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Estimating the Size of Hidden Populations Using
Snowball Sampling

Ove Frank! and Tom Snijders’

Abstract: Snowball sampling is a term used
for sampling procedures that allow the
sampled units to provide information not
only about themselves but also about other
units. This might be advantageous when
rare properties are of interest. This article
illustrates snowball sample situations and
discusses various modelling and estimation
problems in this context. The problem of

1. Introduction

In order to estimate the number of cocaine
users in a big city, standard sampling
methods are very inefficient. This is due to
the fact that small proportions cannot be
estimated with sufficient accuracy without
taking very large samples. A simple ran-
dom sample of size n from a population of
size N provides a sample proportion p that
varies around the population proportion p

with a standard deviation of /p(1 — p)/n,

so that for a small proportion p, a relative
accuracy of 10% would require a sample
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estimating the size of a population is dis-
cussed for both design-based and model-
based approaches. An application to a
study of heroin use is included. Simulation
results are provided for comparing and eval-
uating various estimators.
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size of about 400/p, which could be very
large. Such a large sample size would
necessarily lead to superficial or cursory
ways of interviewing. If the property investi-
gated is generally considered to be socially
sensitive or even taboo, then the interviews
might result in severe underreporting.

A very small subpopulation or a sub-
population of individuals who are unwill-
ing to disclose themselves will here be
referred to as a hidden population. Very
few members of a hidden population can
usually be found by standard sampling
methods. Often, however, there exists a
contact pattern between the members of
the hidden population, which means that
they know or know of each other. If these
contacts could be used for finding members
of the hidden population, then new estima-
tion problems arise because of the non-
standard sampling procedure. Snowball
sampling is a way of having. initially
sampled individuals lead you to other
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members of the hidden population, which in
turn could lead to further members, etc.
Various statistical methods for snowball
samples are investigated by Frank (1977,
1979). Some difficulties in statistical infer-
ence for snowball sampling are discussed
by Kalton and Anderson (1986) and by
Snijders (1992). A review of the literature
on general link-tracing designs for
investigating hidden populations is given
by Spreen (1992). The reader is referred
to this paper for further bibliographic
references.

The hidden population with its contact
pattern between members is naturally con-
sidered as a directed graph. The members
of the hidden population are the vertices
of the graph. The number of vertices, v, is
estimated from sample information. Vertex
i has an arc to vertex j if individual i,
when questioned, would mention j as a
member of the hidden population.

Assume that an initial sample of n
members of the hidden population is avail-
able. Each of these individuals is supposed
to name the other members they know
of. Some are mentioned by several
individuals; some of those mentioned are
included in the initial sample and some are
not. Those who are not in the initial sample
and who are mentioned by at least one
individual in the initial sample are said to
belong to the first wave of the snowball
sample created by the initial sample. Those
who are not members of the initial sample
or the first wave of the snowball sample
but are mentioned by at least one member
of the first wave are said to belong to the
second wave of the snowball sample, etc.
The snowball sample consists of the initial
sample and all the waves successively
found around it. A wave is final if its
members do not mention any individuals
that have not been previously mentioned.
Snowball samples often are incomplete in
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the sense that the sampling stops (for
obvious reasons) before the last wave.

The initial sample could be a simple
random sample from a population con-
taining the hidden population as a sub-
population. In practice a more convenient
initial sample is usually obtained by site
sampling, that is, by sampling certain sites
where members of the hidden population
are known to frequent. For instance, drug
users could be initially sampled at certain
bars, clubs, or police stations.

There is no frame of the hidden population
as long as it is hidden, so random sampling
procedures cannot be designed exclusively
for the hidden population. However, that
they cannot be designed does not mean that
they cannot be used. A Bernoulli sampling
design is a way of selecting individuals from
a population according to a procedure that
decides independently for each individual
whether or not he or she should be selected
for the sample. Such a procedure could work
even if it is not run by the sampling investi-
gator. In the context of sampling cocaine
users, for instance, it is conceivable that
the initial sample is created by the members
of the hidden population that are in need of
medical treatment or social support. A simple
model for such self-generated initial samples
could be Bernoulli samples with a common
but unknown selection probability. More
elaborate models could distinguish between
different selection probabilities in different
strata of the hidden population.

This paper illustrates how snowball
sampling methods can be used to estimate
hidden populations. Both design-based and
model-based approaches are discussed.
Section 2 introduces notation and termino-
logy. Section 3 takes a simple model-based
approach and develops estimators of the
model parameters as well as of the size of
the hidden population. Section 4 analyzes
the precision of the estimators. In Section
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5 a design-based approach is discussed and
various estimators of the size of the hidden
population are developed. A practical
illustration is provided in Section 6, and
simulation results which shed some light
on the performance of the estimators are
reported in Section 7. The paper closes
with a discussion section.

2. Concepts of Snowball Sampling

Consider a directed graph on v vertices.
The vertices are labeled by integers and the
vertex set is denoted by V' = {1,...,v}. The
arcs are ordered pairs (i,7) of vertices from
V; if i = j, the arc is called a loop. The arc
set W is a subset of V2 containing all
loops {(i,i) : i € V'}, for convenience. The
initial sample S, is a subset of V.
The initial sample and the arc set are
represented by indicator variables x =
(xj:i€V) and  y=(yy;:(i,j)eV?),
respectively. Thus x; is 1 or 0 according to
whether or not vertex i is in the initial
sample, and y;; is 1 or 0 according to
whether or not the graph contains an arc
from i to j. The matrix y is the adjacency
matrix of the graph, and the diagonal
entries of y are all equal to 1.

Denote by A4; and B; the subsets of
vertices after and before vertex j, respec-
tively. More precisely

so that 4; is indicated by row j of y, and B; is
indicated by column j of y. The sizes of A;
and B; are called the out-degree and the
in-degree of vertex j, and they are denoted
by a; and b;, respectively. They can be
obtained as the row and column sums of
the adjacency matrix y

v v
a=41=> vy, b=|B|= > v

i=1 i=1

For any subset S of V' we denote by A(S)
and B(S) the subsets of vertices after and
before any of the vertices in S, respec-
tively, that is

A8 =4, B =B

jes Jjes

The first wave of the snowball sample
initiated by S is given by S; = 4(S;) N Sp.
The second wave is given by S, =
A(S;)NSyNS;, and so forth. The snow-
ball initiated by S, is given by
So US| U...USk where K is the number
of waves of the snowball and Sk ; is the
first empty set in the sequence S, .S, ...

Figure 1 shows the adjacency matrix y of
a graph on v =25 vertices. The vertices
have been ordered so that the first 5 vertices
are the vertices in the initial sample S,. The
next 8 vertices are the vertices in the first
wave Sj. Note that there are 13 vertices
after S, but only 8 of these are in the

first second third
wave wave

initial
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Fig. 1. Adjacency matrix of a graph on 25
vertices. The vertices have been ordered to
simplify the illustration of a three-wave
snowball sample of size 21 generated from
an initial sample of size 5
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complement of Sy. The next 6 vertices are
the vertices in the second wave S,. Note
that there are 16 vertices after S| but 2 of
these are in Sy and 8 are in S;. The next 2
vertices are the vertices in the third wave
S;. There are 8 vertices after S; but one of
these is in Sy, 2 are in S}, 3 are in S, and 2
are in Sy so that S, is empty. Finally, the
last 4 vertices are the vertices not reachable
from S3.

3. Model-Based Estimation

Assume that the initial sample Sy is a
Bernoulli subset of ¥ with selection prob-
ability . This means that the indicators
X1,...,X, are independent identically dis-
tributed Bernoulli(«) variables. The initial
sample size n = |Sp| is then binomial (v, @).

Assume further that the arc set W is
a Bernoulli subset of V2 with selection
probability 1 for the loops and selection
probability 3 elsewhere. This means that
the indicators (y;;) are 1 on the diagonal
and are independent identically distributed
Bernoulli(3) variables off the diagonal.
The parameters of the statistical model are
v, a, and B. This paper concentrates on
the estimation of v.

Let r be the number of nonloop arcs in
the initial sample, that is, r+n=
|W N S§|. Conditionally on Sy, r is binomial
(n(n—1),08), and unconditionally r has a
probability

y (n(nr— 1)>ﬂ'(1 _ gy,

The conditional expected value of r is
E(r|n) = n(n —1)B, and the unconditional
expected value is Er = v(v — 1)a2ﬂ. Let s
be the number of arcs from the initial sam-
ple to the first wave of the snowball, that
is, s=|WnN(Syx S;)|. Conditionally on
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Sy, § is binomial (n(v — n), 8), and uncondi-
tionally s has a probability

(0)t-or

n=0>< (n(vs— n))ﬁ:(l _ ﬂ)"(v—n)—s‘

The conditional and unconditional expected
values of s are E(s|n) = n(v —n)f and Es =
v(v—1)a(l — @)B. Now, conditionally on
n, moment estimators of 8 and v can be
obtained from the two equations

r=n(n-1)g8

s=n(v—n)p
leading to

B = r/n(n—1)

O = [ar+ (n—1)s]/r.

Unconditionally, moment estimators of «,
B, v can be obtained from the three
equations

n=va
r=uv(v—1)a’8
s=v(v-1Da(l —a)s
leading to
Gy =r/(r+5s)
By =r(r+s)/nl(n — 1)r + ns]
Oy =n(r+s)/r

generally provided that no denominators
are zero.

There are other ways of getting moment
estimators. The arc frequencies r and s are
independent conditionally on n, and their
sum t=r+s is binomial (n(v—1),0).
Moreover, the size m = |S;| of the first
wave of the snowball is conditionally
binomial (v—n, 1 — (1 —3)"). The two
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moment equations
t=n(v—1)8
m=(v—n)[l - (1-B)"]

lead to an estimator of v satisfying

R [1 —;Jn.
v—n n(v—1)
The solution to this equation will be
denoted ¥s. It can be obtained by a straight-
forward iterative procedure. The corre-
sponding [-estimator will be denoted ﬁ3.
These moment estimators can also be
obtained as maximum likelihood estima-
tors, as we show next.

The maximum likelihood estimators will
be derived conditionally on #n. For
k=0,...,nlet my be the number of indivi-
duals not in S, that are mentioned by
exactly kK members of S,. Then

m=my+my+...+m,
s=my +2my+ ...+ nm,
my=v—hn—m
and (my,...,m,) is multinomial (v-—n,
D1y -,Dy) Where
P = (Z)ﬂk(l — A" fork=0,....n.

Now, r and (my,...,m,) are sufficient and
conditionally independent, and for these
data the conditional likelihood is given by

L= (n(nr_ 1)>,6r(1 _ ﬂ)n(n—l)—r
X (v—n)! I’L[(pz"/mk!)
k=0

_ (v=n)

(v_ . )'ﬁt(l _ ﬂ)n(v—l)—t

. (n(n— 1)) HQ

k=1

m

It follows that m and ¢ are sufficient

statistics, and the essential part of the likeli-
hood is given by

—n)

g(B,v) = (v(fvn:l)—'m)!ﬂt(l — By v,
For any fixed v, this is maximized by 8 =
t/n(v — 1), while for any fixed 3, this is maxi-
mized by the integer part of the solution to
the equation g(3,v— 1) = g(B3,v) which is
equivalent to 1—-m/(v—n)=(1-73)".
These equations are identical to the moment
equations defining v.

4. Distributions and Standard Errors

Conditionally on the size n of the initial
sample, the size v of the hidden population
is estimated by

y=n+sn—1)/r

if the statistics r and s are used, and by o5 if
the sufficient statistics ¢ and m are used.

Conditionally on n, the statistics r and s
are independent and have binomial distri-
butions. The delta method, using a first
order Taylor series, yields the following
approximation to the asymptotic variance
of ’01

Var(d;|n) ~
(v—=1)(v—n)(1—B)/Bn(n-1)
which can be estimated by
var o = (n* —n—r)(n— )s(s + r)/nr.
The estimated relative variance can be

shown to be bounded as follows

var 9, (n* —n—r)s 1

02 = n(n——l)r(s+r)<r'

Although rough, this bound does indicate
the correct order of magnitude and can be
helpful for the sample design.

Another way to approach the distribution
of 9; is by conditioning not only on n
but also on fr=r+s. The conditional
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distribution of -s is hypergeometric with
parameters n(v— 1), n(n — 1), and t. The
estimation of v for this hypergeometric distri-
bution is equivalent to the capture-recapture
problem treated by Chapman (1951) who
is cited by Johnson and Kotz (1969, pp.
146-147). Chapman (1951) suggests for the
capture-recapture problem to wuse an
approximation which in this case amounts

to
E{ ! n,t} ~
r

+1
(vm—n+1)/(t+ ) —n+1)

and which leads to the estimator ¢ = n+
(n—1)s/(r + 1). The mathematical advan-
tage of this estimator is that it has, in
contrast to ¥;, finite mean and variance.
From a practical point of view, however,
this estimator is hardly different from 9,
unless 7 is so small that both estimators
have very large relative standard errors.
Based on the hypergeometric distribution
for r, it is also possible to construct exact
tests and confidence intervals for v. We do
not elaborate on this.

The joint distribution of 7 and m, necessary
for the distribution of 93, is more difficult to
handle. Since r and (s,m) are independent
conditionally on n, the complicated part of
the calculations involves the simultaneous
distribution of s and m. Their marginal distri-
butions are both binomial as noted above,
binomial (n(v— n),8) for s, and binomial
(v—n,1—(1—B)") for m. The distribution
of m conditional on s can be deduced by a
combinatorial argument using the principle
of inclusion and exclusion

< Y (1)

k>0

(")
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This distribution is mentioned by Johnson
and Kotz (1969, p. 252) in connection with
restricted multinomial occupancy prob-
lems. The conditional distribution of s
given m can be given as

P(s|n,m) = (1 fg)s(l El(I fi{)n)">m
e ().

k>0

Neither distribution lends itself to exact cal-
culations of the moment properties of the
estimator ¥3. An asymptotic approximation
can be made under the following assump-
tions: # and v tend to infinity; the expected
in- and out-degree, (v — 1), tends to a posi-
tive finite limit \; the initial sampling fraction
n/v tends to 0 but n*/v tends to infinity.
Now m/n and t/n can be shown t) con-
verge in probability to A, and the asympto-
tic variance of 03 can be shown to be equal
to the asymptotic variance of the approxi-
mation #(z + 2n — 2)/ 2(t — m) which is

Var(ds|n) = v* /i A(1 + \/2).

For the asymptotic marginal variance, n,
may be replaced by av, leading to

Var 93 = v/a*A(1 + A/2).

It can also be shown that a corresponding
estimator is var 93 = (83 — n)?/(t — m). The
expression for Var 93 can be compared
with the asymptotic variance of 9; by substi-
tuting 8 = A\/v and n = av, leading to

Var 9, ~ v/a*\.

This shows that the maximum likelihood
estimator 95 has an asymptotic relative effi-
ciency with respect to the moment estimator
©; which increases from 1 for A — 0 to infi-
nity for A — oo. The relative efficiency of 03
with respect to 9; can be estimated by
1 +1¢/2n.

With the expressions given for var 9; and
var 93, confidence intervals for v can be
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constructed in the usual way (assuming
approximate normality for the estimators).
Thus, approximate 95% confidence inter-
vals for v are given by

) :I:Z\/varle‘
=n+(n—1)s/r
:|:2\/(n2 —n—r)(n—1)s(s+r)/nr
0y £ 24/vardy = 03 £ 2(03 — n) /vt —m.

5. Design-Based Estimation

This section is concerned with the estimation
of the number of vertices of a fixed unknown
directed graph. In other words, the arc indica-
tors y;; are not random but unknown. We call
this design-based estimation because the
population (digraph) is fixed and probability
plays a role only via the sampling proce-
dure; this term might be criticized by noting
that the snowball sample is determined not
only by chance, but also by the network struc-
ture, i.e., the arcs. The procedure for the initial
sample is again a Bernoulli sample with
unknown sampling probability «. In Section
5.1 the moment method is followed again,
and the consistency of the produced estima-
tor is investigated. In Section 5.2 a Horvitz-
Thompson type estimator is derived.
Section 5.3 presents jackknife estimators for
the variances of the estimators for v.

5.1. Moment estimators

For the moment method, the statistics n, r, s,
and m are used again. Since xy,...,Xx, are
independent Bernoulli variables with para-
meter a, the expected values can easily be
calculated

Eanzxizvoz
i

Er = Einxjyij = (w —v)o?

i#j

where w = || is the total number of arcs;
Es = EZ’Q(I = X})ij
i
=(w—-v)a(l — a)
Em = E;(I}é%j)_( X; — X;)

_EZ( - X — Itléln(l—x))
=v(l—a)=> (1-a).

J

It can be concluded that the use of the statis-
tics n, r, and s leads to estimators &, and 9,
that were also found in the model-based
approach. The statistic m can be used in com-
bination with another statistic, denoted k,
and defined as the number of vertices in the
initial sample connected by at least one arc
to another vertex in the initial sample

k= E xjma_)(yijxi.
j i#

Its expected value is

Ek = va — aZ(l —a)b !,

This implies Ek = aE(k + m), which leads to
U4 =n(k+m)/k

as another moment estimator for v and
G4 = k/(k + m) as the corresponding esti-
mator for «. In analogy to the way 9, is
related to 0,, and motivated by simulation
results (see Section 7), the formula for 7,
can be slightly modified to give another
estimator

= [nk+ (n — 1)m]/k.

The consistency of these estimators is
conveniently studied for an asymptotic
situation that is compatible with the asymp-
totic situation considered at the end of
Section 4. We assume that v — oo and
o — 0 in such a way that En = va — oo;
moreover, we assume that all in- and



60

out-degrees are bounded: a;,b; < M < oo.
This implies that (w — v)/v < M. It can be
shown that the assumptions imply that

Varr < 20%(1 — o®)w + 4Ma>(1 — a)w
= O(va?)
and
Vars < a(l —a)(1 —a+o*)w
+2a(1 — )’ Mw = O(va).

This implies that n/va, (r + 5)/(w — v)a, and
r/(w — v)a? all converge in probability to 1
since the expectations are 1 and the variances
tend to 0. It follows that 9, /v converges in
probability to 1, so ¢, is a consistent
estimator.

Similarly, the asymptotic orders of Varm
and Vark are given by

Varm < a1 — a)(w —v)
+ a(l — a)vM® = O(va)
and
Vark < o2(w — v) + o*vM> = O(va?).

This implies that m/(w — v)a(l —a) and
k/(w — v)a? both converge in probability to
1, and it follows that this also holds for 94 /v
and 95/v. Thus it can be proved that 9y, 0,
14, and 05 are consistent estimators. For the
estimator ©¥3 consistency is not guaranteed.
Suppose that (w — v)/v — A and denote the
variance of the in-degrees by

2
=i
Then
Var (t —m) < a(l — a)w
+a(l — a)uM® = O(va)

and 93;/v can be shown to converge in
probability to  A(A+2)/[AA+1) + 7.
For arbitrary A and o2, this limit can be any-
where between 0 and 2. Under the Bernoulli
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graph model, o tends to ) so that the limit
is 1. It can be concluded that 95 is consistent
under the Bernoulli graph model, but not
under the model of an arbitrary fixed graph.
In empirically found graphs, the variance of
the in-degrees is often larger than the value
that is expected under the Bernoulli model.
A test of the Bernoulli model as a null hypo-
thesis with the variance of the in-degrees as
test statistic can be found in Snijders (1981).

5.2.  Horvitz-Thompson estimator

If the initial sampling fraction « is known,
(a Horvitz-Thompson estimator can be
computed. This estimator is

-1
E, Ty

v
dyr(@) = Zmax x; yij/mj =
i=1 ! JESUS,

where m; is the inclusion probability
m; = P{j € SpU S} = Emaxx;y;;
1]
=1-(1-a)b.

In practice, « is not known; one of the esti-
mators for a could be substituted. Since
simulation results (see Section 7) suggest
that 9, is slightly better than 9,, and 05 is
slightly better than 94, we restrict attention
to & =n/d,, & =n/d;, and Gs = n/vs.
This yields the estimators @5 = Oyr(&y),
7 = dyr(a3), and dg = dyr(&s).

For the estimators y(a) and dgr(&), it
is necessary to observe the in-degrees of all
sampled vertices. This can be difficult or
even infeasible; we return later to discuss
the observational requirements of the var-
ious estimators.

The variance of 9yt(a) depends on the
joint inclusion probabilities

7'(',']' = P{l,] € SO US]}
It can be proved that
mi=1—(1-a)—(1-a)

+ (1 _ a)b,-+bj—b,~j
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where b;; is the number of vertices with arcs
to both i and j

v
bij = thiyhj~
h=1 ‘

In order to calculate the Horvitz-Thompson
or Yates-Grundy estimators for Var dyt(a),
it is necessary to know b;; for all i and j in
the sample. This is a strong requirement on
the observations; it practically implies that
the in-neighbourhoods B; are known for all
j € Sy US;, which more or less implies a
two-wave snowball sample. We do not
pursue this but, instead, apply the jackknife
principle to the initial sample in order to get
standard errors for the various estimators.

5.3.  Jackknife standard errors

The jackknife principle (explained, e.g., in
Efron 1982) can be used to obtain standard
errors for the derived estimators. Some
computer simulations showed, however,
that the standard way of applying the jack-
knife principle to the initial sample yields
too large values for the standard errors. A
more detailed analysis is necessary.

The most frequently applied jackknife
method is based on excluding each one of
the sample elements in turn. For an estima-
tor 9, denote by 9 the corresponding
estimator when vertex i is deleted from the
initial sample and when all vertices j that
are after 7 but not after any other vertices
in the initial sample are deleted from the
first wave of the snowball sample. (If vertex
i is after some other vertex j in the initial
sample, then in the data used to calculate
?(;), vertex i will show up in the first wave.)
The standard version of the jackknife
variance estimator for o is

n

con—lges
var o == =3 (i — ()’
i=1

where
n

1
f)(.) = ;Z}ﬁ(i).
im
There are several approaches to argue why,
in many situations, this makes sense as a
variance estimator; see Efron (1982). One
of these approaches is based on the observa-
tion that var®jd is unbiased if % is an
average of n independent identically distri-
buted (i.i.d.) random variables. More gener-
ally, it is an unbiased variance estimator if

var v

vardg) =

n—2
for i #j.
o] ori#j

p(0), 0g)) =
These conditions are far from being satisfied
in the case of the estimators ¢ in this paper.
Our estimators ¢ are not at all similar to
averages of n i.i.d. variables. The available
data consist of the n x n adjacency matrix
Yoo = (¥i;6,J € Sp) for the initial sample
together with the n x m adjacency matrix
Yo = (030 € So,J € S;) of arcs between
initial sample and first wave (cf. Figure 1).
Deleting vertex i from the initial sample
has the following effect on these data
matrices: row i and column i are deleted
from Yyy; row i is deleted from Yj;; and
there may be some changes of columns in
Yo1. Matrix Y, contains, conditionally on
n, n(n—1) nontrivial random variables
(the diagonal elements are all 1). If the
sampling probability « is small (as we
have assumed), then E{m|n} is approxi-
mately proportional to »; this implies that,
conditionally on n, the number of ran-
dom variables in Yj; is approximately
proportional to n*. This suggests that the
variances of our estimators ¢ are inversely
proportional, approximately, to n(n—1)
or n* rather than n. This is confirmed
by the expressions found in Section 4:
Var (¢,|n) is approximately inversely
proportional to n(n — 1), and Vard; to o?.
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It can be concluded that to propose a valid
jackknife procedure we should not regard
our estimators ¥ as smooth functions of a
sample of » iid. random variables, but
rather as functions of a numerical relation-
ship between n vertices. More specifically,
we regard the estimators ¢ as analogous to
the sample mean Z of a square n x n matrix
of random variables, where z; = 0 and the
z;; for i # j are ii.d. random variables with
variance 2. The sample mean is

1
7 = —-— Zjj-
n(n—1) ; /
The sample mean of all variables except those
in the ith row and the ith column is denoted
Z(;y. We suggest that the relation between o
and 9(; is analogous to that between z and
Z(;y. For the z variables, it holds that

_ n _

var z(;y =n_2varz
o n—3
p(Z(i)aZ(j)) = n_1

This implies that an unbiased variance
estimator for Z is

Accordingly, for an estimator ¢ we propose
the jackknife variance estimator

R n—2 1 . R 2
var ;0 =—_ Z(v(i)—v(.)).

i=1

Standard errors for ¢ are obtained as
{var Jﬁ}l/ 2. A further justification of these
standard errors may be given by simulation
experiments; see Section 7.

6. An Application and Some Practical
Remarks

Practical work on these estimators was
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started by Snijders in the context of a
study of cocaine use in Rotterdam. The
results are presented in Bieleman, Diaz,
Merlo, and Kaplan (1993). In this paper
we refer to a study of heroin use in the
town of Groningen conducted by the
research bureau Intraval; see Intraval
(1991). A snowball sample of heroin users
was taken where the initial sample con-
sisted of n = 34 persons. The respondents
for this initial sample were found through
contacts with social assistance agencies,
medical doctors, and by visiting known
meeting points of heroin users. The
research bureau tried to obtain a more or
less representative sample. The assumption
of a Bernoulli sample for the initial sample
is rather artificial. However, one may
believe that the sampling method, although
not probabilistic, yields results that are
sufficiently close to those from a Bernoulli
sample so that making this assumption
will give estimates of v of the correct order
of magnitude.

After an extensive interview in which the
trustworthiness of the interviewer was
made clear to the respondent, the respon-
dent was asked to mention other heroin
users in the town of Groningen. These
“nominees” were identified with first
name, nickname, profession, gender, and
age categories. A data base was set up in
which it was investigated which nominees
could be identified with each other. This is
not a straightforward activity since persons
can be known by slightly different names,
ages of nominees are often not known
exactly by the respondents, and job
categories also can be reported in different
ways. Some choices made in this identi-
fication process were rather arbitrary, but
they did not seriously affect the results.

With multiplicities, the number of nomi-
nations was ¢ = 311, of which r = 15 were
within the initial sample. The number of
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nominees was 248, of which k=11 were
within the initial sample and the remaining
m = 237 constituted the first wave. The
result-ing estimates with their standard
errors are

5, =685 (171), (140),
b, =662 (13)y  (63);
b5 =745 (153),

The M and J indicate, respectively, whether
the standard errors are based on the Bernoulli
digraph model or on the jackknife method.

From independent information, the police
estimate the number of heroin addicts in
Groningen at about 800. If this is likely to
be an overestimate, then the estimates found
are not unreasonable. If the police estimate is
accurate we may conclude that the estimates
are of the right order of magnitude, but some-
what low. The low estimates might result from
the tendency of informal samples of social
networks to overrepresent the “center” and
underrepresent the “periphery” of the net-
work, which results in too many nominations
within the initial sample, and hence underesti-
mation of v.

The difficulties associated with the identi-
fication of the nominees point to differences
in the data requirements of the various esti-
mators. For hidden populations character-
ized by forbidden activities or other social
taboos, the information obtained about
nominees will usually be restricted. Note
that identification of nominees contained
in the initial sample will be easier than
identifying the others, since the interviews
will lead to satisfactory knowledge about
the respondents (i.e., those in the initial
sample) but less will be known about non-
interviewed persons in the first wave. This
means that where ¢ is a direct observation,
the statistics » and k will be easily calculated
but the statistic m will be harder to deter-
mine. This implies that 9; and ¥, are more

easily obtained than 93, 04, and ¥s. For the
Horvitz-Thompson estimator the picture is
bleaker. It requires the in-degrees of indivi-
duals in the initial sample and in the first
wave. For many nonsymmetric social rela-
tions, in-degrees (“how many persons in the
population would, if asked, mention you as
another population member?”) are virtually
impossible to obtain reliably. For symmetric
relationships in-degrees will be easier to
obtain, but obtaining them requires inter-
views with the persons in the first wave,
which is not necessary for the other statis-
tics. As a consequence, Ug, U7, and 0g will
often be unavailable.

7. Some Simulation Results

The results obtained about consistency and
standard errors of the estimators are rather
crude asymptotic approximations. Some
simulations have been carried out to get
an impression of the finite sample/finite
population performance of the estimators.
For each of the population sizes v =100
and v = 1000, three simulation experiments
were performed. In each experiment, one
digraph was generated from a stochastic
model described below, and 1000 Bernoulli
samples were generated from the vertices of
the digraph; the averaged results for each
experiment are presented. The three sto-
chastic models differ in the expected values -
for o?, the variance of the in-degrees. In
each of the models the expected in-degree
(excluding the self-loop) was fixed at 5. The
models are the following:

1. Constant in-degree: for each vertex i,
five other vertices are chosen at random
(without replacement) to have an arc
going to i; here o* = 0.

2. Bernoulli: all arcs are determined inde-
pendently, and each ordered pair (i,j)
with i #j has a probability 5/(v—1)
for an arc; here o® = 5. ‘
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3. Two-block model: vertices are distin-
guished in two equal size groups and
all arcs are determined independently;
within the first group arcs have prob-
ability 12/(v— 2), within the second
group 6/(v —2), and between the two
groups 1/v; here o* ~ 7.25.

The initial sampling probabilities were
a=.2 for v=100, leading to En = 20,
and a=.06 for v=1000, leading to
En = 60. The associated values for the size
of the first wave were m = 50 for v =100
and m = 240 for v = 1000.

In the rare cases that a zero denominator
occurred in any of the formulas for the
estimators, the 0 was replaced by 1. In the
rare cases that a value smaller than
n+ m+ 1 was computed as an estimate of
v, this value was replaced by n+m + 1.

All estimators presented in this paper
have been considered in the simulations,
but only the main results will be presented.
For the two closely related estimators o,
and 95, and similarly for 94 and ¥s, it turned
out that conditioning on # is preferable; 0,
and 05 were consistently slightly better
than 9, and 04. Of the Horvitz-Thompson
type estimators, 97 was clearly better than
0¢ and vg. Therefore, results are presented
only for the estimators 9, 03, 05 and 0.
For comparison with 9, some results are
also presented for the Horvitz-Thompson
“estimator” dyr(a) although to calculate
it the value of « is needed.
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Table 1 gives the means and the root
mean squared errors of the estimators.
There seems to be, on average, a positive
bias of the estimators. The ML-estimator
(for Model 2) 05 is the estimator with the
largest bias for Models 1 and 3. This is in
accordance with the formulas for its asymp-
totic mean value, indicating that the bias of
3 is a decreasing function of ¢°. Further-
more, it is clear that ¥; and ¢; are much
better (in terms of root mean squared
error) than o5, and that the latter is slightly
better than ©¢;. When comparing ¢; and
Oyt (), it can be concluded that the loss
due to having to estimate « is evident but
modest, except for Model 1 and v = 1000.

Table 2 gives the average standard errors
which can be compared with the root mean
squared errors, and Table 3 gives the esti-
mated coverage probabilities for the con-
fidence intervals, which should be close to
.95. The standard errors do not have a
large bias as estimators for the root mean
squared errors, except for Model 1 with
v = 1000, where there appears to be a con-
siderable underestimation. However, this
underestimated variability of the estima-
tors does not lead to too low coverage prob-
abilities. It seems that, for Model 1 with
v = 1000, the estimators have heavy-tailed
distributions but the standard errors cap-
ture the variability in the bulk of the
distribution (thus leading to satisfactory
confidence intervals) and not the heavy tails.

In the preceding section it was remarked

Table 1. Means and root mean squared errors (between parentheses) for various estimators
of v under various models
v Model ’LA)I ’53 735 ﬁ7 ﬁHT
100 1 105 (25) 111 (16) 101 (19) 108 (15) 100 (12)
100 2 106 (30) 103 (12) 102 (23) 103 (14) 100 (13)
100 3 106 (28) 97 (12) 101 (21) 100 (13) 99 (13)
1000 1 1074 (339) 1176 (238) 1066 (323) 1158 (231) 997 (107)
1000 2 1061 (300) 1017 (130) 1054 (282) 1017 (142) 1000 (115)
1000 3 1071 (294) 969 (123) 1058 (268) 979 (129) 994 (118)
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Table 2. Average errors for various estimators of v under various models; SEM denotes
model-based standard error, SEJ jackknifed standard error, and RMSE root mean squared

error
v Model ’61 ’173 1}5 ’137
SEM SEJ RMSE SEM SEJ RMSE SEJ RMSE SEJ RMSE
100 1 23 25 25 14 13 16 21 19 13 15
100 2 25 28 31 13 12 12 23 23 13 14
100 3 25 29 28 12 12 12 24 21 13 13
1000 1 273 302 339 166 165 238 289 323 165 231
1000 2 264 293 300 133 131 130 279 282 136 142
1000 3 271 302 294 125 126 123 286 268 130 129

that, of the estimators under consideration
here, ©; has the least requirements of the
data, followed by 93 and 05, while 9; poses
much stronger requirements. The simula-
tions show that 93 is much better than ¢,
(and vs5), so the extra effort needed to
collect the data is amply rewarded in this
case. It is surprising that even for networks
that are quite different from those obtained
as outcomes of Bernoulli digraphs, 05 is
much better than 9, and 95. The extra effort
needed to collect the data for ¥ is hardly
rewarded when this estimator is compared
to ’lA)3.

These simulation results suggest that 05 is
to be recommended for practical use,
possibly in combination with s, and that
(for all estimators considered) the con-
fidence intervals based on either of the
standard errors are indeed trustworthy.
Further research is needed to investigate

whether there exist types of networks,
occurring in practice, where the bias of ¥
is a source of concern.

8. Discussion

It may be concluded from this paper that
it is possible to use a one-wave snowball
sample for estimating a population size. In
sociological applications a one-wave snow-
ball sample can sometimes be obtained as
a sample of “personal networks,” that is, a
sample of respondents who report on con-
tacts with others. If the identities of all
persons involved are observed, then the
personal networks can be combined into a
one-wave snowball sample.

The main doubt when applying the
results of this paper will often be the
validity of the assumption of a Bernoulli
initial sample. This assumption may be

Table 3. Coverage relative frequencies for confidence intervals based on model-based (M) or
Jackknife (J) standard error for various estimators of v

v Model f)l ’83 ’lAJs ’IAJ7

M J M J J J
100 1 .963 955 992 955 956 .968
100 2 948 959 .980 963 .958 .949
100 3 945 .962 931 924 961 933
1000 1 .965 967 941 926 .962 934
1000 2 948 .956 .968 957 955 945
1000 3 953 .962 932 938 960 .929
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approximated to a reasonable extent by
using several unrelated sources of contact
with the hidden population, taking care of
contacting initial sample members not in
pairs or larger groups, etc., but the nature
of hidden populations will mostly preclude
a perfect Bernoulli sampling procedure. To
the extent that the initial sample is not
Bernoulli, the nature of the social network
will often lead to overrepresentation of
more central individuals (e.g., those with
higher in- and out-degrees) at the expense
of more peripheral population members.
Since this will tend to increase nominations
within the initial sample, a downward bias
in the estimators will often be the result.
The authors are planning further work
where allowance is made for varying selec-
tion probabilities in the initial sample, e.g.,
stratified sampling.

The simulation results demonstrate a
surprisingly good performance of the
model-based maximum likelihood estima-
tor 95 also in the case of networks that are
very different from most digraphs pro-
duced by a Bernoulli digraph distribution.
We propose that the estimators ¢; and 05
be calculated, with their jackknife standard
errors; if they do not contradict each other,
then 93 can be chosen, otherwise it can be
suspected that ©; has a considerable bias
and 95 can be used. It must be noted that
93 and 05 pose stronger requirements con-
cerning the data (identification of nominees
in the first wave; see Section 6) than 9.
There may be situations where the limited
possibilities for identifying nominees
restrict the research to estimator 9.

Intuition as well as the formulae for the
estimators (note the important role
played by the statistics r, k, and ¢ —m)
show that the precision of the estimators
from the snowball sample depends strongly
on the within-initial sample nominations.
The sample design should be such that the
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number of these nominations is not too
small; otherwise, very unstable estimates
will be produced. This can be quantified
by referring to the approximate formula

Var o3 ~ v/ A(1 + )/2).
Substituting # ~ va yields

Var 43 v
v mA(1+)2/2)

If a relative standard error of, e.g., 10% is
required, this leads to an initial sample size

o 100w 12
T+

Recall that A is the average degree in the
social network. Many social networks are
such that the average degree is not much
higher than 10 or 12; this means that the
initial sample size will have to be larger, in
most cases, than the square root of the size
of the hidden population.
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