased estimator was first discussed by Goodman (1949). He also

pointed out that in many cases the estimator D̂unbias rendered a large variance. Hou and

Ozsoyoglu (1991) and Hou, Ozsoyoglu, and Taneja (1988) found that unless the sampling

fraction is quite large D̂unbias can result in unreasonable estimates. To avoid this difficulty,

we consider alternative linear estimators, which ignore the valid signatures appearing

more than two or three times in the sample:

D̂2 ¼
NðN 2 1Þ

nðn2 1Þ
f 2 ð6Þ

D̂3 ¼
NðN 2 1Þ

nðn2 1Þ
f 2 2

NðN 2 1ÞðN 2 3nþ 4Þ

nðn2 1Þðn2 2Þ
f 3 ð7Þ

Goodman (1949) proposed D̂2 for estimating the number of duplicates of classes in a finite

population. The next estimator considered is used by the Washington Elections Division

Office3:

D̂2þ ¼
NðN 2 1Þ

nðn2 1Þ
f 2þ where f 2þ ¼

Xn
i¼2

f i ð8Þ

Notice that f 2þ is the number of electors in the sample with valid signatures appearing two

or more times.

Note that if at most pairs of valid signatures occur in the petition (Fj ¼ 0 for j $ 3)

then the estimators (6–8) are equal to the unbiased estimator, D̂unbias. Similarly, D̂3 ¼

D̂unbias when at most triplicate valid signatures occur in the petition (Fj ¼ 0 for j $ 4),

but otherwise, the estimators (6–8) are biased.

3 Pamela Floyd, Elections Division, Voter Registration Services, Office of Secretary of State, telephone
interview, February 9, 1999.
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To possibly reduce the bias of a linear estimator for D, we consider using information

from other fully verified petitions to approximate a bias adjustment factor (BAF). The

adjusted estimators for D are defined for any linear estimator D̂ as

D̂adj ¼ D̂ £ BAF

with bias adjustment factor

BAF ¼
D

EðD̂Þ

where D ¼
Pk

j¼2 ðj2 1ÞFj, Fj denotes the number of electors with j valid signatures in the

petition, and k is the maximum number of times any valid signatures appear in the petition,

k ¼ max{j : Fj . 0}:

Let D̂ be the biased estimators defined in Equations (6) and (8). Then the BAF for D̂ can

be written as

BD̂
n;N;k;r ¼

1 þ
Pk

j¼3 ðj2 1Þrj

1 þ
Pn

j¼3 P2jrj=P22

for D̂ ¼ D̂2

1 þ
Pk

j¼3 ðj2 1Þrj

1 þ
Pn

j¼3 rj
Pj

i¼2 Pij=P22

for D̂ ¼ D̂2þ

8>>>>>><
>>>>>>:

which is a function of N, n, k and r, where r ¼ ðr3; r4; : : : ; rkÞ with

rj ¼ Fj=F2 for j ¼ 3; : : : ; k. The BAF depends on the unknown values k and rj for

j ¼ 3; : : : ; k, which are unknown. However, when prior information is available from

previous fully verified petitions, this information can be used to approximate the

corresponding unknown values in the BAF for the sampled petition, and an approximation

for the BAF can be obtained, resulting in possible bias reduction. In some states, including

Washington, some petitions are fully verified.

By approximating the hypergeometric probabilities Pij by the corresponding binomial

probabilities, Pij <
j

i

 !
qið1 2 qÞj2i; where q ¼ n=N is the sampling fraction, the BAF

can be simplified as

BD̂
q;k;r ¼

1 þ
Pk

i¼3 ði2 1Þri

1 þ
1

2ð1 2 qÞ2

Xk
i¼3

iði2 1Þð1 2 qÞiri

for D̂ ¼ D̂2

1 þ
Pk

i¼3 ði2 1Þri

1 þ
1

q2

Xk
i¼3

ð1 2 ð1 þ ði2 1ÞqÞð1 2 qÞi21Þri

for D̂ ¼ D̂2þ

8>>>>>>>>>>><
>>>>>>>>>>>:

Then the adjusted estimator for D is approximated as

D̂adj ¼ D̂ £ BD̂
q;k;r ð9Þ

The binomial approximation gives values of the BAF, which are very similar to those

obtained using the exact hypergeometric sampling distribution of signatures when N and n
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are large. The binomial sampling approximation was also used by Goodman (1949) and

Haas and Stokes (1998) to simplify calculations in their work. For comparing

the performance of the estimators in Section 4, we use for each of the elements of

r ¼ ðr3; r4; : : : ; rkÞ the average of the corresponding r-values over three fully verified

petitions.

3.2. Estimators for V

Estimators for V can be obtained by substituting in Equation (1) any of the estimators for D

presented in Equations (5–9)

V̂ ¼ N 2 Û2 D̂ with D̂ ¼ B
Xt
i¼2

Ai f i ð10Þ

for constants B, t, and Ai, with B ¼ B̂
D̂

q;k;r for the adjusted estimators and B ¼ 1 for the

unadjusted estimators. The constant t is defined as t ¼ 2 for D̂2 and D̂2adj, t ¼ 3 for D̂3

and t ¼ n for D̂2þ, D̂2þadj and D̂unbias. The coefficients Ai – 0 corresponding to Equations

(5–8) are

A2 ¼
c2

P22

¼
NðN 2 1Þ

nðn2 1Þ
for all estimators

Ai ¼ A2 for i ¼ 3; : : : ; n for D̂2þ and D̂2þadj

A3 ¼
c3

P33

¼
NðN 2 1ÞðN 2 3nþ 4Þ

nðn2 1Þðn2 2Þ
for D̂3 and D̂unbias

Ai ¼
ci

Pii

for i ¼ 4; : : : ; n for D̂unbias

Haas and Stokes (1998) considered generalized jackknife estimators for the number of

classes in a finite population. They recommended a second-order jackknife estimator, V̂uj2,

for the number of classes in a finite population, V, when the squared coefficient of variation

(g 2) of the class sizes, N1,N2, : : : ,NV

g2 ¼
ð1=VÞ

PV
j¼1 ðNj 2 �NÞ2

�N2
where �N ¼ ð1=VÞ

XV
j¼1

Nj

is relatively small, g2 # 1. With this estimator Haas and Stokes attempted to reduce the

bias of a first order estimator, V̂uj1, for V. In petitions, the squared coefficient of variation

for the number of replication of valid signatures (N1;N2; : : : ;NV ), g 2, is expected to be

small. Then, their estimator V̂uj2 will be directly applicable to the estimation of the number

of distinct valid signatures in initiative petitions if no invalid signatures are present,

U ¼ 0. In initiative petitions we are interested in the number of unique signatures, V, in the

sub-population of valid signatures. The size of this subpopulation is N 2 U, and the

corresponding sample size is n2 u. A direct modification of the Haas and Stokes second-

order jackknife estimator, that accommodates the additional class of invalid signatures for
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u , n is given by replacing n by n2 u and N by N 2 Û. The resulting estimator for V is

V̂uj2m¼ V̂uj1m£ 12
f 1ð12qÞlnð12qÞĝ2 V̂uj1m

� �
q
Xn2u

i¼1

f i

0
BBB@

1
CCCA where V̂uj1m¼ 12

ð12qÞf 1

n2u

� �21 Xn2u

i¼1

f i

is a direct modification of the Haas and Stokes first-order estimator and

ĝ 2 V̂uj1m

� �
¼ max 0;

V̂uj1m

ðn2 uÞ2

Xn2u

i¼1

iði2 1Þf i þ
V̂uj1m

N 2 Û
2 1

 !

is an estimator squared coefficient of variation (g 2) among N1;N2; : : : ;NV .

3.3. Expectation and variance of V̂

The expected value and variance for any estimator of the general form given in Equation

(10) is obtained as

EðV̂Þ ¼ N 2 U 2 B
Xt
i¼2

Ai

Xn
j¼1

PijFj ð11Þ

VarðV̂Þ ¼ VarðÛÞ þ VarðD̂Þ þ 2CovðÛ; D̂Þ ð12Þ

where

VarðÛÞ ¼
N 2

n

N 2 n

N 2 1

� �
U

N
1 2

U

N

� �

VarðD̂Þ ¼ B2
Xt
i¼2

Xt
k¼2

AiAk

Xn
j¼i

Xn
l¼k

vijkl

CovðÛ; D̂Þ ¼ 2
BU

n

Xt
i¼2

Ai

Xn
j¼1

iN 2 jn

N 2 j

� �
PijFj

vijkl ¼

ð1 þ ðPij:ij 2 PijÞFj 2 Pij:ijÞPijFj for i ¼ k; j ¼ l

ððPkj:ij 2 PkjÞFj 2 Pkj:ijÞPijFj for i – k; j ¼ l

ðPkl:ij 2 PklÞPijFjFl for j – l

8>><
>>:

Pij ¼

j

i

 !
N 2 j

n2 i

 !

N

n

 ! and Pkl:ij ¼

l

k

 !
N 2 j2 l

n2 i2 k

 !

N 2 j

n2 i

 !

The expression for the expected value of the linear estimator V̂ follows from Equation

(10), the unbiasedness of Û, and Equation (A.2) of the Appendix. The expression

for VarðÛÞ is well-known, and the expressions for VarðD̂Þ and CovðÛ; D̂Þ, are derived in

the Appendix.
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4. Performance of the Estimators

In this section, the estimators for the number of distinct valid signatures, V ; are compared

with regard to their bias and root mean squared error (RMSE) for four fully verified

Washington State petitions, denoted as A, B, C, and D. In Washington, if the random

sample indicates that V attains the required number then the measure is certified.

Otherwise, complete verification of the petition is required.

Table 1 describes the four petitions with regard to: petition size (N), numbers of invalid

signatures (U), duplicates of valid signatures (D), distinct valid signatures (V), the number

of electors with i valid signatures in the petition (Fi), and the squared coefficient of variation,

g 2, for the number of times (Nj) distinct valid signatures appear in the petition. Also

included is the year that each petition was submitted for verification. The petition sizes range

from 162,324 to 231,723, the proportion of invalid signatures from 12.0 to 20.4 percent, the

duplication rates from 2.0 to 5.6 percent, and the proportion of distinct valid signatures from

76.4 to 85.4 percent. The petitions C and D with the largest percentage of pairs (F2) also have

the largest percentage of triplicates (F3) and quadruples (F4). Only two petitions have

electors who signed more than four times, petition B has one elector who signed twelve

times and petition D has two electors who signed six times, and three electors who signed

five times. For all four petitions, the proportion of electors with triplicates or higher, is small

(,0.24%). As expected, all four petitions have small values of g 2.

Table 2 displays the expected frequency for replications of distinct valid signatures in

the sample for each sampling fraction and petition. For sampling fractions 3%, 5%, and

10%, and all four petitions, the expected number of distinct valid signatures that appear

more than twice in a random sample is less than one. When the sampling fraction is

increased to 20%, the expected number of triplicate valid signatures exceeds one only for

petitions B, C, and D, and the expected number of quadruples or higher is less than 0.22.

To calculate the bias adjustment factors, BD̂
q;k;r; we need to specify k and ri ¼ Fi=F2 for

i ¼ 3; : : : ; k, where q ¼ n=N. When sampling is used the values of k and ri, i ¼ 3; : : : ; k,

are unknown. Here, for each petition, i ¼ A;B;C; and D, information from only the other

three petitions is used to specify values for the unknown k and r3; : : : ; rk. For each

Table 1. Description of the petitions A, B, C, and D

A (1984) B (1995) C (1989) D (1996)

N 162,324 231,723 173,561 228,148
U (%) 19,437 (12.0) 47,383 (20.4) 31,325 (18.0) 34,542 (15.1)
D (%) 4,256 (2.6) 4,546 (2.0) 9,738 (5.6) 11,584 (5.1)
V (%) 138,631 (85.4) 179,794 (77.6) 132,448 (76.3) 182,022 (79.8)
F1 (%) 134,489 (82.9) 175,363 (75.7) 123,205 (71.0) 170,988 (74.9)
F2 (%) 4,031 (2.5) 4,331 (1.9) 8,878 (5.1) 10,518 (4.6)
F3 (%) 108 (0.07) 93 (0.04) 385 (0.22) 489 (0.21)
F4 3 6 30 22
F5 0 3
F6 0 2
F12 1
g 2 0.0296 0.0252 0.0652 0.0584
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petition, the specified value, ~k, was determined as the maximum of the observed k-values

from the other three petitions. Similarly, the specified vector, ~r, is calculated as the average

of the known entries for the other three petitions. Table 3 gives the true and specified

values for k and r for each petition. Observe that for each petition, the specified values for

ri, ð~ri; i ¼ 3; : : : ; kÞ are similar to the true ones. Furthermore, ~ri are very close to zero, for

i $ 4, suggesting that the corresponding class frequency Fi is relatively small.

Table 4 gives values for the bias adjustment factors, BD̂
q;k;r, using k ¼ 3 and k ¼ 12 for

each petition, estimator, and sampling fraction (q): 3%, 5%, 10%, and 20%. From Table 4,

we can see that the values of the BAF corresponding to ~r ¼ ~r3 and ~r ¼ ð~r3; : : : ; ~r12Þ are

similar in all cases. Therefore, we consider only the bias adjustment factor based on at

most triplicate valid signatures, ~r ¼ ~r3, hereafter.

For each linear estimator, we use Equations (11) and (12) to compute the bias and root

mean squared error (RMSE)

BiasðV̂Þ ¼ EðV̂Þ2 V and RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðV̂Þ2 {BiasðV̂Þ}2

q

Table 3. True values of k and r3, : : : ,rk, and specified values k̃ and r̃3, : : : ,r̃k

A B C D

True Spec True Spec True Spec True Spec

k 4 12 12 6 4 12 6 12
r3 0.0268 0.0371 0.0215 0.0389 0.0434 0.0316 0.0465 0.0306
r4 0.0007 0.0023 0.0014 0.0021 0.0034 0.0014 0.0465 0.0018
r5 0 0.0001 0 0.0001 0 0.0001 0.0003 0
r6 0 0.0001 0 0.0001 0 0.0001 0.0002 0
r12 0 0.0001 0.0002 0 0 0.0001 0 0.0001

Note: The entries of r ¼ ðr3; : : : ; r12Þ and ~r ¼ ð~r3; : : : ; ~r12Þ not displayed are equal to zero.

Table 2. Expected frequency for replications of valid signatures, E( fi)
1

Sampling fraction i A B C D

3% 2 3.93 4.22 9.15 10.91
3 0.0032 0.0077 0.0135 0.0173

$4 ,0.0001 0.0003 ,0.0001 ,0.0001
5% 2 10.89 11.67 25.34 30.20

3 0.0149 0.0318 0.0624 0.07924
$4 ,0.0001 0.0023 0.0002 ,0.0001

10% 2 43.37 46.34 100.63 119.87
3 0.1188 0.1998 0.4929 0.6216

$4 0.0003 0.0262 0.0030 0.0061
20% 2 172.02 183.37 396.69 472.15

3 0.9407 1.1338 3.8479 4.7925
$4 0.0050 0.2149 0.0480 0.0893

1Eðf iÞ ¼
Pn

j¼1 PijFj
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Table 4. Specified values of the bias adjusted factor, BD̂
q;k;r, for each petition, adjusted estimator and sampling fraction (q): 3%, 5%, 10%, and 20%

A B C D

q Estimator k ¼ 3 k ¼ 12 k ¼ 3 k ¼ 12 k ¼ 3 k ¼ 12 k ¼ 3 k ¼ 12

3% D̂2adj 0.970 0.960 0.968 0.962 0.974 0.967 0.974 0.966
D̂2þadj 0.969 0.958 0.967 0.961 0.974 0.966 0.973 0.965
D̂dadj 0.968 0.957 0.966 0.960 0.973 0.964 0.972 0.963

5% D̂2adj 0.971 0.970 0.963 0.965 0.976 0.970 0.975 0.969
D̂2þadj 0.970 0.961 0.969 0.963 0.975 0.967 0.974 0.967
D̂dadj 0.968 0.958 0.967 0.961 0.973 0.965 0.973 0.964

10% D̂2adj 0.976 0.971 0.975 0.971 0.980 0.976 0.980 0.976
D̂2þadj 0.973 0.966 0.972 0.967 0.977 0.972 0.977 0.971
D̂dadj 0.970 0.961 0.969 0.963 0.975 0.967 0.974 0.966

20% D̂2adj 0.986 0.985 0.986 0.984 0.989 0.988 0.988 0.987
D̂2þadj 0.980 0.976 0.979 0.976 0.983 0.980 0.982 0.979
D̂dadj 0.973 0.966 0.972 0.967 0.977 0.972 0.977 0.971
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Table 5. Bias (RMSE) of estimators for V expressed as the ratio to the true number of distinct valid signatures in the petition and multiplied by 1,000

Sampling fraction Estimator Petitions

A B C D

3% V̂unbias 0 (24.878) 0 (6,384,553) 0 (56.621) 0 (271.840)
V̂3 0.019 (21.636) 0.667 (21.540) 0.200 (39.375) 0.255 (31.901)
V̂2 20.766 (16.644) 20.769 (13.960) 23.243 (26.130) 22.940 (20.822)
V̂2þ 20.792 (16.651) 20.818 (13.972) 23.357 (26.162) 23.046 (20.851)
V̂2adj 0.193 (16.171) 0.060 (13.578) 0.060 (13.578) 21.238 (20.155)
V̂2þadj 0.198 (16.163) 0.039 (13.576) 21.268 (25.315) 21.286 (20.157)
V̂uj2m 225.881 (37.665) 222.244 (31.838) 256.326 (68.162) 251.090 (59.733)

5% V̂unbias 0 (12.546) 0 (262,326) 0 (24.380) 0 (58.260)
V̂3 0.018 (11.867) 0.524 (11.094) 0.185 (20.318) 0.230 (16.364)
V̂2 20.714 (10.261) 20.679 (8.815) 23.017 (16.021) 22.730 (12.806)
V̂2þ 20.758 (10.269) 20.755 (8.829) 23.206 (16.074) 22.905 (12.858)
V̂2adj 0.181 (9.990) 0.094 (8.600) 21.131 (15.426) 21.142 (12.294)
V̂2þadj 0.191 (9.982) 0.065 (8.596) 21.207 (15.428) 1.222 (12.300)
V̂uj2m 225.273 (30.225) 221.466 (25.543) 254.686 (59.255) 249.622 (53.015)

10% V̂unbias 0 (5.737) 0 (2,960) 0 (9.300) 0 (9.483)
V̂3 0.014 (5.677) 0.287 (5.163) 0.149 (8.893) 2178 (7.109)
V̂2 20.586 (5.430) 20.491 (4.873) 22.455 (8.422) 22.213 (6.779)
V̂2þ 20.672 (5.445) 20.617 (4.891) 22.830 (8.551) 22.558 (6.910)
V̂2adj 0.153 (5.306) 0.144 (4.782) 20.907 (7.972) 0.910 (6.368)
V̂2þadj 0.172 (5.298) 0.110 (4.775) 21.057 (7.985) 21.065 (6.389)
V̂uj2m 223.065 (24.470) 219.221 (20.455) 249.610 (50.845) 244.443 (45.400)

20% V̂unbias 0 (2.925) 0 (22.966) 0 (4.252) 0 (3.421)
V̂3 0.010 (2.922) 0.102 (2.769) 0.100 (4.230) 0.109 (3.368)
V̂2 20.330 (2.916) 20.213 (2.756) 21.353 (4.363) 21.207 (3.514)
V̂2þ 20.500 (2.943) 20.401 (2.778) 22.088 (4.651) 21.878 (3.803)
V̂2adj 0.093 (2.875) 0.150 (2.736) 20.473 (4.141) 20.468 (3.307)
V̂2þadj 0.133 (2.868) 0.144 (2.729) 20.763 (4.175) 20.763 (3.355)
V̂uj2m 217.884 (18.303) 214.652 (15.050) 238.728 (39.090) 234.569 (34.840)
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For the nonlinear estimator, V̂uj2m, we estimate the bias and RMSE from 10,000

independent simulated random samples, drawn without replacement from each petition.

When evaluating the nonlinear estimator, following Haas and Stokes (1998), we truncated

each estimate, below at
Pn2u

i¼1 f i and above N 2 Û.

In Table 5, the bias and RMSE are given for the nine estimators of V for Petitions A–D

and sampling fractions: 3%, 5%, 10%, and 20%. In this table, the bias and RMSE are each

expressed as the ratio to the true number of distinct valid signatures in the petition and

multiplied by 1,000 (Bias=V £ 1; 000 and RSME=V £ 1; 000). For the adjusted estimator,

Equation (9), k ¼ 3 ð~r ¼ ~r3Þ is used for the bias adjusted factor, BD̂
q;k;r:

In Table 5 the estimator V̂3 tends to have a relatively small positive bias (#0.667) in all

cases. The biases of V̂2 and V̂2þ are negative in all cases, corresponding to positive biases in

the estimators for the number of duplicates of valid signatures D̂2 and D̂2þ: Note that the

difference between the biases of these estimators tends to increase as the sampling fraction

increases. This is expected since the number of triplicate and quadruple valid signatures

increases with sample size (Table 2). The two adjusted estimators show a small reduction in

the absolute bias when compared with their nonadjusted counterparts. The nonlinear

estimator, V̂uj2m; tends to have a relatively large negative bias ranging from 256.326 to

214.652. A possible reason for this result may originate in the development of the jackknife

estimators, where all theNj are estimated by �N. It appears that the variability induced by this

approximation may affect the jackknife estimator performance. This point was recently

addressed by Stokes (2003), who discusses the effect of populations with small average

class sizes in estimating the number of classes in a finite population, V, and suggests a

tendency of the jackknife estimators to underestimate V when the class sizes vary.

From Table 5, it can be seen that the RMSE decreases at a faster rate than 1=
ffiffiffi
n

p
for all

estimators and petitions. This results from the corresponding property of the estimators for

D in Equation (10). The estimator V̂3 has always smaller RMSE than V̂unbias. The estimator

V̂2 has smaller RMSE than V̂3, except for the 20% sampling fraction for petitions C and

D. The estimators V̂2 and V̂2þ tend to have similar RMSE’s for the sampling fractions of 3%,

5%, and 10% over all four petitions. This is as expected from the form of the estimators and

the very small expected number of triplicate or higher replications of distinct valid

signatures (Table 2). For the 20% sampling fraction, the RMSE for V̂2þ is slightly larger

than the RMSE’s for V̂2 for petitions C and D, and similar for petitions A and B. The adjusted

estimators V̂2adj and V̂2þadj show a slight reduction in the RMSE compared to their

nonadjusted counterparts. These two adjusted estimators have similar RMSE’s in all cases.

The RMSE for the nonlinear estimator V̂uj2m is relatively large in all cases.

5. Summary

In this article we have compared several estimators for the number of distinct valid

signatures in a petition. Explicit forms for the bias and RMSE were provided for the linear

estimators. Simulated random samples were used to estimate the bias and RMSE of the

nonlinear estimator, V̂uj2m, adapted from Haas and Stokes (1998).

Small sampling fractions less than or equal to 10% are typically used for sampling state

petitions. For these sample sizes it was difficult to improve much on the Goodman-type

estimator V̂2, which is unbiased when valid signatures are duplicated at most once.
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This results from the very small probability of observing higher duplicate replication from

typical petitions. When duplication data is available from similar fully verified petitions, it

might be possible to reduce the bias of the (biased) linear estimators.

Appendix

Calculation of E(D̂), VarðD̂Þ, and CovðÛ; D̂Þ

Consider a random sample of n signatures drawn without replacement from a petition of

size N. Let dja denote the number of valid signatures in the sample from the ath elector

who signed j valid signatures in the petition, for a ¼ 1; 2; : : : ;Fj and j ¼ 1; : : : ;N 2 U.

Note that dja has the hypergeometric ðN; n; j; iÞ with Pij ¼ Pðdja ¼ iÞ given by

Pij ¼

j

i

 !
N 2 j

n2 i

 !

N

n

 ! for i ¼ 0; 1; : : : ; j

Similarly, the conditional distribution of djb, given dja ¼ i is hypergeometric ðN 2 j,

n2 i; l; kÞ with Pkl·ij ¼ Pðdjb ¼ kjdja ¼ iÞ given by

Pkl·ij ¼

l

k

 !
N 2 j2 l

n2 i2 k

 !

N 2 j

n2 i

 ! for k ¼ 0; 1; : : : ; l

For the number of electors in the sample with i valid signatures, f i, write

f i ¼
Xn
j¼i

f ij with f ij ¼
XFj

a¼1

Iðdja ¼ iÞ

where f ij is the number of electors with i signatures in the sample and j signatures in the

petition (i # j) and I(z) is the indicator function. Note that f ij is not observable, but f i is. Then,

Eð f ijÞ ¼ PijFj and Eð f iÞ ¼
Xn
j¼i

PijFj ðA:1Þ

Thus, from the general form of the linear estimator D̂ ¼ B
Pt

i¼2 Ai f i we have

EðD̂Þ ¼ B
Xt
i¼2

Ai

Xn
j¼i

PijFj ðA:2Þ

for constants B, t, and Ai, which are given in Equation (10).

Lemma 1. Let k ¼ maxðN1; : : : ;NV Þ. Suppose a sample of n (n $ k) signatures is

drawn without replacement from a petition of size N. Define

c2 ¼ 1 and cj ¼ ð j2 1Þ2
Xj21

i¼2

ci
Pij

Pii

for j ¼ 3; 4; : : : ; n
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Then, an unbiased estimator of D is given by

D̂unbias ¼
Xn
i¼2

ci

Pii

f i ðA:3Þ

Proof. The unbiasedness property for D̂unbias follows from substitution of the expectation

for f i in Equation (A.3).

EðD̂unbiasÞ ¼
Xn
i¼2

ci

Pii

Eð f iÞ ¼
Xn
i¼2

ci

Pii

Xn
j¼i

PijFj ¼ F2 þ
Xn
j¼3

Fj

Xj21

i¼2

ci
Pij

Pii

þ cj

 !

¼
Xn
j¼2

Fjð j2 1Þ since cj ¼ ð j2 1Þ2
Xj21

i¼2

ci
Pij

Pii

j ¼ 3; 4; : : : ; n

¼
XN2U

j¼2

Fjð j2 1Þ since Fj ¼ 0 for j ¼ k þ 1; k þ 2; : : : ;N 2 U and n $ k

¼ D

The next result is used for the calculation of VarðD̂Þ and CovðÛ; D̂Þ.

Lemma 2. The Covðf ij; f klÞ ¼ vijkl i # j; k # l; where

vijkl ¼

ð1 þ ðPij·ij 2 PijÞFj 2 Pij·ijÞPijFj for i ¼ k; j ¼ l

ððPkj·ij 2 PkjÞFj 2 Pkj·ijÞPijFj for i – k; j ¼ l

ðPkl·ij 2 PklÞPijFjFl for j – l

8>><
>>:

Proof. Substitute (A.1) in

Covð f ij; f klÞ ¼ Eð f ij; f klÞ2 Eð f ijÞEð f klÞ ¼
XFj

a¼1

XFl

b¼1

Pðdja ¼ k; djb ¼ kÞ2 ðPijFjÞðPklFlÞ

1. Case where i ¼ k; j ¼ l

Covðf ij;f klÞ¼
XFl

a¼1

Pðdja¼ iÞþ
XFj

a¼1

XFl

b¼1
b–a

Pðdja¼ i;djb¼ iÞ2ðPijFjÞ
2

¼PijFjþPijPij·ijFjðFj21Þ2ðPijFjÞ
2¼ð1þðPij·ij2PijÞFj2Pij·ijÞPijFj

2. Case where i – k; j ¼ l

Covð f ij; f kjÞ ¼ 0 þ
XFj

a¼1

XFj

b¼1
b–a

Pðdja ¼ i; djb ¼ kÞ2 ðPijFjÞðPkjFjÞ

¼ PijPkj·ijFjðFj 2 1Þ2 PijPkjF
2
j ¼ ððPkj·ij 2 PkjÞFj 2 Pkj·ijÞPijFj

3. Case where j – l

Covð f ij; f klÞ ¼
XFj

a¼1

XFl

b¼1

Pðdja ¼ k;dlb ¼ kÞ2 ðPijFjÞðPklFlÞ ¼ ðPkl·ij 2PklÞPijFjFl
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The variance for the general form of the linear estimator D̂ ¼ B
Pt

i¼2 Ai f i,

VarðD̂Þ ¼ B2
Xt
i¼2

Xt
k¼2

AiAk

Xn
j¼i

Xn
l¼k

vijkl

then follows from the covariance of the sums f i ¼
Pn

j¼i f ij and f k ¼
Pn

l¼k f kl and

Lemma 2.

Lemma 3. Under the assumption for Fj ¼ 0; j . n

Covðu; f ijÞ ¼ 2
iN 2 jn

N 2 j

� �
U

N

� �
PijFj

Proof. For fixed i and j write

u ¼ n2
Xn
k¼1

kf k ¼ n2
Xn
k¼1

k
Xn
l¼k

f kl ¼ n2
Xn
l¼1
l–j

Xl
k¼1

kf kl 2
Xj
k¼1

kf kj

¼ n2
Xn
l¼1
l–j

Xl
k¼1

kf kl 2 if ij 2
Xi
k¼1
k–i

kf kj

Then,

Covðu; f ijÞ ¼ 2
Xn
l¼1
l–j

Xl
k¼1

kCovðf kl; f ijÞ2 iVarðf ijÞ2
Xj
k¼1
k–i

kCovðf kl; f ijÞ

From Lemma 2,

Covðu; f ijÞ ¼
Xn
l¼1
l–j

Xl
k¼1

kðPkl:ij 2 PklÞPijFjFl 2 ið1 þ ðPij:ij 2 PijÞFj 2 Pij:ijÞPijFj

2
Xj
k¼1
k–i

kððPkj:ij 2 PkjÞFj 2 Pkj:ijÞPijFj

¼ 2

0
BBBBB@
Xn
l¼1
l–j

Xl
k¼0

kðPkl:ij 2 PklÞFl þ ið1 þ ðPij:ij 2 PijÞFj 2 Pij:ijÞ

þ
Xj
k¼0
k–i

kððPkj·ij 2 PkjÞFj 2 Pkj·ijÞ

1
CCCCCAPijFj

¼ 2 i2
Xj
k¼0

kPkj:ij þ
Xn
l¼1

Xj
k¼0

kðPkl:ij 2 PklÞ

 !
Fl

 !
PijFj
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Using the expectation of hypergeometric distributions then gives the reduction

Covðu; f ijÞ ¼ 2 i2
jðn2 iÞ

N 2 j
þ
Xn
l¼1

lðn2 iÞ

N 2 j
2

ln

N

� �
Fl

 !
PijFj

¼ 2
iN 2 jn

N 2 j

� �
1 2

1

N
þ
Xn
l¼1

lFl

 !
PijFj ¼ 2

iN 2 jn

N 2 j

� �
U

N

� �
PijFj

From Lemma 3, the covariance of Û ¼
N

n
u and D̂ ¼ B

Pt
i¼2 Aif i ¼ B

Pt
i¼2

Pn
j¼i Aif ij is

then

CovðÛ; D̂Þ ¼ 2
BU

n

Xt
i¼2

Ai

Xn
j¼i

iN 2 jn

N 2 j

� �
PijFj
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