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Estimation in Finite Population Under
a Calibration Model

Raj S. Chhikara and James J. McKeon'

Abstract: In this paper, we address the esti-
mation of a finite population mean under a
calibration model. We describe a general
class of regression estimators that yield the
standard regression estimator and the alter-
native classical estimator as special cases.
Formulas are derived for the asymptotic
bias and variance of the general regression
estimator. Simulations were carried out to
compare three special estimators on the
basis of bias, relative efficiency, and robust-

1. Introduction

The present study of regression estimation
in finite population sampling is motivated
by a practical problem of crop acreage esti-
mation using satellite data as auxiliary
information. The U.S. Department of Agri-
culture (USDA) conducts an annual survey,
called the June Enumerative Survey (JES),
to collect land use and crop acreage data
which are used to make crop acreage esti-
mates, among others, at the state and
national levels. The survey methodology is
based on probability sampling with data
collected for a sample of area segments and
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ness to nonnormality of the model error. It
is shown that the standard regression esti-
mator is the most efficient and robust of
all three. Also, estimation of the bias and
variance of this regression estimator is
examined, and several variance estimators
are compared.
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crop acreage estimates made using a
Horvitz-Thompson type estimator (U.S.
Department of Agriculture 1975.) The
sampling error at the national level is
designed to be about 2% for the major
crop estimates. At the state and crop
reporting district levels, the sampling error
is considerably larger. To reduce the crop
acreage estimation error at these levels, the
USDA in the mid-seventies proposed using
satellite (LANDSAT) data as auxiliary
information and to estimate crop acreages
using a regression estimator (Sigman,
Hanuschak, Craig, Cook, and Cardenas
1978).

LANDSAT is a near-earth orbiting satel-
lite equipped with a multispectral scanner
(MSS) that measures the energy emitted
from the ground in various wavelength
bands. The spectral responses depend upon
the characteristic of ground vegetation and
can be utilized to estimate acreages of
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different crops in each area sample unit. As
the satellite data provide a complete coverage
of an area sampling frame, the satellite
based estimates made across all units can be
used to obtain more efficient crop acreage
estimates for an area of interest.

The basic approach of USDA is to
acquire LANDSAT data over a stratum,
called an analysis district, that contains a
number of JES sample units. The LAND-
SAT data are classified into different possible
crop types using a discriminant analysis
technique and crop acreage estimates are
obtained for each sample unit as well
as for the entire analysis district. The
actual acreages for the JES sample units
are regressed onto the corresponding
satellite derived estimates, and the standard
regression estimate of the mean crop
acreage in the analysis district is determined
for a crop. This approach to crop acreage
estimation has already been used by the
USDA for several major crops in several
states (Holko and Sigman 1984).

Chhikara and Houston (1984) studied the
USDA crop acreage estimation procedure
and discussed the characteristics of the
model that relates to the actual and the
estimated crop acreage for the area sample
units. They showed that the actual crop
acreage and the corresponding satellite
derived estimate are linearly related in an
area segment, provided the classification
procedure is fixed and known. Since a
sample of satellite data is used to estimate
the discriminant function, a certain amount
of variability is introduced in the classifi-
cation rule. This, in turn, introduces the
variability in satellite derived crop acreages
for a segment. Furthermore, the linear rel-
ation expected between the two acreages is
likely to vary across segments. Considering
these two kinds of variability, the authors
modelled the relationship between the
actual and estimated crop acreage. It was

Journal of Official Statistics

shown that in order to achieve a linear
model in this application, the estimated
crop acreage (auxiliary variable) should be
regarded as a dependent variable and the
actual crop acreage as an independent vari-
able. If, however, the roles ‘of these two
variables are reversed, the resulting model
will have the error term correlated with the
regressor variable and hence, it will not be a
linear model. Thus, the USDA crop acreage
estimation procedure needs to be evaluated
when the model characteristics are different
from the usual regression model. The model
that utilizes both the ground observed and
the satellite derived estimates of crop
acreages for the sample units is briefly stated
in the following.

Suppose the area of interest (population)
consists of N area sample units. For the crop
of interest let y; be the actual crop acreage
and x; be its estimate obtained from LAND-
SAT data for theithunit,i = 1,2,. .., N.
Then the estimated crop acreage (x) is related
to the actual crop acreage (y) in an area
sample unit via a linear model

x, = o+ By + e (1.1)

where o and P are functions of the classifi-
cation errors associated with the discriminant
function and e; denotes the difference
between the estimate x; and its expected
value, and given y;

&) = 0

V() = o (1.2)

and the ¢, are independently distributed ran-
dom variables. Chhikara and Houston
(1984) describe the salient characteristics of
this model which they investigated in detail.

In this paper the expectation with respect
to the model error distribution will be
shown by script letters as in (1.2).

From a theoretical viewpoint, the USDA
crop acreage estimation as described above
can be treated as a general proBlem of



Chhikara, McKeon: Estimation in Finite Population Under a Calibration Model

estimation of the finite population mean
Y = Xy,/N, where unit i is associated with
two numbers (x;, y;) with population mean
X = Zx;/N known and the y, fixed but
unknown, and the pairs (x;, y;) are observed
for a set of n sample units, and the model
in (1.1) — (1.2) holds. Here the values x,,
X,, ..., xy are realized observations of
independent random variables, say X,
Xyy oot Xy,

Clearly, this formulation represents the
superpopulation case where o and B are
model parameters, and the y, values are
fixed in repeated realizations of the finite
population sampled from the superpopu-
lation. This treatment of a finite population
as an independent sample of size N from an
infinite superpopulation has been well argued
in the literature. The estimation of the finite
population mean or total has been studied
extensively by considering both the theory
of finite population sampling (which is purely
an estimation approach) and the classical
linear model theory (which is mainly a
prediction approach). In the usual linear
regression case where the regressor is an
independent variable, the standard regression
estimator of population mean Y is biased if
viewed solely in terms of finite population
sampling, but it is an unbiased estimator
under the model-based theory (Cochran
1977). Fuller (1975) and Hartley and Sielken
(1975) further elaborate on the super-
population viewpoint for the regression esti-
mation of the finite population parameters.
Fuller provides the asymptotic properties of
the estimators as N and n become large,
whereas Hartley and Sielken develop mainly
the finite sample theory results. The predic-
tion approach has been favored over the
conventional estimation approach by Royall
(1970), who also advocates the use of purpo-
sive sampling to achieve ““good” predictors.
In their study of model-robustness, Royall
and Herson (1973) show that the “‘balanced”

297

sample designs are preferable to random
sampling when a postulated linear model
breaks down in the sense that the higher
order polynomial regression terms are
omitted. An excellent treatment on the topic
is given in Cassel, Sdrndal, and Wretman
(1977).

Presently, we consider the estimation of ¥
assuming a realistic superpopulation model
as argued and stated in (1.1) - (1.2). This is
a calibration model since the response is the
independent variable and the auxiliary vari-
able is the dependent variable. Clearly, the
calibration model differs from the usual
linear regression model where the response
corresponds to the dependent variable and
the auxiliary variable is the independent
one. It is in this way that the present study
is different from those cited above.

A number of papers have been devoted to
the choice of an estimator in calibration
problems. For example, Krutchkoff (1967)
advocated the use of the regression estimator
whereas Berkson (1969) favored the classi-
cal estimator (see Section 2 for the definitions
of these estimators). Williams (1969), among
others, shows that the classical estimator is
consistent but has an infinite variance. The
regression estimator is shown to be inconsis-
tent; it is biased toward the mean by an
amount proportional to the distance between
the mean and the point value to be estimated.
There is, however, an important difference
between the calibration problem treated in
these papers and the present one. In the case
of finite population sampling, the choice of
sample units directly affects the population
quantity to be estimated, whereas in the
standard calibration case, the quantity esti-
mated does not depend on the sample. This
and the other differences that exist between
the two cases parallel those discussed in
Royall and Herson (1973) for the estimation
of finite population total assuming_a linear
regression model.
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In Section 2 we introduce a general
regression estimator which has the standard
regression and classical estimator as special
cases. The asymptotic bias and variance of
the general estimator are discussed in Section
3. Because their analytical expressions are
complex, a simulation study was conducted
to evaluate numerically the bias and relative
efficiency for the three estimators given in
Section 2. The results of this study are
presented in Section 4.

2. Estimators

An estimator of the form

Y = j+ (X - %) 2.1)
is an unbiased estimator of Y if y does not
depend upon x since E(j) = Y and
E(x) = X, where E denotes the expectation
with respect to the random sampling design.

The variance of Y is minimized if

vy = Cov (J, x)/Var (X). 2.2)

Replacing v in (2.2) by its estimate

= i(xi — Xy — y)/i (x;, — x)
(2.3)

yields the standard regression estimator

Yo = 7+ 1(X — %) (2.4)

The large sample properties of I;/R are well
known, provided the x;,, i = 1,2,..., N,
are assumed fixed (Cochran 1977).

Hung and Fuller (1987) address a problem
similar to the present one where the auxiliary
variable values are estimated. They, however,
ignore the modeling aspect and simply use
the regression estimator given in (2.4) and
investigate its asymptotic properties.

Taking the model (1.1) into consider-
ation, the classical least-squares estimation
approach yields another estimator of ¥
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given by

Yo = 7+ (X = X)/b (2.5)

where

b= %(n— D0 - y)/i (= PP
(2.6)

The classical estimator in (2.5) minimizes
the model error in (1.1), whereas the basis
for the regression estimator given in (2.4) is
simply to estimate Y as efficiently as possible.
Chhikara and Deng (1988) discuss the condi-
tional inference of the two estimators, given
sample units with y,, . . ., y, fixed. Itis seen
easily that );’C has a conditional bias of order
1/n. Moreover, ?R is conditionally a biased
estimator of Y.

The two estimators given in (2.4)
and (2.5) are special cases of a general
regression-type estimator defined by

Y, = 5+ aX — %) Q2.7)
where
a = bs2(b’s) + cs?) (2.8)

with 0 < ¢ < o0, b as in (2.6)

A
Ii

: i(yf Wl — 1)

n

2= Y [x — X = by — PP = D).

1

A
Il

2.9)

For ¢ = 01in (2.8), the classical estimator
Y..is obtained, and for ¢ = 1, the regression
estimator ?R is obtained. Moreover, other
estimators of ¥ can be constructed by
choosing ¢ differently. One estimator that
merits consideration is obtained by choosing
¢ = 1/(n — 1) and is denoted by Y,. This
choice of ¢ = 1/(n — 1) modifies the classi-
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cal estimator only slightly, yet it corrects the
major drawback of the classical estimator,
namely, an infinite variance. This follows
because of a finite range of values that ?U
would take.

One suggestion was to choose ¢ = 1/2,
but this arbitrary choice was of no special
interest since it would lead to intermediate
results between f’c and );’R. It should be
noted that constant ¢ in (2.8) is introduced
in order to combine the different estimators
into one as given in (2.7). This allows us to
investigate various estimators simultaneously
once we derive the results for ffg. Based on
similar ideas, Tin (1965) constructed and
investigated several ratio estimators.

In the next section, we first outline the
properties of I;/g by evaluating its asymptotic
bias and variance. This is followed by a
detailed investigation of the three estimators
YC, YU, and YR for their asymptotic bias
and variance. The analytical results are
numerically evaluated using simulations
and the bias and variances are studied. It is
seen that the regression estimator Y, has the
smallest variance. Although its bias is of
order 1/n, this bias is numerically smaller
than that of YC The estimator Y, v has a bias
of order 1/n%, but it is still inferior to Y in
terms of mean square error.

3. Asymptotic Bias and Variance

First, we need to introduce notation for
certain population quantities. For the model
error distribution in (1.1), we denote the third
and fourth moments by p, and p,, respect-
ively, and the fourth cumulant by K, =
1, — 3c*. We assume that these quantities
are finite. Next, for the finite population of
»’s, we denote the variance by S;, the third
central moment by S; and the fourth cumu-
lant, (S,, — 3S}') by K,,. The corresponding
quantities for a sample of y’s are similarly
denoted but with a lower case s.
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The bias and variance of f’g are derived in
Appendix A. After proper substitutions in
(A.25) and (A.30) and simplification of the
resulting expressions, it follows that the bias
of Y, to 0(l/n) is
Bias (f’g)

(I = nIN)cdlp; — Bo>S,,/SHnV (3.1)
and the mean square error of f’g to 0(1/n?)
is
MSE (Y,)

{{01 — n/N)[n] [A>c® + Fo*SI[V?]

+ 2(1 — ¢)c’4’P + (B’S! + %) Q

+ ABCo'(6ABSYISE — K,)[nVS:

+ 24cl(1 — 8AB + 64y S,, /S

— AK)nV + AC[(PS?

+ (3 = 206K, + 6u31nV?}  (3.2)
where
P = [c*(B’S! — 3c%c?) + 2c%6Y]/
[(n — 1) V7] (3.3)
and
0 = o'Sf(cs’ — PSY
+ 4 ABSV][[(n — ) V*]  (3.4)
with
V = B’S; + co® and 4 = BS}V.
(3.5)

Next, the variance of );’g can be expressed to
0(1/n*) by making use of the expressions in
(3.1) and (3.2).

For an arbitrary ¢ value, the above
expressions are fairly complex. One may,
however, notice that when ¢ = 0, one of the
terms of 0(1/n) and the last three terms of
0(1/n%) given in (3.2) vanish. On the other
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hand, one of the terms of 0(1/r*) involves
(1 — ¢) which becomes zero when ¢ = 1.
Hence, there is no clear indication which of
the possible estimators has a smaller mean
square error. Since the approximation of
variance or mean square error involving
terms up to 0(1/n) may not be adequate for
small samples, it would be beneficial to con-
sider the terms of 0(1/n?) in evaluating these
estimators. We now consider the three
special cases of )Z as discussed in the last
section.

3.1. Classical estimator (f’(-)

This estimator given in (2.5) follows by
specifying ¢ = 01in (2.7) - (2.8). For¢ = 0,
the expression in (3.1) becomes zero. Thus,
Y. is unbiased to 0(1/n). On the other hand,
it can be verified from (A.2) that the condi-
tional bias of ?C to 0(1/n), given sample
units with p’s fixed, is

(c*/l(n — DP*INT — 7).

Next, the variance of Y. to 0(1/n*) obtained
from (3.1) and (3.2) is given by

Var (Y¢) = [(I — n/N)/n)(c?/B?)
x [1 + 30*/B2S2)/(n — D).
3.7

(3.6)

3.2. Modified classical estimator (I;/U)

The conditional bias given in (3.6) for the
classical estimator is directly a result of the
bias of 1/b used for an estimator of 1/B. If we
specify ¢ = 1/(n — 1) in (2.8) and use the
resulting expression

a = bj[b* + s*(n — 1)s7] (3.8)

for an estimation of 1/B, then a in (3.8) is
conditionally an unbiased estimator of 1/
up to 0(1/n). Accordingly, the modified
classical estimator f’,, obtained by taking
¢ = 1/(n — 1) is conditionally unbiased to

0(1/n).

Journal of Official Statistics

Next, it follows from (3.1) that the bias is -
of 0(1/n*) when ¢ = 1/(n — 1) and thus Y,
is unconditionally unbiased to 0(1/n), as is
the case with the classical estimator f’c. Its
variance to 0(1/n?) is easily obtained from
(3.1) - (3.2) and is given by

Var (Y,) = [(1 — n/N)/n)(c*/B?)

x[1+ (1 + oBSHi(n — DI (3.9)

It may be noticed that the two classical
estimators IL/C and f’U have the same variance
to 0(1/n), and they differ only by a fixed
multiple in the term of 0(1/n?). It is obvious
that the modified estimator is expected to
have smaller mean square error and is
preferable over the other estimator.

3.3. Regression estimator (f’R)

This estimator corresponds to the case of
¢c=11in (2.7) - (2.8). It can be easily
deduced from (3.1) that Y, has a bias to
0(1/n) given by

Bias (Yz) = [(I — n/N)/n]
x [BS2p; /(B2S? + o2)?
— pX(1 — ) 5,,/5%]

where p is the population correlation coef-
ficient between x and y, which can be
expressed in terms of other parameters as
follows

p’ = PB’SY(B’S; + o).

It may be noted that the bias of )L’R directly
depends upon the population skewness; the
first term in (3.10) involves the skewness of
the model error distribution and the second
term involves the skewness of y-values.
Next, the variance of Y, to 0(1/n?) is
obtained from (3.2) and (3.10) as follows

(3.10)

3.11)

Var (Y;) = [(1 — n/N)/n]
x {[I + 1/(n — DI(1 — p*)S?
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+ p’(1 — p*)’[6p°S3,[0® — K,,][nS;]

+ 2B(1 = 2p* — 6p*(1 — p*)p;S;,/
[nS:(BS] + o°)']

+ B2SP[6p3/(B%S} + o%) — K,/

n(B’S, + o*)*} — [Bias (Yo).  (3.12)

Note that the variance of a classical esti-
mator is a function of °/B* = (1/p* — 1) S;
which becomes large as B or p? becomes
small. On the other hand, the variance of the
regression estimator is bounded. In Var (f’R),
the third and fourth moments of the model
error and also those of y-values are of oppo-
site signs in the terms that involve these
higher moments and thus they may make
these terms negligible.

It may be mentioned here that the
expression for p?in (3.11) involves the finite
population parameter S; and the model par-
ameters B and o2, but this presents no prob-
lem because the linear model (1.1) is postu-
lated for the superpopulation with respect
to variable x only, and not the finite target
population of y-values.

4 Numerical Evaluations

Simulation studies were made to evaluate
the performance of the three estimators dis-
cussed above. A finite population consisting
of 500 units was considered, where their
y-values were generated according to a right
skewed distribution so that S;, and K|, were
nonzero. For the sake of convenience in
simulating random numbers, we chose for
the right skewed distribution a noncentral
chi-square variable obtained by W = (1/2)
(Z + /3)’, where Z is the standard normal
variate. The random variable W has mean
2.0 and variance 3.5. Again, for the sake of
convenience, we let & = 0, B = 1 in model
(1.1) so that the x-values were obtained
according to the relation, x; = y; + e,;. The

301

error ¢;’s were generated according to three
different distributions, one normal and two
nonnormal. Of the two nonnormal error
distributions, one was the random variable
W and the other was a double exponential.
All error distributions were adjusted to have
a mean of zero. The values generated using
these nonnormal distributions allowed us to
evaluate the effect of skewness and kurtosis
on the bias and variances of the three esti-
mators discussed earlier.

For the error variance o2, three different
values were chosen, and these choices were
made so that the population parameter p* =
0.25,0.70, and 0.90. Equation (3.11) describes
o’ in terms of p” and thus o can be easily
obtained since B = 1 and S} is computed
from the set of 500 generated y-values.
Thus, nine independent sets were considered
for generating errors, and all errors in
a set were generated independently of one
another as well as separately for each
replication. The simulation evaluations
parallel exactly the theoretical discussion
where both the model error and sampling
error components were taken into account
in obtaining the estimated bias and vari-
ances for the three estimators.

To a certain extent, the choice of these
inputs for the simulation study was moti-
vated by the crop acreage estimation problem
described earlier. The correlation between
the LANDSAT derived crop acreage esti-
mates and the actual acreages would depend
upon the crop growth stage at the time of
LANDSAT data acquisition, competing
crops and other ground covers, and the crop
size, etc. If the data acquisition corresponds
to an early growth stage for a crop or if its
spectral signatures are similar to those of
other ground cover types, it would lead to a
low to moderate correlation, whereas highly
distinct spectral signatures for different
ground covers would provide high corre-
lation between the actual acreages and their
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LANDSAT derived estimates for a crop.
Next, the crop size distribution for segments
in an area often involves higher frequencies
for the smaller crop acreages and fewer
counts for the larger acreages; so this sug-
gests the appropriateness of using a right
skewed distribution for generating a finite
population of y-values.

Samples of size n = 4, 10, and 25 were
drawn from the population and all three
estimates were computed from each of the
samples. Again, these sample sizes were
chosen keeping in view the above crop
acreage estimation problem. In agricultural
surveys conducted by USDA, the number of
sample units varies across strata, ranging
from only a few to many area segments
allocated to a stratum.

The relative efficiency, bias, and variance
of each estimator based on 1000 replications
were determined. The relative efficiency is
obtained as a ratio of the observed variance
of sample mean j to that of an estimator.

Table 1 gives the relative efficiencies for
the three estimators in each case of the error
distributions. Three error cases listed as (i)-
(iii) are indicated in terms of their skewness,
v, = wy/o*?, and kurtosis, y, = p/c* — 3,
computed from the e; generated across all
replications using error distributions: (i)
normal errors (y, = 0, y, = 0), (ii) right
skewed errors (y, = 1.1, y, = 1.1), (iii)
double exponential errors (y, = 0.4, vy, =
3.4). The numerical results show that the
regression estimator f’R is the most efficient
of all three estimators in all three cases (i)-
(iii). Unless both the sample size and corre-
lation are small (i.e., » = 4 and p* = 0.25),
I?R has a relative efficiency that exceeds 1
and it approaches almost 10 when p’ =
0.90 and n = 25. The classical estimator f’(v
is highly inefficient compared to the sample
mean j when n = 4 or p> = 0.25, whereas
the modified classical estimator );/u is almost
as efficient as f’R with the exception of
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Table 1. Relative efficiencies of estimators
of population mean
Sample Estimator
size _ - _
p’ n Yr Yy Y
(i) Normal error distribution
(Y1 =0,v,=0)
0.25 4 0.805 0.640 O
10 1.207 0.612  0.004
25 1.276  0.321  0.020
0.70 4 1.891 1.616 0.012
10 2.782  2.088  1.095
25 2989 2.166 2.031
0.90 4 4.690 4.413  0.062
10 7.575 7.216  6.527
25 9.761  9.030 8.933

(ii) Right skewed error distribution
(yi =11y, = L1

0.25 4 0.644 0501 0
10 1.122  0.599  0.010
25 1.280 0.374 0.054

0.70 4 2.055 1.835 0.090
10 2792 1943 1416
25 3357 2425 2284

0.90 4 3.743  3.189  0.070
10 8.651 8.204 2.554
25 9.070  8.420  8.321

(iii) Double exponential error distribution
(v, = 04,7, = 34)

0.25 4 0.755 0570 0
10 1.286  0.656 0
25 1.203  0.382  0.160
0.70 4 1.910 1.631  0.022
10 2994  2.184  0.025
25 3313 2441 2313
0.90 4 4811 4.160  0.468
10 8.137 6.827 4912
25 8.454  7.738  7.623

p? = 0.25, in which case it is also consis-
tently inefficient. In any case, relative effi-
ciencies of the estimators are highly influ-
enced by the correlation, as expected. All
three estimators seem to be fairly robust with
respect to any departure from normality of
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Table 2. Estimated vs actual bias of the

regression estimator Y, when ¥ = 2.0

Sample Bias
size
p’ n Estimated  Actual
(i) Normal error distribution
(rh=0,v,=0)
0.25 4 —0.152 —0.077
10 —0.037 —0.050
25 —0.014 —0.018
0.70 4 —0.110 —0.107
10 —0.040 —0.048
25 —0.014 —0.019
0.90 4 —0.054 —0.070
10 —0.017 —0.033
25 —0.007 —0.012

(ii) Right skewed error distribution
(v =1Ly, =11

0.25 4 (—0.070) 0.110
10 0.009 0.016
25 0.010 0.049
0.70 4 —0.069 —0.028
10 —0.010 —0.000
25 —0.004 —0.001
0.90 4 —0.034 —0.055
10 —0.010 —0.023
25 —0.004 —0.004

(iii) Double exponential error distribution
(v = 04,7, = 3.4)

0.25 4 —0.160 —0.124
10 —0.044 —0.084
25 —0.019 —0.020
0.70 4 —0.160 —0.154
10 —0.039 —0.043
25 —0.017 —0.017
0.90 4 —0.052 —0.070
10 —0.019 —0.027
25 —0.008 —0.002

the error distribution; this can be seen from
the results in case (i) versus cases (i) and
(iii).

The observed bias for the two classical
estimators was found insignificant. Although
the regression estimator is biased, its

303

observed bias was small. In Table 2 the
observed (actual) and estimated values of
the bias of f’R are given. The estimated bias
was obtained as an average of the estimates
resulting from (3.10) with population par-
ameters replaced by the corresponding
sample quantities and 1/(n — 1) replaced by
1/(n — 3); the latter substitution is justified
because E(1/s7) = (n — 1)/(n — 3) S}, and
the difference is of 0(1/n*). Except in one
instance, marked in the table with paren-
thesis, the sample estimates of bias are fairly
in agreement with the actual biases with
respect to both sign and magnitude. The
exception occurs in the case of nonnormal
errors with p* = 0.25 and n = 4 where the
expected bias is —0.070 and the observed
bias is 0.110. This is attributed to poor
sample estimates of the third moments.

Among the three estimators discussed, Y,
is clearly the best choice for the estimation
of Y. In the next section we discuss its vari-
ance estimation.

5. Variance Estimation for f’R

The sample analogue of the mean square
error in (3.12) provides an estimator of
MSE ()—}R). This, however, requires compu-
tation of second, third, and fourth sample
moments. Since some terms involving the
third and fourth moments have opposite
signs, one wonders whether their inclusion
in the expression of the variance estimator
leads to a better estimate of Var (f’R). Thus,
we compare the variance estimator obtained
as a sample analogue from (3.10) and (3.12)
with three other variance estimators which
are both special cases and easily computed.

The large sample variance obtained from
(3.10) and (3.12) by retaining only terms of
0(1/n) yields the usual large sample variance
estimator given by Cochran (1977, p. 1995),
namely

-

v, = (1 — n/N)s¥n (5.1
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where s? is the residual mean squared error
obtained by linearly regressing the y; on the
x;, that is

2 = i[y,- — 5 — i, — Pl — ).
(5.2)

We use the divisor (n — 2) instead of
(n — 1) in (5.2) since s? is an unbiased esti-
mator of (I — p®) S} whenever the regression
of y on x is linear. Next, if we retain terms
of 0(1/n*), but ignore the third and fourth
moments of the y’s and those of the error
distribution as reflected in (3.10) and (3.12),
the estimator in (5.1) can be improved. This
variance estimator is given by

vy = (I — n/N)[1 + 1/(n — 3)](si/n).
(5.3)

Clearly, v, is most appropriate if the y; and
the e, are each normally distributed.

Another estimator is obtained by the
sample analogue of the expected variance of
f’R as derived by Cochran (1942); the
expression is also given in Cochran (1977,
p. 197). Its derivation, however, is based on
the assumption of a linear regression of y on
x and that the model errors are normally
distributed. Although this is not applicable
to our problem, we consider it simply for the
sake of comparison. The corresponding
variance estimator is given by

vy = (1 — n/N)

x[1 + 1/(n — 3) + 2Gi/n*]sin  (5.4)

where G, = S, /S?, the relative skewness of
the x’s in a realized finite population.

Let v, be the variance estimator obtained
from (3.10) and (3.12) with population par-
ameters replaced by their sample quantities
and (n — 1) by (n — 3). Again the term
1/(n — 3) in replacement of 1/(n — 1) in
(3.12) is justified because the conditional
variance of ):/,(, given fixed y’s, involves 1/s;
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and E(1/s?) = (n — 1)/(n — 3)S}. The dif-
ference is of 0(1/n?). This reasoning also
applies in obtaining v, in (5.3).

Each of these variance estimates were
computed and averaged over the 1000 repli-
cations in our simulations discussed in

Table 3. Ratio of an estimated to actual
variance of Yy

Sample  variance estimator
size
p> n v, Uy Vy Uy

(i) Normal error distribution

(Yl = 0’ Y2 = 0)
025 4 0.588 1.175 1.245 1.244
10 0.881 1.007 1.048 1.016
25 1.015 1.061 1.073 1.062
0.70 4 0.504 1.007 1.074 1.073
10 0.832 0.951 1.012 0.962
25 0.878 0.918 0.943 0.920
090 4 0.434 0.868 0.913 0.930
10 0.766 0.875 0.907 0.898
25 0.915 0.957 0.972 0.960

(ii) Right skewed error distribution
(v, = L1y, = L)

025 4 0.400 0.800 0.849 0.851
10 0.799 0.913 0.998 0.928
25 0.896 0.937 0.989 0.940
070 4 0.504 1.009 1.076 1.069
10 0.799 0.913 0.998 0.928
25 0.896 0.937 0.989 0.940
090 4 0.345 0.690 0.724 0.735
10 0.779 0.890 0.912 0.905
25 0.858 0.897 0.896 0.900

(iii) Double exponential error distribution
(v, = 04, v, = 34

025 4 0.476 0.952 1.004 1.011
10 0.905 1.034 1.084 1.049
25 0910 0.951 0.966 0.953
070 4 0.457 0915 0973 0.971
10 0.779 0.891 0.950 0.903
25 0.953 0.997 1.024 0.999
090 4 0.415 0.830 0.874 0.887
10 0.809 0.924 0.963 0.941
25 0.859 0.898 0.911 ~=0.901
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Section 4. The ratio of an averaged variance
to the observed variance of f’R was com-
puted in each case. Table 3 lists these vari-
ance ratios for the four variance estimators.

The numerical results in Table 3 show
that the large sample variance estimator v,
underestimates Var (f/'R) and the under-
estimation is substantial, particularly in the
case of n = 4. The other three variance esti-
mators do not always underestimate the
actual variance for this case, especially when
p? = 0.25 and the errors are normally dis-
tributed. In the case of normal errors, v,
and v,, show no significant improvement
over v, even though these two estimators
include terms which involve the third and
fourth sample moments of y’s.

In the case of nonnormal errors, v, and
vy, show a significant difference based on a
10% significance level sign-test, where v, is
preferred over v,,. Although v, shows a
slight improvement over v, as an estimator
of Var (f’R), the small magnitude of their
difference may not justify the use of v, due
to the complexity of its computation.

In conclusion, the variance estimator vy
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Appendix A

Derivation of Bias (f’g) and Var ()L’A,)

First we derive the conditional mean and
variance of )373, given sample units with y,,
¥y, - . ., y, fixed, by taking the expectation
with respect to the error distribution of the
linear model in (1.1).

Using the identity

EUW) = EU)EW) + Gov (U, W)
(A.1)

it follows tl}at the conditional mean and
variance of Yg, given the y’s, are
EY,) = §+ E@&EX — %)
+ Gov (a, X — %) (A.2)

and
v (Y,) = [(E@) + 7 (a)
x (X — %)* + V(X — %)]
+ Gov (az, ()? — 2)2) — [&(a) é“'()? - X)

performs fairly well compared to the various + Gov (a, X — ) (A3)
alternatlyes. and it is eagy to compute. where a is defined in (2.8),
Hence, it is the best variance estimator
among the four discussed here. EX —x) = B(Y —p) (A.4)
Table 4. Conditional expectations and covariances for differential terms
0 d f d’ f? dxf
o’ 2¢* K,
—_— — 0
4@ 0 0 (n—1s; n—1"n
= K3 M3 4p,0° K 0
Gov (0, 9) 0 n n’s; nn —1)
K, 213
Gov (0, &) 0 = 0(1/n) % + 0(1/n%) 0
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and

Vv(X — %) = (1 —n/N)c¥n. (A.5)

To simplify the expressions in (A.2) and
(A.3), we now evaluate the conditional
mean, variance and covariances involving a.
Letting

v = bsl+ s (A.6)
the coefficient
a = si(b/v) (A7)

can be expanded in a series by the finite
difference method as follows:

Suppose

b =p+d (A.8)

s? = o'+ f. (A.9)
Then

v = v+ D = v(1 + D/vy) (A.10)
where

v, = B’ + co’ (A.11)

D = (2Bd + d%)s; + cf. (A.12)

Next, a in (A.7) can be represented by the
series

a = s;[(B+ d)v]
x [l — Dfvy, + D} + ...]
(A.13)
which is convergent since |D| < v, implies

0 < v < 2uv,. It follows that the expansion
(A.13) converges in probability to a,, where

9::' B/v,-

Retaining terms in (A.13) up to the quad-
ratic, we can write

a, =

a = ay + a1/ — 2ay)d — (a(z)/B)(f/V;z
+ a(zt(4a() — 3/B) d’ + (a(;/B) C2f2/Sﬁ
— (@B — 4a,B) cdf]s;.  (A.14)
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Taking expectations and covariances, con-
ditional on given y’s, and making use of the
results given in Table 4, it follows that,
ignoring the finite population correction for
the time being
&) = ay + ay(4ay — 3/B)c’/(n — 1)s;
+ Aa/B*)20* + K)(n — 1)s;
(A.15)
a(1/B — 2a,)°c’/(n — 1)s;

+ A(ap/B*)20* + K)/(n — 1) s}
(A.16)

YV (a) =

Cov (a, X — %) = c(a;/B)ws/ns;

— ag(4a, — 3/B) uslnzsi - 45202%/’725;
(A.17)

and
Cov (@, (X — x)*) = (1/n*){—2c(a3/Pns?)

x [Kyfn — 2B(Y — §) ]

+ 6c%as/(n* R[5 — 4Bo’ny(Y — 7))

— 2a3p15(Y — 7)/(Br’s)I(1 — 2a,B)

— 2a,B(4a,B — 3)]}. (A.18)

Making substitutions from (A.4) — (A.5)
and (A.15) - (A.18) into (A.2) and (A.3), the
conditional mean and variance of Y, to
0(1/n?*) are obtained.

Next, we QCrive the unconditional bias and
variance of Y, by taking further expectations
with respect to the random sampling of y’s.

It follows that the unconditional mean of ¥,
to 0(1/n) is given by

EE(Y,) = Y+ [(1 — n/N)/n]cp; E(ay/vy)
+ B Cov [&(a), (Y — §)].
(A.19)

Since &(a) = a, + 0(1/n) as shown in
(A.15), &(a) may be replaced by g, in evalu-
ating the covariance term in (A.19). Next,
an expansion for 4, as a function of s can be
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found in a manner similar to the expansion
in (A.13). Let

s = S +u

where S; is the finite population variance of
y’s. Then

v, = V+ Bu

= V[l + (4B/S?)u] (A.20)
where

V = B’S! + co’ (A.21)

A = BSYV. (A.22)

Now expanding v, ', it follows that
BS;(1 + u/S}) vy
= A[l + (1 — AB)u/S?

— B(1 — AB) A4S} + .. ]
(A.23)
which converges because B*|u| < V implies
that 0 < v, < 2V.

Making use of the expansion in (A.23), it
follows that the covariance term in (A.19) to
0(1/n), ignoring higher than fourth moment
terms, is given by

Cov (&(a), (Y — 7))
= —(1 — n/N)A(1l — AB)S;,/nS>
(A.24)

where S;, is the third population central
moment of y’s. Recognizing that E(a,/v,) =
AV to 0(1/n), it follows from (A.19) that the
bias of ¥, to 0(1/n) is

ao=

Bias (¥,) = [(1 — n/N)/n]
X [eps AV — Aﬁ)SZ’:y/sz]’
(A.25)

To obtain the unconditional variance of
Y,, we shall make use of the identities

E([82Z)) = [EEZ)T + V(E(2))
Var (Z) = E(V(2)) + V(&(2))
(A.26)
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where the inside expectations are with respect
to the model error distribution, given y’s,
and the outside ones with respect to the
random sampling of y’s. Letting, for the
conditional bias,

L

&Y,) -7
Bé"(a)()" — 7) + Gov (a, X — x).
(A.27)

It follows from (A.3) — (A.S) that

E((Y) = {[E&@] + Var (6(a)
+ E(V @)1 — n[N)IBS; + o’l/n
+ B* Cov {[6@F, (Y — 7)*}
+ E[6ov (a*, (X — X)) — E(L?)
(A.28)

and

VE(T) = E(8(Y,) — T1)
— [E(D} = (1 — n[N)[1 — 2BEE(a)]
x S2/n + E(L*) — 2B Cov(&(a), (Y — 7))
+ 2¢p; Cov (apfvy, (Y — §))/n — [E(L)].
(A.29)

Adding (A.28) and (A.29), the identity in
(A.26) yields to 0(1/n?)
MSE (Y,) = (1 — n/N){[E&(@)]’c’
+ [1 — BE&(a)S?
+ [B’S} + o’ 1E(V (a)}/n
— 2B Cov (6(a), (Y — 7))
+ B* Cov ([P, (Y — 7))
+ E(®ov (&, (X — %))
— 2¢p, Cov (ag/v,, (Y — 7))/n. (A30)

The various terms in (A.30) are obtained
using the expansion in (A.23) and Vt‘hepon-
ditional results in (A.15)-(A.18). Their
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expressions given below maintain the mean
square error in (A.30) to 0(1/x?).

E[6@)] = A+ (1 — n/N)
x [4(44 — 3[B)c(n — 1) S}
+ A(AB)20 + K)f(n — 1) S?

— AB(1 — 4B)2S; + Ki)l(n — 1) S]]
(A.31)

Var (@) = V(&) + E(¥ (@) (A32)

where
V(6@) = (1 — n/N)A*(1 — AB)
x (28} + K,)/(n — 1) S}
(A33)
E(¥(a) = (1 —n/N)
x [A*(1/B — 24)c*/(n — 1) S
+ c(4*BH)(20* + K))/(n — 1) S}
(A.34)
Cov ([8@P, (Y — 7))
= 2(1 — n/N)A’B*(1 — A4B)/n*S?
x [Ky, + (1 — 34PB)S3,/S7] (A.35)
E@ov (@, (X — %))
= (1 — n/N)[—2cA’K,[BS;
+ 334 B)2R3/S)Hn?
Cov (&(a), (Y — 7)°)
= (1 — n/N)AQl — AP)/n’S}
+ [K,, — 24PBS3,/S;]
Cov (ay/vy, Y — ) = (1 — n/N)
x (1 — 24B) AS,,[nVS].

(A.36)

(A.37)

(A.38)

The unconditional variance of )_’g is obtained
by substitution from (A.31) - (A.38) and
(A.25) into (A.30). The resulting expressions
for the bias and MSE of f’g are as given in
(3.1) and (3.2) in Section 3.
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Appendix B

Conditional Expectations and Covariances

for Differential Terms

We write the model in (1.1) as
x=o+ By + e (B.1)

where x, y, and e are column vectors each of
dimension n. Then one can write

b = Wx (B.2)
with
h = (y — 1))/(n — 1)s5. (B.3)

Then for the differential d and mean error ¢,
one has

d =b—B =hx—P = he
(B.4)
d&* = ehh'e (B.5)
¢ = (1n)le (B.6)
& = (I/n?)elle. (B.7)

Making use of formulas in Tan and
Cheng (1981), we obtain the conditional
covariances, given y’s, as follows:

Gov (d, &) = Gov(d, &) = 0 (B.B)
Couv (d2, 8%) = 0(1/n) (B.9)
Gov (d*, &) = w/n’s; (B.10)

and formulas in Kendall and Stuart (1968,
p. 286) lead to

Gov (f,8) = Wwin (B.11)
Gov (f, ) = Kn’ (B.12)
Gov (f2,8) = 4py0iin’

+ terms involving K (B.13)

where K denotes the fifth cumulant for the
error distribution. To evaluate o (f?, %),
we use the following identity with respect
to cumulants of order four for random
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variables, say U;, with E(U;)) = 0,i = 1, 2,
3, 4

KU, U,, U, U,) = EU, U, U; U,

— Cov (U,, U,) Cov (U5, U,)

— Cov (U,, U,y) Cov (U,, U,)

— Cov (U,, U,) Cov (U,, U;). (B.14)
Then for the fourth order covariance,

Cov (U, U,, Uy, U,)) = E(U, U, U, Uy)
— Cov (U, U,) Cov (U;, U,) (B.15)
= KU, U,, Us, U,) + Cov (U, Us)
x Cov (U,, U,;) + Cov (U,, Uy)

x Cov (U,, Us). (B.16)
For U, = U, = fand U; = U, = &, we have
Gov (2, &%) = 2u3[n* + 0(1/n’) (B.17)

since K(f, 2, &, &) is 0(1/n’). The above
. results are summarized in Table 4, where Q
denotes a differential variable from the set
of variables, d, f, d*, f* and d x f, with
d=b—Pand f = s> — o’

Next, the covariances between u = (s; —
S, (5 — Y), and (j — Y)* with respect
to the random sampling of y’s can be ob-
tained by replacing f by u,e by (7 — ¥), 1,
by S;,, etc.
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