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Estimation of Regression Parameters for
Finite Populations: A Monte-Carlo Study

Michael A. Hidiroglou!

Abstract: Regression analysis is quite often
performed using data arising from complex
survey designs. These designs will invariably
be stratified and clustered with at least one
stage of selection. Inferences from such
regression analyses must be based on properly
computed variance-covariance matrices of the
regression coefficients taking the survey
design into account. A Monte-Carlo study was
conducted to study the small sample
properties of the ordinary least squares
regression estimator and an errors-in-
variables regression estimator, given that the
sample design had been taken into account.
The elements of the sample regression vectors

1. Introduction

Regression analysis is a widely used tool for
analysing multivariate data. The analysis of
multivariate data has recently been greatly
aided by the development of computer
packages. Users of such packages oftenignore
the assumptions that should be supported by
the data sets they analyse. Regression analysis
procedures in standard computer packages
require that the observations are independent.
This crucial assumption is violated if the data
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were normalized by subtracting the corre-
sponding elements of the population
regression vector and dividing the difference
by the estimated standard error. The distribu-
tion of the resulting statistics, termed “z-statis-
tics,” was investigated. It was determined that
the distribution agreed with that of Student’s
t. The sample regression vector was approx-
imately unbiased for the population regres-
sion vector.

Key words: Primary sampling unit; complex
survey design; regression; standard error;
simulation; finite populations.

has been collected using cluster or multistage
sampling designs. Subsequent analyses using
these packages do not take this important con-
sideration into account, with the net effect
being that the standard estimators for the
variance of the estimated regression coeffi-
cients are likely to be seriously underesti-
mated. Test statistics and confidence regions
based on those variance estimators are con-
sequently badly affected.

The problem of multiple regression estima-
tion in finite population sampling has been
studied by Konijn (1962), Frankel (1971),
Fuller (1975), Hartley and Sielken (1975),
Holt et al. (1980), Sarndal (1978), and by
Scott and Holt (1982). These authors have
pointed out the dangers of using traditional



computer packages and have provided some
theory to handle the non-independence prob-
lem caused by multistage or cluster sampling.
There is not much literature on the applications
of these theories to data sets. Some indication
of the performance of the estimators of vari-
ance for the regression coefficients, using this
theory, has been reported by Frankel (1971),
Kish and Frankel (1974), Shah et al. (1977),
and Scott and Holt (1982). Frankel (1971)
studied the empirical behavior of multiple
regression coefficients computed from a strat-
ified cluster sample. Frankel used the Taylor
approximations to the variance formula,
suggested by Tepping (1968) to obtain variance
estimates of the regression coefficients, in
order to compute the variance-covariance
matrix of the estimated sample regression
coefficients. The data used for his study were a
sample of U. S. households selected by the
U. S. Bureau of the Census in the March 1967
Current Population Survey. The objective of
his regression analysis was the estimation of
the finite population parameters as defined by
the population moments.

In this paper, small sample properties of
regression estimators and their estimated
variance will be presented in the context of
finite population sampling. That is, stratifica-
tion and clustering will be taken into account
when estimating the finite population regres-
sion parameters. These small sample proper-
ties will be determined using a simulation
carried out on the data from the 1967 Current
Population Survey. Two types of regression
procedures will be studied. One, where the
data are not subject to measurement error and
the other, where the data are subject to
measurement error. The procedures for data
with measurement error should be of particu-
lar interest to survey samplers because the
data collected in sample surveys, particularly
those collected from human respondents, are
subject to measurement error. The U. S.
Bureau of the Census (1972) has reported esti-
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mates of the response variance, as a percent-
age of the total variance, that range from 0.5
to 40 percent. Regression analyses performed
under these circumstances must therefore
take these errors into account.

The simulation was carried out using the
computer program SUPER CARP (see
Hidiroglou et al. (1980)). The structure of the
paper is as follows. The investigated models
are presented in Section 2. The design of the
sampling experiments and the simulation
results are given in Sections 3 and 4 respective-

ly.

2. Models

The finite population model is given by

yn = XyBors + ey, (2.1)
where yy is an N x 1 vector of observations on
the dependent variable; xy is an N x p non-
stochastic matrix of observations on p inde-
pendent variables; Boy s is the p-dimensional
vector of regression coefficients; ey represents
an N x 1 vector of deviations from the linear
relationship. N is the size of the population of
interest. In the absence of measurement error
on y and x, minimizing the sum of the squared
deviations over the entire population yields
the following definition (Frankel (1971)) for
the population regression coefficients

Bows = (X§ Xn)" XV Yn (2.2)
where the inverse of (x} xy) may be the
Moore-Penrose inverse.

In this study, the estimator for Bopg is
obtained via a one-stage stratified clustered
sample obtained as follows. The population is
first divided into L strata (labelled h =
1,2, ..., L). For each stratum, a sample of size
n, is drawn without replacement from N,
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clusters and from each selected cluster of size
M,;, all the elements are selected. A natural
estimator for Bo; g which appeals to survey
statisticians is one that takes the survey
weights into account. A survey weight is
defined as the inverse of the probability of
inclusion of an ultimate unit.
The sample estimator for By, 5 is given by

I’OLS = (xt{ wn Xn)_ X,T: wn Yn (23)

where x, is an n X p matrix of observed
independent variables, y, is an n x 1 vector
of observed dependent variables in the
sample, and W, is an n x n diagonal matrix
consisting of the survey weights. The rs-th
element of x] W, x,, is given by

Xhjkr Xnjks Whik >

1)

IIM(*
II'ME

l 2

where

wpie = weight associated with the hjk-th

observation,
Xujkr = the hjk-th observation on the r-th
independent variable,
L ny
=h 21 'Zthj (the effective sample size).
= j=

Similarly, the s-th element of xI W,, y,, is given
by

n, ; M,,,}
;.21 121 kz Xhjks Yhjk Whik »
with y; being the hjk-th observation on the
dependent variable. Fuller (1975) provided an
estimator for the covariance matrix of bg;g
under certain regularity conditions to ensure
the convergence to normality and consistency.
This estimator is given by

Vors = (XI W, x,) Gors (xIW,x,)",  (2.4)

where the rs-th element of GOLS is

g'I=
L
n=l 5 B § G @ (- dn ),
n— ph 1 -1 j=1
2.5)
with
fh=nh/Nh7

dhjkr = xhjkr vhjk whjk )
. p
Vhik = Yhjk _rzl boLs(r) Xhikr 5

. My
dhj.r =k§l dhjkn

and

- T
dh..r = Z dhj.,/nh .
J=1

In the presence of measurement error, the
finite population model is given by
YN = XN BEV + eN, (26)
where Yy and Xy are the observed random

variables incorporating measurement error.
That is

XN= XN+ “NandYN= NN +’§N 5
where §y = (gy, uy) is the matrix of response

errors for the population. The following
assumptions are made concerning gy and uy:



i) E {3l nx> Xui)} = 0 for all vectors
Ohie> X)) h=1, ..., Lyj=1, ..., Ny;
k=1,..My;

where 84k = (&xjx> Wyjx) is the hjk-th row
vector of dy.

ii) 8, is independent of &, for h + h' or
j # j'or k # k'. That is, the measurement
errors on different units are independent.

iii) The covariance matrix of §, is given by

0% b gﬁu
= | ’
zue ’ guu

and it is assumed to be known.

Similarly to the ordinary least squares case
(Bovs), By may be defined as

Bey = (X{Xy-NZ.) XV Yy ~-NZ,).
2.7)
A sample estimator for Bgy is given by

bey =
(ngn Xn —n zuu)— (XI wn Yn —hn gus) s (28)
where the elements of XZ W, X, and of
XTW, Y, are defined as previously provided.
A consistent estimator for the covariance
matrix of bgy is given by

‘A,EV = .
(XI Wn Xn —hn zuu)_ GEV (XZ; wn Xn —-n z,uu)_ >

with the elements of Ggy defined as in 2.5)
with
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p
ou,e ” Elou, u; bey (5)I
3 ~ £2. — W,
yjir = Xhjkr Vijk = V hjk &2 | ik
v

p
Vhjk = Y —S§1bsv(S) thks 5

63 = 0% -2 Z,eu bgy + blgV zuu bgy .

Regularity conditions for the above covari-
ance matrix’s consistency have also been
provided by Fuller (1975). Extensions to the
case where X has been estimated have been
provided by Fuller (1975), Fuller and Hidirog-
lou (1978), and Fuller (1981). The required
computational forms of these extensions are
described in Hidiroglou et al. (1980).

3. Monte-Carlo Study Using CPS Data

The data used for this investigation were those
used by Frankel (1971) and were collected by
the U. S. Bureau of the Census in the March
1967 Current Population Survey. The finite
population consisted of 45 737 households
grouped in 3 240 primary sampling units. Two
sample designs were used in this investigation.
In sample design'1 the original 3 240 primary
units in the population were divided into 6
strata containing 540 primary units each. In
sample design II, the 3 240 primary units were
divided into 12 strata, each stratum having 270
primary units. This stratification was carried
out by splitting each of the six strata used in
design I into two strata. In sample designs I
and II, two primary sampling units (p.s.u.)
were selected by s.r.s. without replacement
from each stratum of the population. The data
were stored on a tape. Each individual element
stored on this tape was identified by a house-
hold number and a p.s.u. code. The p.s.u.
numbers were ordered from 1to 3 240. All the
elements associated with a specific p.s.u. were
grouped together within the strata defined by
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the position of the p.s.u. on the sequence. In
the case of the six-strata design, the first 540
p.s.u.’s made up stratum 1, the second 540
p-s.u.’s made up stratum 2, etc. In the case of
the twelve-strata design, each stratum was
arranged in a sequence of 270 p.s.u.’s. Only
urban males in the ages 28—58 were selected
for this study. Each of the two sampling
designs called for the selection of two primary
sampling units from each stratum of the
population. A computer program was written
to select the two primary sampling units using
a simple random without replacement
sampling scheme. For sample design I, six
independent pairs of random numbers were
generated. Each element of the pair was gene-
rated by a uniform (0,1) random number
generator. The elements of each pair were
multiplied by 540 and the product was truncat-
ed. For sample design I, 12 independent pairs
of random numbers were generated, with
each element of the pair generated by a
uniform (0,1) random number generator. The
elements of each pair were multiplied by 270.
Each pair of random numbers was used to
select the two p.s.u.’s within each of the
strata. All the elements (M,,) within a selected
p.s.u. (j) and stratum (k) were included in
each of the samples. The sample design for
this experiment may therefore be described as
a one stage stratified cluster design with the
clusters being selected using simple random
sampling without replacement. Two hundred
independent samples were selected in this
manner for each sampling design.

The dependent variable in the regression
was log income of the household head and the
independent variables included an intercept
term (variable 1), age (variable 2), age
squared (variable 3) and education (variable
4). To ensure that the matrix of sums of
squares and products of the independent
variables was nonsingular, the last three
independent variables (2—4) were coded as:
Age-43, (Age—43)? - 70 and Education — 12.

The sampling behavior of the two sets of
statistics associated with the O.L.S. estimator
given by (2.3) and those associated with the
errors-in-variables procedure given by (2.8)
will be investigated.

For the case of errors-in-variables, it is
assumed that the response errors are
independent between secondary units
(clusters in our case) within the same primary
unit (stratum) as well as between secondary
units on different primary units. For the
errors-in-variables model, age and education
were assumed to be subject to response error.
Using the U. S. Bureau of the Census (1972)
coding study, response variances, for Age —
43, (Age — 43)* - 70 and Education — 12, were
assumed to be 0.3,91.0 and 3.0 respectively. It
was assumed that the response error of log
income was uncorrelated with that of age and
education. In our case,

fo o 0 0

s |0 03 00
= 00 91 0
00 0 3

The t-statistics are given by

br - Br
s(b,)

where b,, B, and s(b,) are the sample regres-
sion estimates, population regression param-
eters and standard deviation of b, respectively
for the O.L.S. or E.V. case. The properties of
t-statistics are also of interest.

«b,) = r=12,...,4,

4. Results from the Monte-Carlo Study

The data obtained in the 200 samples for each
sample design was used for both regression
procedures. The results of the two experi-
ments are presented in several tables.
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Table 1. Means of 200 Regression Sample Vectors
Number of |Regression Coefficients Least-Squares Model Errors-in-Variables Model
Stratain b, b, b, b, by(e) by(e) bs(e) by(e)
Experiment
6 Population value 8.9289 0.0029 -0.0007 0.0846 |8.9405 0.0053 -0.0006 0.1194
6 Observed mean of
200 regression
coefficient estimates 8.9115 0.0027 -0.0009 0.0812 |8.9207 0.0055 -0.0008 0.1213
6 Observed standard
deviation of 200
regression coefficient
estimates 0.1136  0.0112 0.0013  0.0308 |0.1082 0.0116 0.0015  0.0477
6 Observed mean of
200 standard error
estimates 0.0080  0.0008 0.0001 0.0022 |0.0076 0.0008 0.0001  0.0034
12 Population value 8.9289 0.0029 -0.0007 0.0846 |8.9405 0.0053 -0.0006 0.1194
12 Observed mean of
200 regression
coefficient estimates 8.9254 0.0039 -0.0006 0.0842 |8.9344 0.0068 —0.0006 0.1225
12 Observed standard
deviation of 200
regression coefficient
estimates 0.0724  0.0075 0.0008 0.0228 |0.0712 0.0078 0.0009  0.0332
12 Observed mean of
200 standard error
estimates 0.0051  0.0005 0.0001  0.0016 |0.0050 0.0005 0.0001  0.0023

Table 1 gives, for each experiment, the
mean and variance for the regression coeffi-
cients. Note that the standard errors in design
I are approximately V2 times the standard
errors of the corresponding coefficient in

design II. This is to be expected, since the
number of primary sampling units in the 12 .
strata design is twice the number in the six-
strata design.

Table 2. Estimated Bias of Regression Estimates for 200 Replicates

Number of Least-Squares Model Errors-in-Variables Model
Stratain b, b, b, b, by(e) by(e) bs(e) bu(e)
Experiment

6 -0.0174* -0.0002  -0.0002* -0.0034 |-0.0198* 0.0002 0.0002 0.0019
12 —-0.0035 0.0010 0.0001 -0.0004 |{-0.0061 -0.0015*  0.0000 -0.0031

* significant at the 5 % level.

From Table 2, considering the ratio of the

estimated bias of 200 sample regression esti-
mates to the estimated standard error of their
mean to be distributed as Student’s ¢ with 199
d.f., we conclude that the bias is reduced as
the sample size increases.

Additional information concerning the
frequency distributions of the estimates
computed in the Monte-Carlo study is given in
Tables 3 and 4 which contain the observed
percentiles of the calculated #’s. Examination
of Tables 3 and 4 reveals that the distribution
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Table 3. Comparison of Observed Percentiles of the Calculated t's with the Theoretical Percen-
tiles for the t Distribution with 6 Degrees of Freedom

Probability  Theoretical Per- Observed Percentile for #(b) Observed Percentile for f[b(e)]
in Percent centile for Student’st | b; b, by b, by(e) by(e) bs(e) by(e)

1 -3.143 —4.841 -3.794 -3.479 5315 |-4.720 -3316 -3.329 -5.545

5 -1.943 -2.616 -2.053 -2.278  -2.650 |-2.366 -2.055 -2.321  -2.203
10 -1.440 -1.855 -1.734 -1.652 -1.773 |-1.667 -1.547 -1.615 -1.811
20 -0.906 -1.070 -1.131 -1.153  -1.314 |-0.973 -0.908 -1.110 -1.082
30 -0.553 -0.695 -0.625 -0.731 -0.823 |-0.623 -0.515 -0.825  -0.637
40 -0.265 -0.392 -0.258 -0.481 -0.434 |-0.328 -0.263 -0.535 -0.395
50 -0.000 -0.057 -0.037 -0.211  -0.222 [-0.053 0.016 -0.202 -0.102
60 0.265 0.221  0.298  0.153 0.083 | 0.212 0.262  0.126 0.213
70 0.553 0.630  0.632  0.478 0.468 | 0.428  0.677  0.459 0.551
80 0.906 1.236  0.902  0.906 0.982 1.104 0932  0.826 0.845
90 1.440 1.828  1.736 1.874 1.664 | 1.774 1.564 1.799 1.450
95 1.943 2.567 2.898  2.789 2.148 | 2.849 2142 2573 1.666
99 3.143 4418 4679 5.116 3.638 | 5.022 3.852  4.890 3.351

Table 4. Comparison of Observed Percentiles of the Calculated t's with the Theoretical Percenti-
les for the t Distribution with 12 Degrees of Freedom

Probability  Theoretical Per- Observed Percentile #(b) Observed Percentile #(b,)
in Percent centile for Student’s ¢ by b, b by by(e) by(e) bs(e) by(e)

1 —-2.681 —2.442 3167 -2.545 -3.278 |-2.694 -2.679 -2.526 -3.222

5 -1.782 -1.777 -1.813 -1.536  -2.306 |-1.822 -1.659 -1.641 -1.659
10 -1.356 -1.364 -1.294 -1.316 -1.440 |-1.258 -1.273 -1.308 -1.236
20 -0.873 -0.975 -0.666 -1.004 -0.961 |-0.842 -0.693 -0.863 -0.796
30 -0.539 -0.554 -0.364 -0.623 -0.451 |-0.511 -0.407 -0.542 -0.309
40 -0.253 -0.195 -0.124 -0.301 -0.145 |-0.298 -0.090 -0.161 -0.036
50 0.000 0.076  0.138  0.032 0.056 [-0.024 -0.326  0.122 0.195
60 0.253 0.277 0492  0.378 0306 | 0.266  0.554  0.412 0.379
70 0.539 0.640 0.756  0.666 0.694 | 0.504 0.784  0.653 0.636
80 0.873 0.981 1.141 1.043 0.987 | 0.938 1.114  0.963 0.930
90 1.356 1.543 1.709 1.644 1.538 1.566 1.735 1.516 1.345
95 1.782 1.976 2.016 1.951 2.028 1.848 2.112 2.076 1.757
99 2.681 2.860 2.786  3.300 2944 | 2.824 3.057 3.284 2.428

for #(b) and [b(e)] agrees more closely with
the theoretical ¢ distribution near the median
than in the tails. Comparisons of the 1 %,
5 %, 95 % and 99 % points for the ¢ statistics
in Tables 3 and 4 reveal the effects of in-
creased sample size. For instance, in Table 3
the 5 % and 95 % points for {{b;(e)] are —2.321
and 2.573 which are considerably higher than
the corresponding points for the ¢ distribution
with 6 degrees of freedom, +1.943. The
degrees of freedom can be observed from

equations (2.5) as being equal to the total
number of selected p.s.u.’s minus the total
number of strata. For these same statistics, the
5 % and 95 % points in Table 4 are — 1.641
and 2.076 as compared to +1.782, the corre-
sponding points for the ¢ distribution with 12
degrees of freedom. These observations
suggest that the variances of the sample
regression coefficients estimates have been
underestimated in small samples, though not
by much.
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Table 5. Comparison of Observed Proportion for Calculated t(b) within Stated Limits to the

Theoretical Proportion for the t Distribution

Number of Intervals Theoretical Observed Proportion

Stratain Proportion Frankel’s Our
Experiment Study Study
6 +2.576 0.9580 0.9421 0.9350
6 +1.960 0.9023 0.8733 0.8525
6 +1.645 0.8489 0.8146 0.8104
6 +1.282 0.7529 0.7167 0.7037
6 +1.000 0.6441 0.6029 0.5950
12 +2.576 0.9757 0.9662 0.9640
12 +1.960 0.9264 0.9121 0.9103
12 +1.645 0.8741 0.8496 0.8447
12 +1.282 0.7760 0.7437 0.7500
12 +1.000 0.6630 0.6217 0.6100

Comparing the results for O.L.S. regres-
sion coefficients in Table 5, it is evident that
Frankel’s calculated ¢’s for these coefficients
are closer to the theoretical ¢ distribution than
the ones obtained in our study. One explana-
tion for this is that only urban males between
the ages 28-58 were selected for our study.
This resulted in decreasing the average
number of elements in the sample for designs I
and II from 170.3 and 339.5 (as used for
Frankel’s study) to 61.5 and 124.5 (as used for
our study) respectively.

In summary, the results of this investigation
indicate that the sample estimates of the
multiple regression coefficients have small
biases, and the distribution of the t-statistics
computed for both the O.L.S. and errors-in-
variables procedures are well approximated
by the theoretical ¢ distribution. In addition,
the agreement improves as the number of
strata used in the design increases.
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