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Estimating the Re-identi®cation Risk Per Record in
Microdata

C.J. Skinner and D.J. Holmes1

1. Introduction

Willenborg and de Waal (1996, p. 137) argue that ``in order to obtain a basis for SDC [sta-

tistical disclosure control] of microdata it is necessary to develop models for re-identi®ca-

tion risks of individual records in a microdata ®le.'' This article sets out some proposals

for such a development.

Per-record measures have a number of potential practical uses. Records with the highest

risk might be selected for modi®cation by SDC methods. The listing of records in order of

measured risk would be analogous to similar exercises which are conducted with survey

data ®les in which sampling weights or outlying values are ranked and listed and subse-

quently modi®ed if appropriate. In addition to (or instead of) producing quantitative mea-

sures of risk per record, it may also be useful to ¯ag records qualitatively. For example,

®gures in the public eye (Skinner et al. 1994) and records which are potentially sponta-

neously recognisable, such as someone living on the ®fth ¯oor in a rural area, might be

¯agged. These records might then be ``followed up'' to assess whether they really do

represent an unacceptable risk. Such a practice would again be analogous to other survey

data processing procedures, for example the ¯agging of records which fail edit checks. For

any application of SDC methods it would be desirable that the number of records modi®ed
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would be small enough for the effect of the modi®cation on subsequent data analyses to be

within acceptable limits.

Since the notion of re-identi®cation refers to a microdata record, it is natural to de®ne

the risk of re-identi®cation also at the record level. Nevertheless, this implies that the over-

all aim of disclosure protection can be achieved by controlling risk record by record and

this does rule out some overall measures of risk. For example, suppose that the re-identi-

®cation risk of a given record is de®ned as the probability that this record can be re-iden-

ti®ed, and suppose that the overall risk is de®ned as the probability that at least one record

can be re-identi®ed. Then the overall risk is not in general a simple function of the per-

record risks unless the events that different records are re-identi®ed are independent.

The latter assumption is typically implausible.

Lambert (1993) discusses some ways in which per-record risks might be combined to

provide a risk measure for the whole ®le. One de®nition would be in terms of an average

across records. The de®nition which ®ts in most naturally with the practical approach con-

sidered above of selecting the most extreme records is to take the overall risk as the max-

imum of the per-record risks. Lambert (1993) refers to this as the pessimistic risk.

In Section 2 we set out a broad conceptual basis for the de®nition of re-identi®cation

risk at the record level. In Section 3 we narrow our focus to the case where a set of discrete

key variables may be available to an intruder and no measurement error may be assumed.

We develop a measure of risk as the conditional probability of population uniqueness will

make information available to the intruder. We base this probability on a log-linear

generalisation of a Poisson lognormal model, found by Skinner and Holmes (1993) to

provide an excellent ®t to census microdata. In Section 4 we apply this approach to

microdata on some 450,000 individuals from the 1991 Census in Great Britain and in

Section 5 discuss the implications of our ®ndings.

2. Re-identi®cation Risk Per Record

Following Paass (1988) and Duncan and Lambert (1989), suppose that an intruder

attempts to link a target person with a record on the released microdata ®le. The intruder

may estimate the probability that each record belongs to the target person and perceive that

re-identi®cation has been achieved if this estimated probability is suf®ciently large for

some record. Lambert (1993) distinguishes between such ``perceived identi®cation,''

which will depend on the intruder's prior information and beliefs, and ``true identi®ca-

tion.'' Agencies may be expected to prefer their decisions to be as free as possible of sub-

jective beliefs and thus to focus on the risk of true identi®cation. Lambert (1993) and

Skinner et al. (1994) de®ne this risk in terms of the proportion of released records that

can be correctly identi®ed by a given rule. Such a frequentist de®nition avoids dependence

on subjective factors and is the natural parameter to estimate in matching studies such as

that of Blien et al. (1992). However, the de®nition is dif®cult to apply as a per-record mea-

sure because any given record would either be correctly identi®ed by a given rule or it

would not. Skinner et al. (1994) allow for some variation in the risk between individuals

by de®ning the risk relative to some subpopulation. But this de®nition becomes degenerate

when the subpopulation is of size one.

For this reason it seems necessary to de®ne a per-record measure of risk relative to some
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modelling assumptions, and this is what we now attempt to do. Let r denote the record for

which the measure of risk is to be de®ned and let r * denote the population unit (individual,

household, etc.) from which the record r has been obtained. As a basic measure, we let

er � evidence available to an intruder in support of link between r and r�

where the meaning of ``evidence'' is to be discussed. We assume that this evidence is con-

ditional upon a hypothetical scenario in which an intruder either (a) takes unit r* as a target

and attempts to link this unit to its corresponding record on the ®le, if it exists, or (b) takes

the record r and attempts to link it to a unit in the population. Note that the de®nition is not

conditional upon either r or r* and so applies to both cases (a) and (b). If there is more than

one plausible hypothetical scenario, the risk might be de®ned as the maximum of the cor-

responding values of er.

One approach to measuring evidence is in terms of probability. Let prs� � Pr (record r

belongs to unit s*), where the probability is with respect to a model for the key variable

values both for the released microdata ®le and the external data source, and with respect

to the sampling scheme for the microdata sample. One measure of evidence is then to take

er � prr� , where r* is the unit from which record r is derived. The computation of prr� for

discrete key variables will be considered in Section 3. Other approaches under different

modelling assumptions are given by Paass (1988), Duncan and Lambert (1989) and

Fuller (1993). An alternative measure of evidence would be to take er as a function of

prr� . For instance, it may be argued that there is no risk if prr� # 0:1, there is some

risk if 0:1 < prr� # 0:5 and there is high risk if 0:5 < prr� . In this case, er might be

scored as follows:

er � 2 0:5 < prr�

� 1 0:1 < prr� # 0:5

� 0 prr� # 0:1

The de®nition of er as an indicator variable might also be appropriate if it ¯ags a ®gure in

the public eye, who might be spontaneously recognised, as noted in Section 1.

3. Measures of Risk Related to Population Uniqueness

Suppose that the intruder may use k discrete key variables X1; . . . Xk to match microdata

records with external information. Let the combinations of values of these variables in

the population be denoted x � 1; . . . ;K and termed key values. The variable taking values

x is denoted X. Suppose the intruder ®nds that record r matches a target unit s� with respect

to X. Let Fx be the number of units in the population with X � x and let x�r� denote the

value of X for record r. Then, assuming that Fx�r� is known, that there is no measurement

error in X (which could lead to false matches) and that microdata units are selected from

the population with equal probability, the intruder may infer that record r is as likely to

belong to the target unit s* as to any of the other Fx�r� ÿ 1 population units with this value

x�r� and so

Pr�record r belongs to target s�jFx�r�� � 1=Fx�r�

where the probability is evaluated with respect to the sampling scheme. In practice, the
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intruder will generally be uncertain about the value Fx�r�. If the intruder may attach a prob-

ability distribution Pr�Fx� to Fx then the unconditional probability is

er � Pr�record r belongs to target s��

� Pr�Fx�r� � 1� � Pr�Fx�r� � 2�=2 � Pr�Fx�r� � 3�=3 � . . . �1�

This provides one de®nition of the re-identi®cation risk. A simpler measure, equating

population uniqueness with re-identi®cation, would be to take

er � Pr�Fx�r� � 1� � Pr�record r is unique in population� �2�

In either case the probabilities should be evaluated conditional upon the information avail-

able to the intruder and speci®cally on fx�r�, the number of sample records with key value

x�r�. For all records which are not unique with respect to X even in the sample, that is

fx�r� $ 2, we shall suppose the re-identi®cation risk is acceptably small. We shall therefore

focus on the conditional probability Pr�Fx�r� � 1jfx�r� � 1� for the measure in (2). Our

approach extends naturally if, instead, we wish to consider probabilities

Pr�Fx�r� � jjfx�r� � 1� in (1) or the related overall measure of risk SPr�Fx�r� �

1jfx�r� � 1� considered by Fienberg and Makov (1998).

Sometimes it may be possible for the intruder to use external sources, such as population

registers, to make an inference about Fx�r� (Skinner et al. 1994). Here we suppose that the

agency may reasonably assume that no such external evidence is available. Instead we

suppose that the intruder is only able to make an inference about Fx�r� using the released

sample microdata ®le. We now proceed to consider how this may be done on the basis of

modelling assumptions.

Following Skinner and Holmes (1993), suppose the Fx are generated independently

from Poisson distributions with rates lx:

Fxjlx , Po�lx�; x � 1; . . . ;K

Unconditional on the key variables de®ning X, it seems reasonable to suppose that the lx

are generated from a common distribution g�lx). Bethlehem et al. (1990) take g to be the

gamma distribution. Skinner and Holmes (1993) note that the gamma provides a poor ®t

and argue instead for the use of a mixture of a point mass at zero (to allow for impossible

key values) and the lognormal distribution

loglx , N�m; j2
� �3�

Chen and Keller-McNulty (1998) consider another distribution for lx. Whatever choice of

g is taken, the marginal probability of population uniqueness for a unit r randomly selected

from the population is

Pr�Fx�r� � 1� � P1=
X

j

jPj where Pj �

�
eÿllj

j!
g�l�dl

This probability is the same for all records in the ®le, however, and thus does not serve

as a useful per-record measure. An alternative measure is proposed by Skinner et al.

(1994). They consider the probability of population uniqueness amongst records which

are unique in the sample microdata. To obtain an expression for this conditional prob-

ability within our framework, recall that fx is the number of sample records with key
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value x, corresponding to the population number Fx. Treating the sample as obtained via

Bernoulli sampling with sampling fraction p � n=N, where n and N are the sample and

population sizes, respectively, we may write

fxjlx , Po�plx� and Fx ÿ fxjlx , Po��1 ÿ p�lx� x � 1; . . . ;K

where fx and Fx ÿ fx are independent given lx. It follows that the probability of population

uniqueness amongst records which are sample unique is

Pr�Fx�r� � 1jfx�r� � 1� �

�
exp ÿ�1 ÿ p�l
� �

g�ljf � 1�dl �4�

where

g�lxj fx � 1� � lxeÿplx g�lx�=

�
leÿplg�l�dl �5�

is the conditional probability density function of lx given fx � 1.

The measure in (4) is still constant, however, across records which are sample unique,

and thus still of little use as a per-record measure. Instead, it seems desirable to condition

on the values of the key variables de®ning X. Recall from (3) that we have assumed that lx

is either zero or else is generated by

loglx � m � ex ex , N�0; j2
�

This de®nes a log-linear model with a single intercept term and a random effect ex. We pro-

pose to generalise this model by including main effects and interactions between the key

variables X1; . . . ;Xk. Letting x correspond to the values x1; . . . ; xk of X1; . . . ;Xk,

respectively, we may write the model including just main effects as:

log lx � hx � ex ex , N�0; j2
� �6�

where hx � m � uX1
x1

� . . . � uXk
xk

�7�

and where the uXi
xi

represent the usual main effects of the categories xi of Xi in a log-linear

model, summing to zero for each Xi (e.g., Agresti 1990, p. 151). Some empirical evidence

in support of this model is provided by Marsh et al. (1994), who demonstrated a linear rela-

tionship between the logarithm of the proportion of population uniques in a cell (corre-

sponding to log lx) and the logarithms of the univariate marginal proportions

(corresponding to the uXi
xi

). Note also that if the central limit theorem applies to the sum

of terms in (7) then the terms hx � ex in (6) may be expected to remain approximately nor-

mally distributed, which accords with the empirical evidence of Skinner and Holmes

(1993).

The model in (6) and (7) differs from a standard log-linear model only because of the

term ex. Without this term the model corresponds to that considered by Fienberg and Makov

(1998). The model may be extended by including terms re¯ecting interactions between the

key variables. If enough interaction terms are included we may expect that the ex term will

be unnecessary. However, the inclusion of large numbers of interactions may lead to

instability in the estimation of Pr�Fx�r� � 1jfx�r� � 1�. It may also be computationally

more complicated and raises issues of model selection. The alternative is to include only

simple terms such as main effects and to capture lack of ®t by the ex terms.
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Under the model de®ned by (6) and (7), the probability that Fx�r� � 1 given that fx�r� � 1

retains the form in (4) but now g�lx� in (5) takes the form

g�lx� � �2pj2
�
ÿ1

2lÿ1
x exp�ÿ�loglx ÿ hx�

2=2j2
� �8�

This conditional probability still depends on the unknown parameters determining hx and

j2. A fully Bayesian approach would integrate out these parameters with respect to their

posterior distribution. For simplicity, we here consider replacing the unknown parameters

by point estimates. If Hi is the number of categories of Xi then the number of ``independent''

parameters m and uXi
xi

determining hx in the main effects model in (7) is J � 1 � S�Hi ÿ 1�.

To estimate these parameters we treat (6) as an overdispersed log-linear model and esti-

mate the mean mx � pE�lx� � p exp�hx � j2=2� of fx under (6) in the usual way for this

main effects only log-linear model (e.g., Agresti 1990, p. 170) by n times the product

of the marginal proportions for which Xi � xi for i � 1; . . . ; k. For a more general

log-linear model iterative proportional ®tting (IPF) may be used. The resulting estimate

is denoted Ãmx. A problem is that we do not know the proportion of cells for which lx � 0.

To allow for this in the estimation of j2 we consider only using data from cells for which

fx $ 1. The ®rst two moments of fx conditional on this event are

E�fxjfx $ 1� � mx=�1 ÿ Pox�; E�f 2
x jfx $ 1� � �1 � mxexp�j2

��mx=�1 ÿ Pox�

where Pox � Pr�fx � 0�.

Noting that

E�f 2
x ÿ fxjfx $ 1�=m2

x

E�fxjfx $ 1�=mx

� exp�j2
�

we set

Ãj2
� log

X
x

�f 2
x ÿ fx�= Ãm

2
x

" #, X
x

fx= Ãmx

" #( )
�9�

Note that the sums may be over all cells and not just those for which fx $ 1, since the

values summed are both zero when fx � 0. The per-record measure of risk is obtained

from (4) and (5), where g�lx� is de®ned in (8), hx is replaced by

Ãhx � log� Ãmx=f p exp �Ãj2=2�g� and j2 is replaced by Ãj2 to give

ÃP�Fx � 1jfx � 1� �

�
exp�ÿl ÿ �logl ÿ Ãhx�

2=2Ãj2
�dl�

exp�ÿpl ÿ �logl ÿ Ãhx�
2=2Ãj2�dl

�10�

Note that this expression approaches one as p ! 1. The numerator and denominator of (10)

may be evaluated using numerical integration as described in Skinner and Holmes (1993).

In a fully Bayesian approach the support of the posterior distribution would be [0;¥]. In

our simpli®ed approach, however, it is possible for Ãj2 to be negative. In this case j2 may

be taken to be zero, so that the term ex in (6) disappears and the conditional probability in

(4) reduces to

Pr�Fx � 1jfx � 1� � Pr�Fx ÿ fx � 0� � exp�ÿ�1 ÿ p�lx�

Estimating lx � exp�hx� again by Ãmx=p, the simple risk measure is given by

ÃP�Fx � 1jfx � 1� � exp�ÿ�1 ÿ p� Ãmx=p� �11�
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This measure might also be considered even if Ãj2 > 0 since it is much easier to compute

than the measure in (10).

4. An Example: Census Microdata

We use data from the 1991 Census of Population in Great Britain on about 450,000

individuals from one local authority (see Elliot et al. 1998, and Acknowledgments).

Following consideration of possible intruder scenarios by Elliot et al. (1998), we use

the following k � 6 key variables

X1 � age in ®ve-year bands (19 categories)

X2 � sex (2 categories)

X3 � ethnic group (10 categories)

X4 � marital status (5 categories)

X5 � economic activity (11 categories)

X6 � geography (4 categories)

By including variable X6, we effectively assume that the sample microdata are released with

these four geographical subdivisions identi®ed. This corresponds roughly to the minimum

area population threshold of 120,000 employed by the Census Of®ces in the release of

anonymised individual samplemicrodata fromthe1991Census inGreatBritain (Marsh1993).

There are K � 19 ´ 2 ´ 10 ´ 5 ´ 11 ´ 4 � 83; 600 possible key values x de®ned by the

combinations of values of these key variables. The frequency distribution of the popula-

tion counts Fx for x � 1; . . . ;K is given in Table 1. A large proportion of the key values

never arise in this population. These key values with Fx � 0 are sometimes structural
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Table 1. Distribution of

population counts

Fx Frequency

0 74,067
1 3,232
2 1,263
3 618
4 433
5 336
: :

Table 2. Distribution

of sample counts

fx Frequency

0 79,603
1 1,585
2 531
3 339
4 220
5 156
: :
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Table 3. Percentage of population unique records re-identi®ed by two re-identi®cation risk measures for main effects model

Range of values Risk measure in (10) Simpli®ed risk measure in (11)
of risk measure

Number of sample Percentage population Number of sample Percentage population
unique records unique unique records unique

0±0.1 416 6.7 893 9.2
0.1±0.2 473 11.4 65 9.2
0.2±0.3 232 14.2 76 10.5
0.3±0.4 194 25.8 66 18.2
0.4±0.5 119 41.2 62 21.0
0.5±0.6 81 48.1 71 28.2
0.6±0.7 49 61.2 95 32.6
0.7±0.8 11 63.6 76 34.2
0.8±0.9 9 100.0 89 50.6
0.9±1.0 1 100.0 92 62.0

Total 1,585 18.9 1,585 18.9



zeros, for example children in the lowest age bands who fall into certain marital status or

economic activity categories, and sometimes do not arise by chance. The number of indi-

viduals who are population unique is 3,232, representing 0.72% of the population.

In order to illustrate the approach discussed in Section 3 we drew a sample by

Bernoulli sampling with sampling fraction p � 0:1. The achieved sample size was

n � 45; 006. The distribution of the resulting sample counts fx is given in Table 2.

The percentage of individuals in the sample who are sample unique is 3.52%. Amongst

the 1,585 sample unique individuals there are 300 population unique individuals, that is

18.9%.

We then estimated the mx and j2 as described in Section 3. We ®rst assumed the main

effects model given by (6) and (7). The number of parameters determining hx to be esti-

mated from the one-way margins is J � 1 � �19 ÿ 1� � �2 ÿ 1� � . . . � �4 ÿ 1� � 46.

The estimate of j2 from (9) was Ãj2
� 3:49.

Next we used these parameter estimates to calculate the risk measure in (10) for each of

the 1,585 sample unique records. We divided the resulting 1,585 risk values according to

the ranges de®ned in the ®rst column of Table 3 and record in the second and third columns

of Table 3 the number of sample unique records falling into each range and the percentage

of these which are population unique.

A strong relationship is found between the risk measure and the proportion of popula-

tion uniques within each range of values of the risk measure. The percentages increase

monotonically and correspond well with the risk measures although the risk measure tends

to overestimate the percentage a little away from the extremes. An intruder selecting any

of the ten records with a risk measure over 0.8 would always be successful. Selecting the

70 records with a risk measure over 0.6 would lead to a success rate always over 60%.

Fortunately, the majority (71%) of the records have risk measures below 0.3 for which

the success rate is always under 15%.

We next recalculated the risk measure using the simpli®ed formula in (11), which does

not require numerical integration. The results are given in the ®nal two columns of Table

3. There remains a strong relation between the percentages unique and the values of the

risk measure. However, the agreement is much poorer, with the risk measure tending to

overestimate the percentage population unique for all cases when the risk exceeds 0.1.

The distribution of values of the simpli®ed risk measure is also quite different. The use

of the simpli®ed measure for identifying high risk cases is not necessarily worse, however.

For example, the 92 records that have the highest simpli®ed risk measure have success rate

over 60%, compared with the 70 records that have the highest values of the risk measure

(10) with a success rate over 60%. Nevertheless, the value of the latter risk measure is

much more accurate. For the former 92 records the simpli®ed risk measure takes values

over 0.9 overstating the actual success rate, whereas the latter 70 records have risk mea-

sures from 0.6 upwards which more accurately re¯ect the actual success rate.

Next we considered ®tting a log-linear model including all two-factor interactions.

This involved using IPF to ®t the Ãmx to agree with the 987 two-way margins. Of these,

122 turned out to have sample counts of zero. All combinations x corresponding to these

margins were taken as structural zeros with Ãmx � 0, and IPF was applied to the remaining

combinations x. The IPF algorithm reached approximate convergence after four cycles

through all the margins. The estimate of j2 from (9) turned out to be negative, suggesting
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that the error terms ex in (6) are unnecessary. We therefore only consider the simpli®ed

risk measure in (11). Results corresponding to Table 3 are displayed in Table 4.

There is again a slight tendency for this simpli®ed risk measure to overstate the percen-

tage of population uniques, although this effect is less marked than in Table 3. This risk

measure is, however, more successful than those in Table 3 in discriminating between

records which are population unique and those which are not. Some 60% (945) of the

records are identi®ed as having very low risk (< 0:1) and of these only 3.2% are population

unique. On the other hand, 78 records are identi®ed as having high risk (> 0:9) and of these

88% are population unique. In comparison, of the 70 records identi®ed by risk measure

(10) for the main effects model as having the highest risk (> 0.6) only 67% are population

unique.

5. Discussion

The distinction between sample uniqueness and population uniqueness is important in

the assessment of disclosure risk for categorical microdata. If an intruder succeeds in

matching a released microdata record to some known individual (or other unit) with

respect to a combination of matching variables which can be inferred with high prob-

ability to be unique in the population, then that record has been re-identi®ed (assuming

also the absence of measurement error). On the other hand, if the intruder only knows

that this record is unique in the released sample then it is possible that the record

belongs to some other individual (or unit) in the population and re-identi®cation is

thus not established. Sampling can therefore be an effective means of reducing disclo-

sure risk.

In this article we have considered how an intruder might be able to use the released

microdata ®le to infer whether given sample unique records are also population unique

(any records which are not sample unique cannot be population unique). We have pro-

posed two measures which estimate the probability that a sample unique record is popula-

tion unique: one in Equation10 which requires numerical integration and a simpli®ed

measure in Equation 11. Both measures depend on the speci®cation of a log-linear model
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Table 4. Percentage of population unique records re-identi®ed by the simpli®ed risk measure for all two-way

interactions model

Ranges of values of risk Number of sample unique Percentage population
measure records unique

0±0.1 945 3.2
0.1±0.2 137 15.3
0.2±0.3 86 29.1
0.3±0.4 52 19.2
0.4±0.5 61 31.1
0.5±0.6 57 43.9
0.6±0.7 52 55.8
0.7±0.8 71 60.6
0.8±0.9 46 63.0
0.9±1.0 78 88.5

Total 1,585 18.9



for an assumed set of key variables. We have applied these measures to a 10% sample of

microdata from a population of some 450,000 records from the 1991 Census of Population

in Great Britain. We have found that these measures can indeed by useful in predicting

population uniqueness. For example, the most successful measure, based on an all two-

way interactions log-linear model, estimates that 78 records out of the 1,585 sample

unique records in the sample of 45,006 records have a probability of population unique-

ness greater than 0.9 and, indeed, 69 of these 78 records, i.e., 88%, turn out to be popula-

tion unique. Thus, log-linear modelling does appear to have potential useful applications

in statistical disclosure risk assessment. Somewhat different results were obtained for the

two models considered and so results might also change with the use of more elaborate

models.

These results depend on several further strong assumptions, including the following: (a)

the rich set of key variables considered in Section 4 is available to the intruder for match-

ing, (b) the sampling fraction is 10% and (c) there is no measurement error. Further

research is needed to assess the effect of realistic departures from these assumptions.

Subject to such assumptions, the implication of these ®ndings is that disclosure control

methods should be applied if any records are found with high levels of risk. If only a few

records of this kind are found, for example 78 constitutes just 0.2% of the sample of 45,006

records, then it is natural to consider modifying just these records, for example by repla-

cing some key variable values by missing value codes. Considerable care should be taken

with such an approach, however, since the high risk records will almost certainly be aty-

pical and so such selective application of disclosure control methods may result in various

biases. For this reason it may also be desirable to consider other more global methods such

as recoding.
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