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Estimating the Variance of a Complex Statistic:
A Monte Carlo Study of Some Approximate
Techniques

Claes Andersson,! Gésta Forsman, and Jan Wretman®

Abstract: This paper describes a Monte Carlo
study designed to illustrate the performance
of four approximate techniques of estimating
the sampling variance of a ratio between two
estimated consumer price indices. The vari-
ance estimation techniques under study are:
(1) traditional Taylor linearization, (2)
Taylor linearization with a simplified vari-
ance estimation formula, (3) repeated ran-
dom groups, and (4) jackknifing. These tech-
niques are compared on the basis of observed
relative bias, observed relative mean square

1. Introduction

This paper is a report from a Monte Carlo
study designed to illustrate the performance
of four approximate techniques of estimating
the sampling variance of the ratio of two esti-
mated consumer price indices.

The variance estimation problem has the
following background: retail price data for
the Swedish consumer price index have tradi-
tionally been collected through direct obser-
vation of current prices of specified com-
modities in a sample of stores. Recently, it
was suggested to use list prices instead of
current prices. The list prices are a sort of
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error, and observed confidence interval
coverage rate in a series of 1 000 samples
drawn from the same population of stores.
The sampling design is stratified sampling
with PPS sampling within each stratum, and
the data that are used are authentic price data
from a price measurement study.

Key words: Finite population sampling; vari-
ance estimation; complex statistic; consumer
price index; Taylor linearization; repeated
random groups; jackknife; Monte Carlo study.

“recommended” retail prices decided by the
retail organization with which the store is
associated. They can be easily obtained from
these organizations. This would make it
unnecessary to visit the stores and would thus
reduce the data collection costs. But the list
prices do not exactly agree with the current
prices, and the question is whether an index
based on list prices can be used as an approxi-
mation of an index based on current prices.
We conduct a methodological study to
compare these two indices. In our study,
both list and current prices are collected for
the same set of commodities in the same
sample of stores and we calculate two indi-
ces. The comparison should then be based on
the ratio between these two indices. Since
data is collected only from a sample of stores,
it becomes important to know the impact of
sampling variability on the index ratio.
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Hence, the problem of how to estimate the
sampling variance of a ratio between two
indices emerges. We conducted our Monte
Carlo study in order to illustrate this prob-
lem.

Since the index ratio is a complicated sta-
tistic, there are no simple, exact estimates of
its variance. We considered four variance
estimation techniques usually referred to as
“approximate.” Lacking theoretical com-
parisons between these techniques, we per-
formed a simulation study in which 1 000
independent samples were drawn from a
miniature population of 99 stores, for which a
complete set of price data (both list and cur-
rent prices) was available. Computing the
four types of variance estimates for each sam-
ple made it possible to get an idea of the sam-
pling distributions of the variance estimators
and their usefulness for constructing confi-
dence intervals.

2. The Estimation Problem

We describe the estimation problem in stan-
dard sampling terminology, rather than index
number terminology. Let U = {1,..., k,..., N}
be a finite population of N stores. A con-
sumer price index is to be based on a group
of p specified commodities. For each store
(k=1,...,N)andeachitem (i = 1,..., p), the
following variables are defined:

yi = (current retail price of item i, in store
k, at time t=1) X (total turnover of
all items in store k)

x; = (current retail price of item i, in store
k, at time t=0) X (total turnover of
all items in store k)

yr: = (list price of item i, in store k, at time
t=1) X (total turnover of all items in
store k)

x;; = (list price of item i, in store k, at time
t=0) X (total turnover of all items in
store k)
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If a store does not carry an item, the corre-
sponding variables are defined as having a
value of zero. Population totals are denoted

etc. Actually, the definitions of the variables
above are somewhat idealized. In practice,
the total turnover of an individual store is
unknown, and the number of employees in
the store is used instead (assuming the turn-
over to be roughly proportional to the num-
ber of employees).

The consumer price index, I, using current
prices, is defined in this study as

I = 2 aiY,-/X,»,

i=1

where a; is the turnover of item i for all stores
in the population. The consumer price index,
I, using list prices is similarly defined as

I=

Il Mg

aYi /X'
i=1

The index ratio R = (I/1')100 will be esti-
mated by

R =(i/i") 100 =

P . . p PN
i=1 i=1

where 17, and so on denote Horvitz-Thomp-
son (1952) estimators of the corresponding
population totals Y;, etc. Our problem is to
estimate V(Ié), the sampling variance of R.
The sampling design considered is stratified
sampling with PPS sampling without replace-
ment in each stratum. This gives
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. H
Y, =2 2 yulm,
h=lk£sh

where s, is the sample of stores from stratum
h, H is the number of strata, and =, is the
inclusion probability of store k.

We can summarize our view of the infer-
ence problem as follows. We consider a fixed
population of stores and a fixed set of com-
modities. The index ratio R is a population
characteristic tied to this population. The sta-
tistic R is an estimator of R, based on data
from a probability sample of stores, and
V(R) is the sampling variance of R in repeat-
ed sampling of stores from the same popula-
tion by the same sampling design. The prob-
lem is to estimate V(Ié) using data from a
single sample.

3. Four Methods of Variance Estimation

Since Risa complex statistic (a ratio between
two weighted sums of ratios), it is not possi-
ble to estimate V(Ié) using traditional meth-
ods of unbiased variance estimation. Some
approximate variance estimation technique
must be employed. We considered the follow-
ing four methods. Although the theoretical
support is not very strong, they seem to be
used frequently in survey practice.

The first method uses a first-order Taylor
approximation technique, as described by
Tepping (1968) and Woodruff (1971), in
combination with a variance estimation for-
mula adapted to without replacement sam-
pling, which gives a variance estimator denot-
ed Vﬂ- Considering R as a function of the
Horvitz-Thompson estimators (}A’i etc.),
expanding around their expected values (Y;
etc.) and changing the order of summation,
as suggested by Woodruff (1971), we arrive
at the approximation
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n p ”
R=R+100(Z a Y,/ X)) D. (3.1)
i=1
Where
. H
D=3 X dk/nlo
h=1 kesh

is the Horvitz-Thompson estimator of the
population total

N
D=% dk’
k=1

and
p
d,=Z a [Xfl {yii— (Yi/ X3)xi}
i=1

-R X {yi— (Y X)xia}]-

Assuming that R behaves approximately like
the random variable (3.1), we get the follow-
ing approximation to the variance of R

) p .
V(R) = 1002 (= a; Y/ X)) 2 V(D).
, i=1

This is estimated, using the variance estima-
tion formula given by Yates and Grundy
(1953) and Sen (1953), and inserting estimat-
ed values for unknown population quanti-
ties, by

N p A oA
VTl = 1002 ( 2 a; Y:/X:)_2
i=1

fsx &M, )( 2 (32
X —_— D) (—-— )
h=1 kesy, T ) )
les
k<t

where
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P A
di =2 a;[ X7 {yu— (Vi X)xi}

=z
~RX™ {yhi— (Vi1 X)xia} ]-

The second method uses the same Taylor
approximation as above, but with a simpli-
fied variance estimation formula that would
have been appropriate if the sample had been
drawn by PPS sampling with replacement in
each stratum. To obtain this variance estima-
tor, denoted Vp,, the expression (3.1) is re-
written as

. p H
RZR+100(ZqY}/X)"Z a, ,
i=1 h=1 h

and
U, = n,,dk/nk , for kSSh.

Proceeding as if 7, were a Hansen-Hurwitz
estimator (associated with Hansen and Hur-
witz (1943)) with p, = m;/n,, for each kes, and
inserting estimated values for unknown
population quantities, we arrive at the esti-
mation formula

. P .
Vo, = 1002 (2 a; Y}/ X))
i=1

H
XX = (up-ur )P n, (1), 3.3)
h=1 kes), h
where
d’; =2 uz/nh,
kESh
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and
uy = n;, d}/m, , for each kes,.

The third method uses repeated random
grouping, as suggested by Norlén and Waller
(1979). This involves a series of independent
repetitions of a random groups procedure
(see, for instance, Hansen et al. (1953)). The
rpsulting variance estimator is denoted
Vrra-

The random grouping is as follows. The
sample of stores is divided into G non-over-
lapping groups so that each group contains
stores from all strata in (roughly) the same
proportions as in the full sample. For each
group g (g = 1,..., G), an estimate Iég of Ris
calculated analogously to R but using data
only frqm thatA particular group. We thus

obtain R, ,..., Rg from which we then com-
pute
- G A
R=Z R,/G,
g=1
and

G . .
vi= = (R,— R)2/G(G-1) .
g=

We consider V* as a first approximate esti-
mator of V(Ié) (although, properly speaking,
it should be considered an estimator of V(R)).

The random grouping procedure just de-
scribed is then independently repeated M
times. We thus obtain the sequences Rl, .
RM and \7’{‘,..., Vf,, WlAI,IiCh are then averaged

to produce IéRRG = ZIR,,,/ M, which is an
m=

estimator of R (not identical to Ié), and

M
VRRG = Z_IV:,/M, (34)

m



Andersson, Forsman, and Wretman: Estimating the Variance of a Complex Statistic

which is the final variance estimator obtained
by this repeated random groups procedure.
The idea behind the repetition is, of course,
that a presumed lack of stability of V* will be
remedied by taking the average of a number
of independent replicates.

The fourth method is based on a jackknife
procedure, and gives the variance estimator
VJK. One store at a time is deleted from the
sample. Each time an estimate R? of R is cal-
culated, analogous to Ié, but based only on
data from the remaining n—1 stores
(j=1,..., n). A jackknife estimator of R is
then

RJK =n ﬁ - (n—l) é() 5

n
where RO = = RO /n.
j=1

The variance estimator produced by the
usual jackknife formula is

n
Vi = (n-1) £ (R?-RO)?/n,
j=1

(3.5)
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which we consider as an approximate estima-
tor of V(R).

4. The Design of the Monte Carlo Study

A Monte Carlo study was designed to il-
lustrate the performance of the four variance
estimators VT1, Vn, VRRG and V,K described
in Section 3. We had at our disposal a minia-
ture population of 99 stores (53 department
stores and 46 other stores). For these stores,
both current and list prices had been collect-
ed with respect to a set of 159 commodities
(food and alcoholic beverages) in January
1982 (¢t = 0), and March 1982 (¢ = 1). Not all
159 commodities were found in each store,
though, mainly because the small stores did
not keep as wide a variety of goods as the larg-
er ones. A few commodities were found in
less than five stores. The commodities were
divided into 10 groups. Table 1 shows the
number of commodities in each group as well
as the number of these commodities that
were actually found in the stores.

Table 1. Commodity Groups and Number of Commodities in the Stores in the Population

Commod-  Type of goods Total number Number of commod-
ity of commodities ities actually
group in the group, found. Average
number by definition per store

1 Flour, grain and bread 20 16.7

2 Meat 17 7.8

3 Fish and canned fish 16 141

4 Milk, cheese and eggs 25 14.1

5 Household fats 14 11.4

6 Roots, vegetables and fruits 21 14.4

7 Coffee, tea and cocoa 12 8.8

8 Other foods 17 10.1

9 Soft drinks and light beer 9 7.3
10 Alcoholic beverages 8 4.2
All groups 159 108.9
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From the population of 99 stores, 1000 inde-
pendent samples of 32 stores were drawn by
stratified sampling using PPS sampling with-
out replacement in each stratum®. The inclu-
sion probabilities were proportional to the
number of employees in the store.

The stratum sizes and the number of sam-
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pled stores from each stratum are given in
Table 2, where the corresponding data for
the regular consumer price index survey are
also given. (The regular survey uses five
strata of stores, two of which correspond to
the two strata used in the Monte Carlo
study.)

Table 2. Stratum Size and Number of Sampled Stores

Number of stores
Stratum Monte Carlo study Regular survey
Population Sample Population Sample
1 Department stores 53 10 192 10
2 Otbher stores 46 22 1511 22

The sample sizes for the two strata in the
Monte Carlo study are the same as in the
regular survey. The strata themselves, how-
ever, are much smaller, and the relation
between stratum sizes is not the same. These
facts restrict the possibility to generalize the
findings of the Monte Carlo study to aregular
survey.

Each sample was obtained by a sequential
sampling scheme suggested by Sunter (1977),
such that:

i)
i)

the sample size, n, is fixed;
each unit in the population has an inclu-
sion probability proportional to its size

measure zy, that is, 7 = n z,/Z (where
N

Z = 2 z,) except for very large units

(zx > Z/n) which are selected with
probability 1, and very small units,
which are assigned a revised common

3 The simulations were carried out on an IBM 360/
370. We used the multiplicative-congruential ran-
dom number algorithm proposed by Lehmer
(1951). The algorithm uses modulus 2 > with multi-
plier 7° recommended by Lewis et al. (1969) for the
IBM 360/370.

size measure, equal to their average
size, and hence become selected with
equal probability;

iii) ;> 0for all kand /;

iv) st — my = 0 for all k and /, ensuring
nonnegative variance estimates.

Before sample selection, the stores in the
sampling frame were ordered by decreasing
size within each stratum.

In the first stratum (with 53 stores), the 15
smallest stores were assigned equal prob-
ability, according to Sunter’s proposal. The
inclusion probabilities in this stratum varied
between 0.067 and 0.947.

In the second stratum (with 46 stores), the
size distribution was rather skew. The six
largest stores were selected with probability
1. The inclusion probabilities of the remain-
ing 40 stores varied between 0.285 and 0.895,
with the 29 smallest stores being assigned
equal probability.

When the repeated random groups meth-
od was used, each sample (of 32 stores) was
randomly divided into four groups of equal
size (8 stores). These four groups were com-
posed of stores from the two strata as shown
in Table 3.
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Table 3. Size of Subsamples (= Random Groups) with the Random Grouping Technique

Stratum Subsample no.

1 5 3 2 Total
1 3 3 2 2 10
2 5 5 6 6 22
Total 8 8 8 8 32

To study the effect of the number of repeti-
tions we tried both 10 and 20 repetitions. For
one of the commodity groups (group 3), we
also tried division of the sample into three
groups and five groups, in order to illustrate
the effect of group size.

For each of the 1 000 samples, and for each
group of goods separately, we calculated:

— Estimates of R, given by ﬁ, IQRRG, and R K-

— Estimated variances: Vi, V1, Vrrg, and
VJK.

— Confidence intervals: R +
T1, T2, RRG, JK).

1.96 VI (j =

Summary statistics for the 1 000 samples
were then calculated, the most important
ones being:

— Bias and variance of the 1 000 observed
values of R.

— Relative bias and relative mean square
error of the 1 000 observed values of VT1,
VTz, VRRG, and VJK

— Coverage rate for each series of 1 000.

confidence intervals.

These summary statistics were calculated
as follows. For a particular group of goods,
let the 1 000 realized values of the estimator
R be denoted

Rl’ R2"'~7 Rl 000-

The variance, denoted V, of the observed R-

values was computed as:

1 1 000
V= 1 000 151 (R,—R)
- 1000
whereR= X R,/1000.
I=1

We consider this variance an approxima-
tion of the true variance, V(Ié), and it will
serve as a target value for the different types
of variance estimators under study.

Let

Vl» V29'-~’ Vl 000 »

be the 1 000 realized values of one particular
varlance estimator V (which can be VTI, Vn,
VRR(;, or VJK). Then, the observed relative
bias of V is defined as

1 000

1 A
Too o, V=YV

and the observed relative MSE of V as

;10
_V\2/ V2
To0 2, (V= V)2 V2.,

The observed coverage rate of confidence
intervals is defined as the percentage of the
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1 000 intervals

R +£1.96V,2(I=1,...,1000),

which actually cover the true value R.

5. Results of the Monte Carlo Study

We first look at some results concerning the
estimation of R. The true values of R for the
ten groups of commodities are given in Table
4, together with the observed bias of the
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1 000 reahzatlons of the estlmators R,
RRRGQO), Reraeo, and Ry, where Rrroo)
and Rgrgrg(o) denote RRG estimators based
on 10 and 20 repetitions. The observed bias is
defined as the difference between the mean
of the 1 000 obtained estimates and the true
value of R. Throughout, we consider R the
principal estimator of R. The biases of the
RRG and JK estimators are shown only for
the sake of comparison, and because we
obtained their values automatically as a by-
product of the variance estimation process.

Table 4. Population Values of R, and Observed Bias of R, IQRRG(IO), IéRRG(ZO)y and IQJK (Strati-

fied Sampling; n=32; 1 000 Replicates)

Group Population Observed bias of

of value . . . A

goods R R Rgrro(10) Rgra(0) Ry
1 100.26 .02 .10 .10 -.01
2 99.11 .01 27 .28 -.08
3 98.53 .25 71 .7 -.12
4 101.07 .00 -.06 -.06 .05
5 100.54 -.04 12 12 -.11
6 100.35 .08 17 17 .00
7 101.13 -.05 -.13 -.13 .04
8 99.91 -.23 .05 .05 -.34
9 99.49 .00 .03 .03 .00

10 100.22 -.14 -.03 -.03 -.04

With a few exceptions, the observed bias is
smaller than 0.3 per cent of the population
value. As for the RRG procedure, the bias
in Table 4 is almost identical for 10 and 20
repetitions. Note that if all groups are of
exactly equal size (which is not possible with
the actual sample sizes), Ii’RRG will be identi-
cal with R.

Group 4 is defined in a slightly different
way in this study than in the regular survey.
Using the original definition, we obtained
surprising results for group 4. A closer
examination revealed that these incongru-

ities were due to a single commodity, appear-
ing in only one store in the entire population.
This store happened to have a high inclusion
probability, about 0.4. The commodity had a
relatively large weight g; (see formula (2.1))
and a large ratio (Y/X)/(Y’/X’) =1.2. We
then decided to redefine group 4 by exclud-
ing this rare commodity. The ensuing results
were much more reasonable.

Fig. 1 below shows the observed sampling
distribution of the 1 000 reahzed values; of the
estimators R RRRG(IO), RRRG(ZO), and R,K for
commodity group 3.
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Fig. 1. Observed Sampling Distribution of Ii, ﬁng(lo), kRRG(zO), andR 1k in Commodity Group
3 (Stratified Sampling; n=32; 1 000 Replicates)
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Table 5. Observed Variances of R, and Observed Relative Bias of Variance Estimates V11, Vi,
VRRG(IO)’ VRRG(20)’ and V,K (Stratified Sampling; n=32; 1 000 Replicates)

Group Observed Observed relative bias of variance estimates

of variance . . . ) .

goods Vv Vi Vr Vrroao)  Vrreeo) Vi
1 13 -.06 .26 .52 51 .36
2 1.67 -22 .04 .46 .45 .50
3 2.38 -.63 -.47 =32 -32 .87
4 11 -.15 .17 .58 .57 .96
5 .79 -.05 27 .50 .51 .37
6 .64 -.13 .18 31 .30 .50
7 .43 -.43 -.18 .05 .05 .61
8 il -.59 -.42 -.07 -.08 .90
9 1.80 -.02 13 .20 .19 24

10 42 -.33 -.13 .26 .26 .60

Each sampling distribution is fairly symmet-
ric. The jackknife procedure gives the most
spread-out distribution, while that of the
RRG is the most concentrated one. We
notlce that the sampling distributions of
RRRG(IO) and RRRg(zo) are similar, which again
indicates that using our data, there is no need
for more than ten repetitions of the grouping
procedure. The sampling distributions for
the other groups of goods are not shown
here, but the conclusions from Fig. 1 are
valid for these other groups as well.

We now turn to the variance estimation
results. The observed relative bias of the vari-
ance estimators are shown in Table 5.

Suppose that we have decided to estimate R
by R, and that we consider Vj (j=T1, T2,
RRG(10), RRG(20), JK) altematlve estima-
tors of the true variance of R, V(R) which
approximately equals V. Which of the suggest-
ed variance estimators is the best for this pur-

pose? Table 5 indicates that the T2 estimator
might be preferred because of its lower bias.
The T1 method leads to downwardly biased
and the JK to upwardly biased variance esti-
mates. The RRG procedure overestimates
the variance in 8 of the 10 groups of goods.
We note that the number of repetitions in the
RRG procedure (10 and 20) does not affect
the bias of the variance estimate.

For one of the commodity groups, group 3,
we also present the observed sampling distri-
butzon of the 1 000 observed values of VTl,
V2, VrG10)s Viro(0) and Vi in Fig. 2.

The observed sampling distributions of the
variance estimates are all rather skew. The
variance estimates produced by the jackknife
procedure are seen to be much more widely
dispersed than those produced by the other
procedures.

Table 6 shows the relative MSE of the vari-
ance estimates \A/Tl, \A/TZ’ \A/RRG(IO)’,\A/RRG(ZO),
and \AIJK.
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Fig. 2. Observed Sampling Distribution of Variance Estimates VTI, \A’n, \A/RRG(IO)a VRRG(ZO): and
Vix in Commodity Group 3 (Stratified Sampling; n=32; 1 000 Replicates)
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Table 6. Obseryed Relative Mean Square Error (MSE) of Variance Estimates VTI, \712, \A,RRG(IO),
Vrroo), and Vi (Stratified Sampling; n=32; 1 000 Replicates)

Group Observed relative MSE of variance estimates

of R R R . R

goods V1 V, VRRG(IO) VRrraG0) Vik
1 .23 .46 .93 .86 .60
2 .28 .38 .83 .73 1.30
3 .46 .36 .26 25 3.47
4 .28 .49 .90 .79 2.58
5 .34 .67 1.17 1.15 .82
6 .16 .24 .37 .32 .84
7 .34 31 31 27 3.11
8 .46 .39 23 .20 2.85
9 4.90 5.84 6.43 6.03 7.32

10 .33 .37 .65 58 2.09

On the average for all groups of goods, the
Taylor linearization methods obviously lead
to estimates with the smallest relative MSE
of the methods studied, while the JK method
leads to the largest. The RRG estimates have
the largest relative MSE in some groups and
the smallest in other groups. Here, it is
interesting to see that 20 repetitions give a
slightly smaller MSE than 10 repetitions.

This difference is almost entirely due to a dif-
fprence in the variances of \A]RRG(IO) and
VRRG(20)-

Table 7 shows the observed coverage rate
of 1 000 confidence intervals of type
R + 1.96 V"2 for each variance estimation
procedure. (Note that all confidence inter-
vals are centered on the same point estimate,
R))

Table 7. Observed Coverage Rate for 1 000 Confidence Intervals of Type R + 1.96 VI (j = T1,
T2, RRG(20), JK) (Stratified Sampling; n=32; 1 000 Replicates)

Group Per cent of 1 000 confidence intervals covering R, when V is estimated by
of R R R .
goods Vi Vr Vrra(0) Vik
1 90.9 95.4 97.0 96.2
2 88.2 94.9 98.4 97.2
3 65.1 73.4 83.8 92.4
4 88.5 94.3 96.1 97.9
5 91.1 96.0 97.3 96.9
6 90.4 94.6 95.9 96.5
7 78.4 86.6 93.2 91.6
8 71.9 82.7 92.7 98.7
9 78.6 80.1 80.2 80.4
10 79.5 84.4 91.9 91.9
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For intervals based on \A’n and Vn, the
coverage rates throughout tend to be lower
than the desired 95% . For intervals based on
VRRG and VJK, the coverage rates are lower
than 95% in about half of the commodity
groups, and higher in the other half.

For the RRG procedure, the question
arose about how the behavior of the estima-
tors was affected by the number of random
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groups. Hence, a special study was carried
out using only data for commodity group 3.
Each sample was now divided alternatively
into three and five random groups, and esti-
mates were calculated by the same proce-
dures as before. The results are shown in
Table 8, with the results already obtained in
the main study, based on four random
groups.

Table 8. Comparison of Results for Varying Number of Random Groups with the RRG(20)

Procedure in Commodity Group 3

Number Observed Observed Observed Observed
of bias of relative relative coverage
random bias of MSE of rate (%)
groups variance variance of confi-

estimate estimate dencein-

terval
ﬁRRG(ZO) \A]RRG(ZO) VRRG(zo) Ié +1.96 \A’ }1%0(20)

3 .62 -.16 .28 86.8
4 il -.32 .25 83.8
5 77 -41 .28 80.7

The observed bias of the 1 000 observed
values of IéRRG is seen to increase as the num-
ber of random groups increases. At the same
time, the observed relative bias of the 1 000
variance estimates \AIRRG(ZO) is getting more
and more negative, while the relative MSE
remains roughly the same. The coverage rate
of the confidence intervals is decreasing. This
also holds true for RRG(10), although
results for that case are not given here. Thus,
with commodity group 3 data, it seems that
the use of three random groups would yield
somewhat better results than the use of four
or five groups. Of course, this conclusion
cannot be generalized to other commodity
groups.

6. Discussion

We have in this paper studied four methods
of estimating the variance of the estimator R.
As is always the case in this type of study, the
conditions are unique and the findings can-
not be generalized to the set of all survey
designs, estimators, characteristics, and
populations. Our study is, among other
things, characterized by a small sample size
and by an incomplete range of commodities
in many stores. Despite these limitations, our
findings show some similarities with the
results of other Monte Carlo comparisons
between variance estimation techniques con-
cerning quite different estimators, popula-
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tions, and sample sizes, as we shall see below.

For the discussion of general aspects on the
variance estimation techniques, we shall
focus on the accuracy of the variance esti-
mates. Administrative considerations are less
relevant in this case since the sample size is
small and the processing costs are limited. In
a large scale survey, however, the JK and the
RRG methods would be expensive since they
are based on repeated computations and the
cost considerations would influence the
choice of variance estimation method.

We have compared the variance estimates
in terms of bias, mean square error, and con-
fidence interval coverage probabilities.

The basic assumption for the Taylor linear-
ization method is that terms beyond the
linear one in the Taylor series expansion
make negligible contribution to the variance
of the estimator. For small sample sizes,
however, this may not be the case, which can
explain why the T1 method gave generally
large underestimates of the actual variance in
our study. Similar results have been reported
from other Monte Carlo studies. In a study
concerning the variance of the standard
regression estimator of the finite population
mean in six small populations and —actually -
with sample size n=32, Deng and Wu (1984)
found that the Taylor linearization estima-
tors tended to be downward biased. Mulry
and Wolter (1981) found in a study concern-
ing correlation coefficients on consumer
expenditure data for sample sizes n=60,
120, and 480 also a negative bias for Taylor
linearization estimators, which became
smaller as n increased.

That the T2 method tended to give greater
variance estimates (on the average) than the
T1 method seems to be in line with the theo-
retical results by Durbin (1953), that, under
certain conditions, a variance estimation
formula appropriate under sampling with
replacement overestimates the variance if
applied to sampling without replacement.
Our conditions are, however, not exactly the
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same as those assumed by Durbin.

The overestimation of the Jackknife vari-
ance estimator that we found was also con-
firmed by the Deng and Wu and the Mulry
and Wolter studies.

The magnitude of the bias of the RRG
method seems to be related to the number of
random groups. In Table 8, we saw that the
bias increased when the number of random
groups increased in commodity group 3. Itis
interesting to note that Wolter (1985) states
that the same holds for the “Random Group”
method (RG), in which the grouping is con-
ducted only once (in our notation we could
call the method RRG (1)). As the RG and
RRG methods are closely related, it is cer-
tainly not surprising that they show similar
properties.

Rust (1985) also discusses the RG method
and explains the increase of the bias by “the
larger the number of groups, the greater the
departure from true replication.” (By “true
replication,” Rust means the use of indepen-
dent identically designed subsamples.)

In terms of the mean square error, the

Taylor linearization methods generally per-
formed best, while the Jackknife method
gave variance estimates with much higher
values. Similar conclusions were drawn from
the Deng and Wu and the Mulry and Wolter
data. In the latter study, the RG method had
a mean square error relatively close to that of
the Taylor linearization method, which in
general holds also for the RRG and T1/T2
methods in our study.
From Table 7, we concluded that the confi-
dence interval coverage rates were too low for
the Taylor linearization methods while the
coverage rates for the RRG and JK methods
generally vary around 95%. Similar results
for the Taylor and JK methods were found by
Deng and Wu. Mulry and Wolter likewise
found higher rates for the JK method. In
their study, however, the JK rates were still
too low.

If we consider these aspects of accuracy,
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the obvious conclusion is that the RRG meth-
od performed best. It is still somewhat un-
clear how this method should be designed
optimally with respect to the number of
groups (G) and the number of repetitions. If
G increases, the bias increases, while if G
decreases, the variance of the variance esti-
mates increases. The confidence interval
coverage rates also depend on G. Obviously,
from Table 8, the confidence rates decrease
as G increases in commodity group 3 (which
can be explained by the increase in bias) and
thus G=3 produces better coverage rates.
For commodity groups 1, 2, and 5, on the
other hand, it is likely that G=5 would be
better than G=4, which according to Table 7
yields rates in these groups that are too high.
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