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st: A general set-up for inference 
urvey data that covers the estimation 

of totals and distribution functions is 
provided, using auxiliary information at 
the estimation stage. 
sampling and model-assisted approaches 
are studied. A condlt~onai pro 
sarnpling approach that provides co 
ally valid repeated sampling inferences, 

In sample surveys, su plementary population 
infomation is often used at the estimation 
stage to increase the precision of estimators 
of a population total. Tx particular, custom- 
ary ratio and regression es~imators make 
use of known popularmn totals of auxhary 
vanables Recenll>, several estimators of a 
populdtion dlstnbutlon functlon have also 
been proposed, usmg auxlllary inf'omat~on 
at the estimation stage The mam purpose 
of this article is to provide a general set-up 
that covers the estimation of totals and 
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under model misspecifications, is also con- 
sidered. Finally, asymptotically efficient 
calibration estimators that saticfy certain 
consistency constraints are proposed. 

s: Calibration estimators; con- 
ditional probability sampling approach; 
model-assisted approach. 

distribution functions, utilizing auxiliary 
information at the estimation stage. 

It is often desirable to revise the basic 
survey weights to satisfy certain consis- 
tency constraints. Jn particular, the sample 
sum of a we~ghted auxiliary variable should 
equal the known population total for that 
auxiliary variable. Deville and Sarndal 
(1992) named such revised weights as 
calibration weights and the resulting 
estiaators of a total as calibration estima- 
tors. They proposed a general method of 
deriving calibration estimators by choosing 
a distance measure between the calibration 
weights and the basic weights and then 
minimizing this distance subject to speci- 
fied consistency constraints, called the 
callbration equations. They have also 
shown that a "chi-square distance" leads 
to the generalized regression estimator 
(Sarndal 1980; Bethlehem and Keller 



1987). In rhis article, we provide alternative 
calibration estimators that are asympto- 
tically efficient, 

The following theoretical framework is 
often assumed in estimating population 
parameters, A survey population i: consists 
of N distinct elements identified through the 
labels j = 1,  . . . , N .  The character%tic of 
interest j) associated with element j is exactly 
known by observing the element j ,  
is a subset, s,  of U and the associated 
y-values, Le,, . ( ( i ,  y i ) ,  i E s ) ,  selected accord- 
ing to a specified sampling desi 
assigns a known probability p(s )  
that p(s)  > 0 for all s E , the set of possible 

We consider general parameters of 
interest 

(2.1) 
j~ C 

for a specified function h The cholce 
h ~ y )  = :,. gives the population total 
and rhe populat~on mean l? = F, whale 
the cholce h ( y )  = A(t - yj wrth A(n) = 1 
when a 3 0 and A J u )  = 0 otherwise glws 
the dlstribut~on functmn 

for each 1. 

The problem is to estimate N or I? by 
observing a sample selected according to 
the specified design and also using available 

ata. We assume that supplemen- 
tary information x j  = ( x j l ,  . . . x j p )  ' asso- 
ciated with population elements j is 
available at the estimation stage. The case 
where only the population tota! X is avail- 
able is also considered. 

There are essentially three different 
approaches to inference on or Pi: 
(i) design-based approach, also called 

probability sampling approach; (ii) model- 
dependent approach, also called prediction 
approach; (iii) hybrid approach, called 
model-assisted approach. An advantage of 
:he model-assisted approach is thax it pro- 
vides valid inferences xnder an assumed 
modei and at the same rime protects 
against modei rnisspecifications in the 
sense of providing valid repeated sampiing 
inferences. In rhis paper, we will focus on 
ji) and (iii), but also consider a conditional 
probability sampli approach that pro- 
vides conditionally lid repeated sampling 
inferences, under model misspecifications, 
given suitable ancillary statistics sgch as 
design-unbiased estimators, 3, of :he 
known totals X ,  

Probability sampling approach refers to 
repeated sampling from rhe survey popula- 
tion U involving all samples s  E S and asso- 

ilities p( s ) .  It provides valid 
spective of the populaf on ;.- 

We assume that the inclusion probabilities 
7ri = zjs,iEj) p(s j ,  i = 1; . . . . N are positive, 
whch permits unbiased and consistent 
estimation of N and . W c  also assume that 
 he joint inclusion probabilities T~~ = 

C r s : i j E r l p ( ~ ) ,  i < j = 1 , .  . . ; N ,  are positive, 
which permits unbiased and consistent 
estimation of the variance of k and k. 

A genera! class of estimators of W is given 
by 

where the basic we~ghcs d,(s)  can depend both 
on s and i(i E s )  and satlsfy the desgn- 
unbiasedness conditnon. xi, ',,I p(s)d,  (s) = 

I for z = 1 .  .A' The chorce h ( y ) = y  m 



(2 3) gwes Godarnbe's (i955) cldss of esil- 
inators, p, of a total Y The well-known 

stimam is a Worvrtz-Thompson (53-T) e- 
spec~al case of (2 3) viirh dl (s) = 7,'. The 

urthy's estlmator and Rao- 
Hartley-Cochran's estmator (Cochran, 
1977, ch 9A) also belong to the general 
class (2 3) 

If the variance of p, V L  p), becomes zero 
when ,I, ~x lc, for some known non-zero con- 
stants I+,,  then a nonnegative unblased 
quadratic estlmator of V (  
of the form (Rao 1979) 

u(H)  = - di,(s)\t I ~ % , ( z i  - z j ) l  

I <J 
l J E S  

( 2  4) 

where z ,  = h ( y , ) / w ,  an the we~ghts d,, ( s )  
can depend both on and (I ,  j )  E s, and 

b~ased~es s  conch  
en-Yates-Grundy 

estimator of variance of H-T esl~mator 1s a 
special case of (2.4) w ~ i h  IV,  = 51, and 
dl , (§)  = (7 i l j -  T , T , ) / ( " T , ~ T , T ~ ) ,  for any fixed 
sample size, n, design It rs ~nterestmg to 
note rhat the onginal H-T estimator of 
varnance does not belong to class ( 2  41, 
although rt 1s valid both for fixed and notl- 
fixed sample size daslgns For the general 
estmator (2 31, a H-T t jpe unb~ased 
varlance estlmator 1s gsven by 

dl ( s )  (4 ( 5 )  - 1.) 1v;z: 

where a i j  = ~ j r : i j E s l p ( s ) ~ ( ~ j d j ( ~ .  if di(s) 
= T;', then v*($ reduces to the H-T 
variance estimator. The H-T variance 
estimator is seldom used in practice since 
it can take negative values often and can 
lead to a large coefficient of variation, 

Turning to I?. a genera! dass of estimators 
of di is given by 

Note that if h ( y i )  = A(f - y i )  in (2.61, then 
fi retains the properties of a distribution 
function, provided all the basic weights, 
di ( s j ,  are nonnegati~e, A consistent estirna- 
tor of variance of I? is obtained from (2.4) 
by replacing h ( y i )  by ( h ( y i )  - I ? ~ / N .  

The estimators (2.3) and (2.6) do not 
utilize the auxiliary information x j  ( j  = 
1, . . . , N )  at the estimation stage. A ratio 

in the case of a single x- 
variable, can be obtained as 

where 

and g(x l )  1s pos~tnely related to h( j , )  such 
that fir reduces to the known total 6 when 
33 3~ xi for all j E C, and hence the variance 
becomes zero rn the latter case Vole that 14t 
1s a cahbratlon estimator with respect to the 
auxnl~al y variable g(u)  If the population 
size, AT, rs known, a raho estimator of l?? IS 

glven by 

In the case of the total Y ,  we choose 

g ( x j )  = xj  and reduces to 

X, is the known total of the 
5 's .  The ratio estimator Y~ leads to signifi- 
cant reduction in the variance relative to 
the unbiased estimator ?, when ?; is 
positiwly related to 3. In the case of the 
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distribution function F(r ) ,  we can choose 
g(xj) = A(t - &xi), provided the popula- 
tion total of the g(9) 's  is known. The result- 
ing estimator fir = Pr(t) ensures the above 
desirable property of zero variance when 
j? x xj. However, in general the correlation 
between A(t - yj) and A(t  - Rxj) is likely 
to be weaker than the correiation between 
f i  and xjzcj, where R = Y / X .  As a result, the 
gains in efficiency of Fr( t )  over the estima- 
tor fi = ~ ( t )  are likely to be smaller than 
those achieved by the ratio estimator 
over Y .  

A regression estimator of H can also be 
obtained as 

greg = fi + &(G - G) (2.10) 

where 

B = cov(Ei, G)/v(6) (2.11) 

and cov(2.  G )  and u ( 6 )  are obtained from 
(2.4) by replacing (zi - zj12 with (zi - zj) 
(ui - uj) and (ui - uj)2 respectively, where 

imilarly, a regression esti- 
mator of is given by 

Areg = fireg/N (2.12) 

provided N is known. In the case of F ( t )  
with g(xj) = A(t - tixj), the regression 
estimator gre, = Freg(t) retains the above 
desirable property of zero variance when 
yj 'x xi, but it also suffers from the same 
drawback as the ratio estimator Pr(f). The 
regression estimator Hreg is computationally 
more cumbersome than the ratio estimator 
k, since it involves the evaluation of 
c o v ( ~ , ~ )  and G ( G ) .  However, the latter 
evaluation can be simplified for some 
commonly used designs (see Section 5). The 
regression estimator H,,, can be readily 
extended to multiple auxibary variables. 

3. Model-Assiste 

Probability sampling approach has been 

criticized on the grounds that the associated 
inferences, althou h assumption-free, refer 
to repeated sampling instead of just the 
particular sample, s, that has been drawn. 
Prediction approach, on the other hand, 
assumes that the population y-values are 
random and obey a modei, and the modei 
distribution leads to valid inferences refer- 
ring to the particular s that has been 
drawn, irrespective of the sample design 
p(s), Prediction inferences, in large samples, 
however, are very sensitive to model mis- 

ecificalions, as illustrated 
adow, and Tepping (1983). 

only design-consistent estimators and 
variance estimators that are also model- 
unbiased (at least asymptotically) under 
an assumed model, the model-assisted 
approach attempts to provide valid condi- 
tional inferences under the assumed model 
and at the same time protects against 
model misspecifications in the sense of 
providing valid design-based inferences 
irrespective of the population y-values, 

Although model-assisted estimators of 
a total, Y, can be obtained under general 
linear (or nonlinear) regression models, we 
will confine ourselves here, for simplicity, 
to a single x-variable and the following 
often-used simple linear regression model 

where Em denotes the model expectation 

and 3 is an unknown parameter, 11 is 
further assumed that the y,'s are mdepen- 

2 
dent with model variance Vm(yJ) = cr pc, 
and 02(> 0) is an unknown parameter and 
Vm denotes the model variance. We assume 
that the population model (3.1) also holds 
for the sample, i.e., there is no sample selec- 
tion bias (see Krieger and Pfeffermann 
(1992) for an illuminating discussion of the 
effects of sample selection). An estimator 
of Y ,  say Y ,  is model-unbiased for Y.' 
~f E,,(? - Y) = 0 for every s E S .  Under 
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model (3.  l), the best linear unbiased 
estimator of Y, in the sense of minimizing 
the model variance V, ( p - Y ) ,  is the simple 
ratio estimator ( y /? )X  for a n y p ( s ) ,  where 7 
and 3 are the sample means (Brewer 1963; 
Royal1 1970). Since this estimator does not 
depend on the survey weights di(s ) ,  it is 
generally design-inconsistent. 

A model-assisted estimator of Y, under 
model (3.  I),  is given by 

which is the same as the ratio estimator 
(2.9). The ratio estimator (3.2) can be 
motivated along the lines of Sarndal 
(1980), noting that k x j  is a predictor of yj  
under model (3.1) and that the total of pre- 
diction errors ej = yj - Axj is estimated by 
Ci,sdi(s)ei. It can also be written as 

I E S  

where the revised weight dl? ( s )  is the product 
of the basic weight di(s)  and the so-called 
g-weight, gi(s )  = X/Y, which converges in 
probability to 1. 

A consistent estimator of variance of ynIa 
is either given by the S-Y-C type variance 
estimator (2.4) or by the H-T type variance 
estimator (2.5) with zi replaced by 
( y i  - I?xi) /w,  = ei/wi, where I? is a model- 
unbiased estimator of 3. However, it 
is in general not model-unbiased (even 
approximately) for the model variance 
I.',(%, - Y ) ,  In the case of the H-T esti- 
mator of Y with d i ( s )  = n i l ,  Sarndal, 
Swensson, and Wretman (1989) proposed 
a model-assisted variance estimator that is 
both approximately model unbiased (when 
n / N  is of the order ~ ( n - " ~ )  or less) and 
design-consistent, This is simply obtained 
by changing yi to gi(s)ei  = ( x / x )  
( y i  - k c i )  in the H-T variance estimator 

(also see Hidiroglou, Fuller, and Hickman 
1976). 

We now extend the Sarndal et a1 (1989) 
result to the ratio estimator (3.3) with 
general weights d,(s). We show that the 
H-T type variance estimator (2.5) with 
w,z, = y ,  replaced by g,(s)e,  is both model- 
unbiased (approximately) and design- 
consistent. The latter property follows from 
the fact that g,(s)  converges in probability 
to 1. (We assume that the design is such 
that v X ( P )  is design-consistent.) Under 
model (3.1), it IS straightforward to show 
that 

Also, the proposed variance estimator, 
6 ( y m a )  say, is approximately equal to (2.5)  
with wizi changed to gi(s)ei where 
.ci = yi - @xi are independent errors with 

2 2 mean zero and variance ai = a x i .  Hence, 
its model expectation is given by 

Comparing (3.4) and (3.5), we note that the 
leading terms are identical. Assuming that 
n / N  is of the order ~ ( n - ' I 2 )  or less, the 
lower order terms are also approximately 
equal by noting that 

and that g,(s)  converges to 1 in probability. 
Unfortunately, the above simple recipe of 
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getring a variance estimator that is both 
design-consistent and approfimatelj~ model- 
unbiased does not seem to work when 
applied to the more useful S-Y-C type 
variance estimator (2.4). This is also true 
in the special case of H-T weights 
di(s)  = T;', unless certain restrictions are 
placed on the joint probabilities, T~~ (Note 
that (2.4) reduces to the S-Y-G variance 
estimator in this case.) Nevertheless, we 
recommend the variance estimator (2.4) 
with W,Z,  = yr replaced by g,(s)e, since it 
remains design-consistent and is expected 
to be more stable than the corresponding 
H-T type variance estimator, l;(Fe,,). 
over, its model bias is likely ro be smaller 
than that of the customary variance estima- 
tor (2.4) with y, replaced by e , ,  although it is 
not approximately model-unbiased. 

Molt (1990) proposed an alternative 
variance estimator for the H-T estimator of 
Y which is also design-consistent and 
model-unbiased. Generalizing his approach, 
we get the foliowing variance estimator 

where 

V,,! Fma - Y )  is given by (3.4) and 

Note that the unknown parameter crZ 

cancels out in (3.7). An advantage of Kott's 

approach is that it is applicable to the more 
useful S-Y-G type variance estimator, 
unlike the S5rndal et al, approach, but the 
resulting variance estimator (3.7) is some- 
what more complicated. 

Turning to the distribution function F ( t ) ,  a 
predictor of A( t  - y,) under model (3.1) is 
given by 

A model-assisted estimator of F ( t )  based on 
(3.10) is then given by 

This estirnator is asymptotically model- 
unbiased for F ( t ) ,  but its asymptotic 
design-bias is zero only for a subclass of 
sampling designs which, however, seems to 
cover a wide variety of sampling designs 
(see Godambe (1989) for details). Using 
estimation function theory, Godambe 
(1989) arrived at the estimator (3.11) for 
the special case of di(s)  = T,'. Rao, 
Kovar, and Mantel (1990) proposed an 
alternative model-assisted estimator, for 
the special case of di(s)  = T; ' ,  which is 
asymptotically both model-unbiased and 
design-unbiased under all designs. Rao 
and Liu (1992) extended this estimator to 
the case of general weights d i ( s ) .  

A consistent estimator of variance of 
~ ~ , ( t j  is obtained from (2.4) by changing 
zj to {A(t  - y j )  - g ( x j ) ) / ( N w j ) .  It seems 
difficult, however, to construct a model- 
assisted variance estimator that is both 
asymptotically model-unbiased and design- 
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unbiased. We are currently in-cestigaeing 
this problem. 

Approach 

As noted in Section 4, the model-assisted 
approach appeals to unconditional repeated 
sampling properties of estimators and 
variance estimators when the mode! is mis- 
specified, In this section, we develop alter- 
native model-assisted estimators of Y and 
F ( t )  with good conditional repeated 
sampling properties under model mis- 
specification, This is accomplished by 
conditioning on a suitable ancillary statis- 
tic. To simplify the discussion, we confine 
ourselves to simple random sampling with 
replacement and omit technical details and 
extensions which are given in Liu (1992). 
Under simple random sampling (SRS) and 
model (3. I), the model-assisted estimator 
(3.2) reduces to the simple ratio estimator 
pr = ( y / ;F)X ,  noting that di(s) = N / n .  

Employing real population data, Royal1 
and Gumberland (1981) studied the con- 
ditional bias of estimators and variance 
estimators, given the sample mean 2 which 
may be treated as an ancillary statistic when 
the population mean X is known. They 
drew repeated samples of size n, arranged 
them in groups with approximately the 
same value of x, and computed the con- 
ditional bias of estimators and variance esli- 
mators within these groups, Robinson 
(1987) used the fact that, given the sample 
mean 2, the sample mean 7 is asymptotically 
normal with mean Y+ B ( 3  - X ) ,  where B is 
the population regression coefficient and 
F = YIN is the population mean, to show 
that the asymptotic conditional bias of 
Y ,  = pr/iV is 

Thus, noting that .I- --- 8 = o,(II-'") the 
conditional bias of Y,. is of the order 
~,(n-""),  unlike the unconditional bias of 

f llows that the condi- order O ( n p l ) ,  It also .o 
tional relative bias of pr or p,., i.e., the ratio 
of the conditional bias to the conditional 
standard error, is of the order 0, (1) unlike 
the unconditional relative bias of order 

w-? wkch is asymptotically negligible. 
Thus the ratio estimator pr may not lead to 
conditionally valid inferences in large 
samples, under model misspecificalion, 
although the inferences are asymptoticaliy 
valid unconditionally. Note that R = B if 

s in which case the condi- 
tional bias of Fr is approximately zero. 

Using (4.11, Robinson (1987) obtained a 
bias-adjusted estima.tor 

with conditional relative bias of order 
~ , ( n - ' ~ * ) ,  where r = 1'1% and b is the sam- 
ple regression coefficient. This estimator 
leads to conditionally valid inferences since 
the conditional relative bias is asymptoti- 
cally negligible. It remains model-unbiased 
under model (3.4) since E,(r - b) = 0, An 
alternative estimator with conditional rela- 
tive bias of order ,(n-'I2) is given by the 
customary linear regression estimator 

noting that E(712) = + B ( 3  - X), 
- x - x =  ( n )  and E(fi l3) = 

~ , ( n - ' / ~ l .  Liu (1992) has shown that the con- 
ditional variances of y!, and Y~',, are approxi- 
mately equal. Hence, the two estimators 

ld perform similarly in the conditional 
ework. Note that pi,. remains model- 

unbiased under model (3. I), and it has a smal- 
itional asymptotic variance than 

Y,, However, it has a larger model variance 
than pr under model (3.1) since is the 
best model-unbiased estimator. 

Liu (1992) has shown that the customary 
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variance estimator of ptf is conditionally 
biased for the conditional variance, and 
derived a bias-adjusted variance estimator 
which together with ptr leads to condition- 
ally valid inferences. By writing pir in the 
form (3.3) with d,(s) = N / n  and g-weight 

-\2 g,(s) = 1 + ( x ,  - x )  ( X  - %)/ C, ( x ,  - x )  , 
the bias-adjusted variance estimator is simply 
obtained from the customary variance esti- 
mator by changing 2, = y, - - b(x ,  - 2) 

to g, ( s P ,  

It is interesting to note that uL',(yC,.) is identical 
to the Sarndal et al. (1989) variance estimator 
under the linear regression model J> = a + 
px, + j = I , .  . . , N with i.1.d. errors E,, 

The generalized regression estimator of 
Sarndal et al. (1989) reduces to yfr under 
the latter model. 

Turning to the estimation of the distribu- 
tion function F ( t ) ,  Rao and Liu (1992) have 
shown that the model-assisted estimator 
Fma ( t ) ,  given by (3.1 l), is conditionally 
biased, given 2. They also obtained a bias- 
adjusted estimator given by 

where sXh and sXg are the sample covariances 
of x and h = A ( t  - y )  and x and g(x) 
respectively, and s2 is the sample variance 
of x .  The adjusted estimator remains 
asymptotically model-unbiased under 
model (3.1). Properties of the estimator 
(4.5) are under investigation. 

We now turn to the case where only the 
population mean X is known. The estima- 
tors ~ ~ , ( t )  and Fi,(t) cannot be imple- 
mented m this case since they require the 
knowledge of all the population values x,. 
We therefore adjust the estimator I? = ~ ( t )  

to obtain the following bias-adjusted estima- 
tor of F(r)  

Fa(t)  = p ( t )  + ( s , ~ / s ; ) ( x  - 3). (4.6) 

The conditional bias of ~ ~ ( t )  is of the order 
0,(n-I), and as a result ~ , ( t )  leads to con- 
ditionally valid inferences in large samples, 
unlike F ( t ) .  However, pa( t )  is asymptoti- 
cally model-biased. 

5. Calibration Estimators 

5.1. General results 

As noted in Section 1, calibration estimators 
satisfy certain consistency constraints with 
respect lo auxiliary population informa- 
tion. The well-known post-stratified estima- 
tor and raking ratio estimator are simple 
examples of a calibration estimator. If jN  
( j  = 1 ,  . . . , J) denote the known population 
counts in J cells je.g., cells based on age 
and sex categories), then post-stratification 
adjusts the basic weights di(s) to dy(s) = 

( j ~ / j ~ ) d i ( s )  if sample element i  belongs to 
the jth cell, where j f i  = Cigs di(s) and js is 
the set of sample elements belonging to the 
jth cell. The revised weights &(s)  guarantee 
that the estimated counts in each of the J 
cells equal the corresponding population 
counts. Similarly, raking ratio estimators 
ensure consistency with two or more sets of 
marginal population counts; for example, 
row and column margins { i . N )  and { 9 N )  
in an I x J tab le  ( i =  1 , . . . , I ;  j =  1 , . . . ,  J) 
of cell counts ( i j N } .  

We first extend the method of Deville and 
Sarndal (1992) to the general class of 
estimators (2.3) with basic weights di(s).  
For simplicity we restrict ourselves to the 
chi-square distance 

where q,(s) are known positive weights 
unrelated to d,(s).  The uniform weights 
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q, ( s )  = 1 are commonly used, but orher types 
of weights can also be used; for example, 
weights related to the variance structure of 
the errors ck in a super-population model 

Minimizing 9, subject to consistency 
constraints (or calibration equations) 

where X = (XI, . . . , x~)' are known popula- 
tion totals, we get the revised (or calibration) 
weights d;"(s) and the resulting estimator 
Y * = CiEs d,*(s)y, which reduces to 

Fgr = P -+. (X - %)! (5.4) 

with 

For the special case di(s) = T;' and q,(s) = 

q;, (5.4) reduces to the calibration estimator 
of Deville and Sarndal(1992) which is iden- 
tical to the generalized regression estimator 
of Sarndal(1980). Huang and Fu!ler (1978) 
also used the generalized regression estima- 
tor with basic weights di(s)  = nil, and 
developed an algorithm that produced non- 
negative revised weights or standardized 
revised weights, d: (s) / xj,, 4* ( s ) ,  that fall 
within a specified range, say [0.25,1,75]. 

ankier (1992) used a two-step extension of 
Y~' , ,  in the context of 1991 Canadian Census 
which satisfies several consistency constraints 
at the weighting area (WA) level and at the 
same time ensures close agreement at the 
enumeration area (EA) level for number of 
households and number of persons. 

If the set of auxiliary variables X I ,  . . . , x, 
includes at least one mutually exclusive 
and exhaustive set of indicator variables 
(as in the case of calibrating on known 

marginal population counts of a thres-uaj 
table) and q,(s) = 1, then it is easy to see 

= 0 and Pgr reduces to the 
generalized "projection" estimator 

This estimator is currently being used in the 
Canadian Labour Force Survey. If we parti- 
tion the population U into households C; 
with individual values ( x )  t = 

1. .  . . , M,; j = 1 , .  . . . N,. then the revised 
weights associated with (5.5) may be 
written as 

where s, is the sample of households and 
dl ,(s) = 4 ( s )  is the common basic weight 
attached to all members, t, of the household, 
j ,  It is clear from (5.6) that the revised weights 
are different for each member of the house- 
hold, but in practice it is desirable to use the 
same weight for estimating totals of both 
family and individual charactenstics. This is 
easily accomplished by replacing x,, in (5.6) 
with the household mean value zl = 

MY' CrEr;x,,, noting that the population 
total x,,rc M,zl = X (see Lemaitre and 
Dufour (1987) and Stukel and Boyer (1992) 
for the special case dl($) = n;'). It should 
be noted, however, that the resulting 
estimator 

may not be asymptotically more efficient 
than the basic estimator ?, even if j3,,, and 
x, ? are positively related. 
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We now propose an alternative calibration 
estimator that is asymptotically more efficient 
than the generalized regression estimator ygr 
or the basic estimator Y. Cons~der the dif- 
ference estimator Y + (X - x)'C with a 
h e d  p-vector of constants. C, and minimize 
its variance with respect to C. This leads to 
the optimum value Cop, and the resulting 
optimal estimator Y + (X - x)'C,,,, where 
COP, = &&'o,, with C, and o,, respectively 
denoting the'p x p covariance matrix of x 
and the p-vector of covariances, cov( 8, x ~ ) ,  
t = 1, . . . .p .  Replacing C, and o,, by their 
unbiased estimators 2, and 6,,, we get the 
estimator 

Fuller and Isalu (198 1) and Montanari (1987) 
have also studied the optimal estimator (5.7) 
in the context of unistage designs and the 
Horvitz-Thompson estimator with basic 
weights d,(s) = T; ' .  

The estimator Ept is also a calibration 
estimator with respect to x. This follows 
by letting y = xi (say) and noting that ,. A 

Y = X I ,  

and yap, = x1 + ( X I  - xi) = X I .  We used 
the following matrix results to obtain (5.8). 
For any nonsingular p x p matrix A with 
elements aij, A-' is a p x p matrix with 
elements l ~ l - ' ~ ~ ~ ,  and /A/-' zj al jA ,  = I ,  
1Al-l Ej al jAi j  = O !  i # 1, where A,, is the 
cofactor of a i j  If it is considered desirable 
to use the same weight for estimating totals 
of both family and individual characteristics, 
then we simply replace x j ,  in (5.7) by z j  as 
before, noting that X and x remain 
unchanged. 

Following Cochran (1977, ch, 7), it is 
easily verified that, for large samples, 

is the vector of population regres- 
sion coefficients. In the special case of 
simple random sampling, we have 
and Ygr = yOpt, but in general the t 
tors are not equal even for self-weighting 
designs. 

Another advantage of yo,, is that it 
leads to valid conditional inferences, noting 
that its conditional relati 
tically negligible given 
hand, the conditional relative bias of Y ~ ,  
may not be asymptotically negligible, as 
shown earlier for the ratio estimator 
under SRS. Liu (1992) developed condition- 
ally valid variance estimators for general 
stratified multistage design which together 
with fop? lead to conditionally valid 
inferences. Casady and Valliant (1993) 
also proposed yo,, in the context of one- 
way post-stratification and studied empiri- 
cally the conditional and unconditional 
properties of yOPt and ygr in multistage 
sampling. They showed that yOpt is the 
preferred estimator from a conditional 
point of view. 

We now show that yOpt can be expressed 
in the form z,,, d: (s)y ,  for two commonly 
used sampling designs, stratified simple 
random sampling and stratified multi- 
stage sampling. That is, the same revised 
weights, d: js), are used for all 
characteristics y, as in the case of %,. 

5.2. Stvatijied simple random sampling 

Suppose the population of size N is parti- 
tioned into L strata and a simple random 
sample, sh, of size nh is drawn from the Nh 
units in stratum h, independently for 
each h = 1,. . . , L  ( E n h  = n) .  The custom- 
ary unbiased estimator of Y is of the 

= Eh Emh dhr ( s ) ~ h i  with dhi ( s )  = 
Nh/nh,  where yh,  is the y-value of the 
ith unit in the hth stratum. The elements 
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of ex, and 6,, may be expressed as 

with 

wherefh = nh/Nh,  X l h l  is the value of xa for 
the (hi)th unit, and = xiESh y h l / n h ,  3eh = 
El€, xlh,/nh. It follows from (5.10) and 
(5.11) that the calibration weights asso- 
ciated with yo*, may be written as 

where xhi = ( x l h i , .  . . . xphi)' and Fib = 

xiEsh xhi /nh .  Note that we have only n - L 
independent observations ( y  L i ,  X L  i )  to esti- 
mate Cop, since Cixhi = 0 and Ciybi = 

0, whereas 3 is based on n independent 
observations. 

5.3. Stratified multistage sampling 

Large-scale surveys often employ stratified 
multistage designs with large numbers of 
strata, L, and relatively few primary 
sampling units (clusters), sampled within 
each stratum h. We assume that subsampling 
within sampled clusters is performed to ensure 
unbiased estimation of cluster totals Y h  , . The 
customary unbiased estimator of Y is of the 
form Y = C(hik)es  dh lk ( s )~~hzk ,  where s is 
the sample of elements and yhik is the y- 

value associated with the sample element 
(hik) E s. At the stage of variance estima- 
tion, the calculations are greatly simplified 
by treating the sample as if the sample 
clusters are sampled with replacement. T h s  
approximation leads to overestimation of 
the variance of Y ,  Ths  overestimation can 
be substantial unless the first-stage sampling 
fractions are small. 

Writing as Y = Ch fj,, with rhZ = 

C k ( n h d h i k ( ~ ) ) ~ i 2 i k  and = ~h i/nh9 the 
above estimator of variance of Y is simply 
given by 

where ah(> 2) is the number of sample 
clusters from stratum h. It now follows 
that %,, and &), may be expressed as 

with 

Hence, the calibration weights associated 
with Cp, may be written as 
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where nh = (aih i .  . . . , uphi) ' and iih = 

xi uhi/nh. Note that we have only Eni, - L 
independent observations ( v i i , u i i )  to esti- 
mate C,,, since xi uihi = 0 and xi r i  = 

0. The estimator of C,,,, therefore, may 
not be stable unless Ch nh - L is large 
relative to the number of auxiliary vari- 
ables, p. Note that C h n h  is the total 
number of sample clusters. 
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