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Recent developments in survey sampling allow one to quickly draw samples with unequal
probability, maximum entropy and fixed sample size. The joint inclusion probabilities can be
computed exactly. For this sampling design, 7 approximations and 20 estimators of variance
have been computed. A large set of simulations shows that knowledge of the joint inclusion
probabilities is not necessary in order to obtain an accurate variance estimator.
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1. Introduction

Two of the most commonly used variance estimators in unequal probability sampling

design are the Horvitz-Thompson estimator (Horvitz and Thompson 1952) and the Sen-

Yates-Grundy estimator (Yates and Grundy 1953; Sen 1953). Both estimators use joint

inclusion probabilities. It is often a hard task to evaluate the joint inclusion probabilities.

Maximum entropy sampling design with fixed sample size allows the fast and exact

computation of them.

The maximum entropy sampling design with fixed sample size is one of the principal

topics of the post-mortem book of Hájek (1981). The principal problem of the

implementation of this design was the combinatory explosion of the set of all possible

samples of fixed size. When it comes to implementing an algorithm for drawing a

maximum entropy sample, a very important result has been given by Chen et al. (1994).

They have shown that the maximum entropy sampling design can be presented as a

parametric exponential family, and they have proposed an algorithm that makes it possible

to pass from its parameter to the first-order and the joint inclusion probabilities and vice

versa. In a manuscript paper, Deville (2000) has improved this algorithm. Chen et al.

(1994) and Deville (2000) pointed out that a fast computation of the parameter makes it

possible to employ three methods: rejective sampling, sequential sampling, and draw by

draw sampling. Deville (2000) has shown that the joint inclusion probabilities can be

computed exactly by means of a recursive method, without enumerating the possible

samples. Using this method, the variance for the Horvitz-Thompson estimator of the total
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population can be computed exactly. The joint inclusion probabilities are also used to

compute the Horvitz-Thompson and Sen-Yates-Grundy variance estimators. Aires (1999)

has provided another method to find the exact expression of the inclusion probabilities in

the case of the rejective sampling.

The maximum entropy sampling with fixed sample size design is relatively recent and

therefore it is not yet sufficiently used in practice. This sampling design, however, has

several interesting points:

a. Generally, the maximization of the entropy consists of defining a sampling design as

randomly as possible. It is a high entropy situation according to Brewer’s (2002,

p. 146) definition when “the resulting relationship between the population and the

sample follows no particular pattern” and we expect the variance estimators to perform

well. In particular the simple random sampling without replacement and the Poisson

sampling are maximum entropy sampling designs.

b. In the case of fixed sample size, all the samples have strictly positive probabilities of

being selected. Therefore the joint inclusion probabilities are strictly positive.

c. The joint inclusion probabilities do not depend on the order of the units, and can be

easily computed.

d. The algorithm to compute the inclusion probabilities is fast, and particularly

convenient for making simulations.

e. Finally, a simple asymptotic argument allows constructing a family of variance

approximations and a large set of variance estimators.

Our aim is to review and evaluate a large set of variance approximations and variance

estimators. These are generally applicable to unequal probability designs. We test seven

approximations and 20 estimators of variance in several cases of maximum entropy

sampling by means of a set of simulations. The ratio of bias and the mean squared errors

under the simulations are derived. Coverage rates of interval estimates for the 95% level

are reported. The simulations indicate that knowledge of the joint inclusion probabilities is

not necessary to construct a reasonable estimator of variance in the case of the maximum

entropy sampling design with fixed sample size and unequal probabilities.

The article is organized as follows. In Section 2, the notation is defined and the

maximum entropy sampling design is reviewed. Interest is then focused on the algorithm

which allows the transition from the parameter of the exponential family to the first- and

second-order inclusion probabilities and vice versa. In Sections 3 and 4, several

approximation and estimator expressions for the variance are reviewed. In Sections 5 and

6, the empirical results are presented in order to compare the different methods of

approximation or estimation to the true value of the variance. Section 7 presents the

concluding remarks.

2. The Maximum Entropy Sampling Design

2.1. Definition and notation

Let U ¼ {1; : : : ; k; : : : ;N} be a finite population of size N. A sample s is a subset of U.

A support RðUÞ is a set of samples of U. Let SðUÞ ¼ {s , U} be the full support on U
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with #SðUÞ ¼ 2N ; and let SnðUÞ ¼ {s , Uj#s ¼ n} be the sample support with fixed

sample size equal to n. A sampling design pðsÞ . 0; s [ RðUÞ is a probability distribution

on RðUÞ such that
P

s[RðUÞpðsÞ ¼ 1: Let S be a random sample such that

Pr½S ¼ s� ¼ pðsÞ. The first-order inclusion probability is defined by

pk ¼ Pr ½k [ S� ¼
s[RðUÞjs]k

X
pðsÞ; k [ U

and p ¼ ðp1; : : : ;pk; : : : ;pNÞ
0 is the vector of inclusion probabilities.

The entropy of a sampling design p(.) on RðUÞ is given by

IðpÞ ¼ 2
s[RðUÞ

X
pðsÞ log pðsÞ

If we calculate the sampling design on RðUÞ which maximizes the entropy under the

restrictions given by fixed inclusion probabilities, we get

pðs;RðUÞ;lÞ ¼
expl0sP

z[RðUÞ expl
0z

ð1Þ

where l [ RN is the vector of Lagrange multipliers, and s is a vector of RN such that

sk ¼
1 if k [ s

0 if k � s

(

Chen et al. (1994) pointed out that (1) belongs to the exponential family and l is its

parameter. One of the characteristics of the exponential family is that there exists a one to

one correspondence between the parameter and the expectation (on this topic, see for

instance Brown, 1986, p. 74). The expectation is the inclusion probability vector

p ¼
s[RðUÞ

X
spðsÞ

Remark 1. The sampling design which maximizes the entropy on the full support SðUÞ;

when the inclusion probabilities pk for all k [ U are fixed, is the Poisson sampling design

(see Hájek 1981, p. 30). The interest of the Poisson sampling is the independence between

the selection of the units, which allows a very simple sequential implementation. The

disadvantage of Poisson sampling is its random sample size. For this reason, fixed sample

size methods ore often used.

2.2. Maximum entropy sampling design with fixed sample size

When the support is SnðUÞ; the problem becomes more intricate, because the denominator

of

pðs;SnðUÞ; lÞ ¼
expl0sP

z[SnðUÞ expl
0z
; s [ SnðUÞ

cannot be simplified. For this reason, one might believe (were it not for the paper of Chen

et al. 1994) that it is not possible to select a sample with this design without enumerating

all the samples of SnðUÞ:
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Let p(l, n) be the vector of inclusion probabilities for the maximum entropy sampling

design with fixed sample size equal to n. The first problem is the derivation ofp(l, n) from

l, which is theoretically given by

pðl; nÞ ¼

P
s[SnðUÞs expl

0sP
s[SnðUÞ expl

0s
ð2Þ

Unfortunately, Expression (2) becomes unfeasible to compute when U is large, because

it becomes impossible to enumerate all the samples. Nevertheless, Chen et al. (1994) have

shown a recursive relation between pðl; n 2 1Þ and pðl; nÞ, which allows to pass from l

to pðl; nÞ; without enumerating all the possible samples of SðUÞ:

Result 1. (Chen et al. 1994) For the first-order inclusion probabilities of the maximum

entropy fixed sample size (size equal with n)

pkðl; nÞ ¼ n
exp lk½12 pkðl; n 2 1Þ�P

‘[U exp l‘½12 p‘ðl; n 2 1Þ�
ð3Þ

A proof of Result 1 is given in Appendix 1. Since pkðl; 0Þ ¼ 0; for all k [ U; this

recursive relation allows a fast computation of the inclusion probability vector.

Another recursive relation (Deville 2000) allows to compute the joint inclusion

probabilities.

Result 2. (Deville 2000) For the joint inclusion probabilities of the maximum entropy

fixed sample size (size equal to n)

pk‘ðl;nÞ ¼
nðn21Þexplk expl‘½12pkðl;n22Þ2p‘½l;n22Þþpkl½l;n22Þ�P
i[U

P
j[U
j– i

expli explj½12piðl;n22Þ2pjðl;n22Þþpijðl;n22Þ�

with

pk‘ðl;0Þ ¼pk‘ðl;1Þ ¼ 0;pk‘ðl;2Þ ¼
2explk expl‘P

i[U

P
j[U
j– i

expli explj

;k;‘[U;k – ‘

A proof of Result 2 is given in Appendix 2.

In practice, the inclusion probabilities are generally fixed, and the main problem is to

compute l from a given inclusion probability vectorp. The knowledge of l permits one to

calculate the inclusion probabilities and the joint inclusion probabilities for the maximum

entropy with fixed sample size design using Results 1 and 2. It is important to point out that

the first-order inclusion probabilities of the Poisson design (which maximizes the entropy,

but does not have a fixed sample size), denoted by ~p; are not the same as the inclusion

probabilities of fixed sample size design, denoted by p. Deville (2000) has shown that ~p

can be obtained by means of Algorithm 1, which is an application of the Newton method.

It is straightforward lk ¼ log ½ ~pk=ð12 ~pkÞ�:

A justification of Algorithm 1 is given in Appendix 3.
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Algorithm 1. Computation of ~p

. Define

fð ~p; nÞ ¼ n

~pk

12 ~pk
{12 fkð ~p; n 2 1Þ}P

‘[U
~p‘

12 ~p‘
{12 f‘ð ~p; n 2 1Þ}

with fð ~p; 0Þ ¼ 0

. Set ~pð0Þ ¼ p and for i ¼ 1; 2; : : : ; until convergence

~pðiÞ ¼ ~pði21Þ þ p2fð ~pði21Þ; nÞ ð4Þ

2.3. The rejective algorithm

Let yk be the variable of interest associated with the kth individual in the population, and

let xk . 0 be an auxiliary variable, which is known for all k [ U: The first-order inclusion

probabilities are computed using the relation

pk ¼
nxkP
‘[Ux‘

ð5Þ

for all k [ U; where n is the sample size. If some pk . 1; the value 1 is allocated to these

units, and the inclusion probabilities are recalculated using (5) on the remaining units.

The rejective procedure follows from Result 3.

Result 3. For all constant c [ R

pðs;SnðUÞ;lÞ ¼ pðs;SðUÞ;lþ c1j#S ¼ nÞ ¼
pðs;SðUÞ;lþ c1ÞP

s[SnðUÞpðs;SðUÞ;lþ c1Þ

for all s [ SnðUÞ; where 1 is a vector N ones.

The proof is obvious. The rejective method can thus be defined in Algorithm 2.

Since the constant c can be any real number, it should be chosen in order to maximize

1=Prð#S ¼ nÞ;which can be achieved by using the Newton algorithm. A simpler way to fix

the value of c is using a constant such that

k[U

X
~pk ¼

k[U

X exp ðlk þ cÞ

1þ exp ðlk þ cÞ
¼ n ð6Þ

Note that Algorithm 1 provides ~pk‘s that have directly such properties.

Algorithm 2. Rejective Poisson sampling

1. Given p, compute ~p with Algorithm 1; next compute (if needed) l by

lk ¼ log
~pk

12 ~pk

Eventually, vector lk can be normalized such that

k[U

X
lk ¼ 0
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2. Select a random sample ~S; using Poisson design pð~s;SðUÞ;lþ c1Þ: If it is not equal

to n, repeat the selection until it is equal to n.

3. Variance Approximations for Unequal Probability Sampling

A review of some variance approximations and variance estimators is presented below.

Our aim is to compare different variance approximations as well as different variance

estimators for the Horvitz-Thompson estimator

bYYp ¼
k[S

X yk

pk

of the total population

Y ¼
k[U

X
yk

The variance of the Horvitz-Thompson estimator bYYp for a fixed sample size is (see Yates

and Grundy, 1953; Sen, 1953)

var ½bYYp� ¼ 2
1

2 k[U

X
‘–k
‘[U

X yk

pk

2
y‘

p‘

� �2

ðpk‘ 2 pkp‘Þ ð7Þ

Seven variance approximations and twenty variance estimators have been compared

using simulations. The notation for each approximation and each estimator is given in the

parenthesis in the corresponding paragraph (e.g., varHajek1 for the approximation Hájek 1).

For simplicity, in the next formulae, the first-order inclusion probabilities pkðl; nÞ are

denoted by pk, and the joint inclusion probabilities pk‘ðl; nÞ are denoted by pk‘.

Result 3 shows that a sampling design p(s) which maximizes the entropy and has the

inclusion probabilities pk can be viewed as a conditional Poisson sampling design ~pðsÞ

given that its sample size ~nS is fixed. If varpoiss(.) denotes the variance and covpoiss(.) the

covariance under the Poisson sampling ~pðsÞ and var(.) the variance under the design p(.),

we can write

var ðbYYpÞ ¼ varpoissðbYYpj~nS ¼ nÞ

If we suppose that the couple ðbYYp; ~nSÞ has a bivariate normal distribution (on this topic

see Hájek 1964; Berger 1998a), we obtain

varpoissðbYYpj~nS ¼ nÞ ¼ varpoissðbYYp þ ðn 2 ~nSÞbÞ

where

b ¼
covpoissð~nS; bYYpÞ

varpoissð~nSÞ

varpoissð~nSÞ ¼
k[U

X
~pkð12 ~pkÞ
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and

covpoissð~nS; bYYpÞ ¼
k[U

X
~pkð12 ~pkÞ

yk

pk

Defining bk ¼ ~pkð12 ~pkÞ; we get the following general approximation of the variance

for a sampling design with maximum entropy (see Deville and Tillé 2005; Tillé 2001,

p. 117)

varapprox½bYYp� ¼
k[U

X bk

p2
k

ðyk 2 y
*

kÞ
2 ð8Þ

where

y
*

k ¼ pkb ¼ pk

P
‘[Ub‘y‘=p‘P

‘[Ub‘

According to the values given to bk, some variants of this approximation are obtained

and presented below.

Hájek Approximation 1 ðvarHajek1
Þ

The most common value for bk has been proposed by Hájek (1981)

bk ¼
pkð12 pkÞN

N 2 1
ð9Þ

(on this topic see also Rosén 1997; Tillé 2001).

Approximation under sampling with replacement (varrepl)

A simpler value for bk could be

bk ¼ pk

N

N 2 1
ð10Þ

which leads to the variance under sampling with replacement.

Naive Approximation (varnaive)

A finite population correction can be added to (10) and thus

bk ¼ pk

N 2 n

N

N

N 2 1
¼ pk

N 2 n

N 2 1

in order to obtain the variance of simple random sampling without replacement in the

case of equal inclusion probabilities.

Fixed-point Approximation (varFix)

Deville and Tillé (2005) have proposed solving the following equation system to find

another approximation of bk:

bk 2
b2

kP
‘[Ub‘

¼ pkð12 pkÞ ð11Þ
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Since the equation system (11) is not linear, the coefficients bk can be obtained by the

fixed-point technique, using the following recurrence equation, until convergence:

bðiÞ
k ¼

ðbði21Þ
k Þ2P

l[Ubði21Þ
l

þ pkð12 pkÞ ð12Þ

for i ¼ 0; 1; 2; 3; : : : ; and using the initialization:

bð0Þ
k ¼ pkð12 pkÞ

N

N 2 1
; k [ U

A necessary condition in order that a solution exists in the equation above is

pkð12 pkÞP
‘[Up‘ð12 p‘Þ

,
1

2
; for all k [ U

If the method is not convergent, consider the following variant, which uses one

iteration and

bð1Þ
k ¼ pkð12 pkÞ

Npkð12 pkÞ

ðN 2 1Þ
P

‘[Up‘ð12 p‘Þ
þ 1

� �

Hartley-Rao Approximation 1 ðvarH-Rao1
Þ

An approximation of variance for the randomized systematic sampling was

presented by Hartley and Rao (1962) (see also Brewer and Hanif 1983):

varH-Rao1ðYÞ ¼
k[U

X
pk 12

n 2 1

n
pk

� �
yk

pk

2
Y

n

� �2

2
n 2 1

n2
k[U

X
2p3

k 2
p2

k

2
‘[U

X
p2

‘

0@ 1A yk

pk

2
Y

n

� �2

þ
2ðn 2 1Þ

n3
k[U

X
pkyk 2

Y

n
‘[U

X
p2

‘

0@ 1A2

Hartley-Rao Approximation 2 ðvarH-Rao2 Þ

In the same paper, Hartley and Rao (1962) have also suggested a simpler expression

of variance (see also Brewer and Hanif 1983):

varH-Rao2ðYÞ ¼
k[U

X
pk 12

n 2 1

n
pk

� �
yk

pk

2
Y

n

� �2

ð13Þ
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Hájek Approximation 2 ðvarHajek2 Þ

Brewer (2002, p. 153) has used the following estimator, starting from Hájek (1964):

varHajek2 ðYÞ ¼
k[U

X
pkð12 pkÞ

yk

pk

2
~Y

n

� �2

ð14Þ

where ~Y ¼
P

k[Uakyk and ak ¼ nð12 pkÞ=
P

‘[Up‘ð12 p‘Þ

4. Variance Estimators

There are three classes of variance estimators. The first class is composed of the Horvitz-

Thompson estimator (Horvitz and Thompson 1952) and the Sen-Yates-Grundy estimator

(Yates and Grundy 1953; Sen 1953), which use the first-order and the joint inclusion

probabilities. The second class uses only first-order inclusion probabilities for all k [ S

while in the third class, the variance estimators use only first-order inclusion probabilities,

but for all k [ U:

4.1. First class of variance estimators

Horvitz-Thompson Estimator ðdvarvarHTÞ

The expression of this estimator is (see Horvitz and Thompson 1952)

cvarvarHT½bYYp� ¼
k[S

X y2k
p2

k

ð12 pkÞ þ
k[S

X
‘–k
‘[S

X yky‘

pkp‘pk‘

ðpk‘ 2 pkp‘Þ ð15Þ

This estimator has several important drawbacks. In general, when the variable of

interest yk / pk; var ½bYYp� ¼ 0; but cvarvarHT is not necessarily equal to 0 in such a case. The

Horvitz-Thompson estimator can also take negative values (on this topic see

Cumberland and Royall 1981). For example, if yk ¼ pk; for all k [ U; then var ½bYYp� ¼

0; and

cvarvarHT½bYYp� ¼ n2 2
k[S

X
pk 2

k[S

X
pk

‘–k
‘[S

X p‘

pk‘

which is generally not null, but has a null expectation. Thus, negative values occur.

Sen-Yates-Grundy Estimator ðdvarvarSYGÞ

The expression of this estimator is (see Sen 1953; Yates and Grundy 1953)

cvarvarSYG½bYYp� ¼
1

2 k[S

X
‘–k
‘[S

X yk

pk

2
y‘

p‘

� �2
pkp‘ 2 pk‘

pk‘

ð16Þ

The Horvitz-Thompson and Sen-Yates-Grundy estimators are unbiased.

Matei and Tillé: Evaluation of Variance Approximations and Estimators in Maximum Entropy Sampling 551



4.2. Second class of variance estimators

From expression (8), a general variance estimator can be derived (see Deville and Tillé

2005; Tillé 2001, p. 117):

cvarvar½bYYp� ¼
k[S

X ck

p2
k

ðyk 2 byy*

kÞ
2 ð17Þ

where

byy*

k ¼ pk

P
‘[Sc‘y‘=p‘P

‘[Sc‘

According to the choice of ck in (17), various estimators have been proposed.

Deville Estimator 1 ðdvarvarDev1Þ

Deville (1993) has proposed a simple value for ck:

ck ¼ ð12 pkÞ
n

n 2 1

Deville Estimator 2 ðdvarvarDev2Þ

In the same manuscript, Deville (1993) has suggested a more complex value (see also

Deville 1999):

ck ¼ ð12 pkÞ 12
k[S

X 12 pkP
‘[Sð12 p‘Þ

� �2
24 3521

Variance under sampling with replacement ðdvarvarreplÞ

A simple value for ck could be

ck ¼
n

n 2 1
ð18Þ

which leads to the variance under sampling with replacement (see Särndal et al. 1992,

expression 2.9.9, p. 53).

Naive Estimator ðdvarvarnaiveÞ

A finite population correction can be added to (18), resulting in

ck ¼
N 2 n

N

n

n 2 1

in order to obtain the variance estimator of simple random sampling without

replacement, in the case of equal inclusion probabilities.

Fixed-point Estimator ðdvarvarFixÞ

Deville and Tillé (2005) have proposed using the following development in order to

derive a value for ck. The estimator defined in expression (17) can be written as

cvarvar½bYYp� ¼
k[S

X y2k
p2

k

ck 2
c2kP
‘[Sc‘

� �
2

1P
‘[Sc‘ k[S

X
‘–k
‘[S

X yky‘ckc‘

pkp‘

ð19Þ
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Using the formula (15) of cvarvarHT; we can look for ck which satisfies the equation

ck 2
c2kP
‘[Sc‘

¼ ð12 pkÞ

These coefficients can be obtained by the fixed-point technique, using the following

recurrence equation, until the convergence is fulfilled:

cðiÞk ¼
cði21Þ

k

� �2P
‘[Scði21Þ

‘

þ ð12 pkÞ

for i ¼ 0; 1; 2; 3; : : : and using the initialization

cð0Þk ¼ ð12 pkÞ
n

n 2 1
; k [ S

A necessary condition in order that a solution exists in the equation above is:

12 pkP
‘[Sð12 p‘Þ

,
1

2
; for all k [ S

If the method is not convergent, consider the previous variant, which uses one

iteration:

cð1Þk ¼ ð12 pkÞ
nð12 pkÞ

ðn 2 1Þ
P

‘[Sð12 p‘Þ
þ 1

� �

Rosén Estimator ðdvarvarRÞ

Rosén (1991) suggested the following estimator (see also Ardilly 1994, p. 338):

cvarvarR½bYYp� ¼
n

n 2 1 k[S

X
ð12 pkÞ

yk

pk

2 A

� �2

where

A ¼

P
k[Syk

12pk

p2
k

log ð12 pkÞP
k[S

12pk

pk
log ð12 pkÞ

ð20Þ

Deville Estimator 3 ðdvarvarDev3
Þ

Another proposal of Deville (1993) (see also Ardilly 1994, p. 338) is

cvarvarDev3½bYYp� ¼
1

12
P

k[Sa2
k k[S

X
ð12 pkÞ

yk

pk

2
bYYp

n

 !2

ð21Þ

where

ak ¼
12 pkP

k[Sð12 pkÞ
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Estimator 1 ðdvarvar1Þ

We propose a new estimator which is defined as

cvarvar1½bYYp� ¼
nðN 2 1Þ

Nðn 2 1Þ k[S

X bk

p3
k

ðyk 2 byy*

kÞ
2 ð22Þ

where

byy*

k ¼ pk

P
‘[Sb‘y‘=p

2
‘P

‘[Sb‘=p‘

and the coefficients bk are defined in the same way as in Expression (12).

4.3. Third class of variance estimators

Berger Estimator ðdvarvarBerÞ

Berger (1998b) has proposed using

ck ¼ ð12 pkÞ
n

n 2 1

P
k[Sð12 pkÞP

k[Upkð12 pkÞ

in Expression (17).

Tillé Estimator ðdvarvarTÞ

An approximation of the joint inclusion probabilities by means of adjustment to

marginal totals was described by Tillé (1996). Using this approximation and the Sen-

Yates-Grundy estimator, the following estimator was developed:

cvarvarT½bYYp� ¼
k[S

X y2k
pkbk ‘[S

Xp‘

bl

2
k[S

X yk

bk

0@ 1A2

2n
k[S

X y2k
p2

k

þ
k[S

X yk

pk

0@ 1A2

ð23Þ

The coefficients bk are calculated using the following algorithm:

b
ð0Þ
k ¼ pk; for all k; b

ð2i21Þ
k ¼

ðn 2 1Þpk

b ð2i22Þ 2 b
ð2i22Þ
k

and

b
ð2iÞ
k ¼ b

ð2i21Þ
k

nðn 2 1Þ

ðb ð2i21ÞÞ2 2
P

k[Uðb
ð2i21Þ
k Þ2

 !1=2

where

b ðiÞ ¼
k[U

X
b
ðiÞ
k ; i ¼ 1; 2; 3; : : :

The coefficients bk are used to approximate the joint inclusion probabilities such that

pk‘ < bkb‘: The convergence criterion is ensured by the marginal totals

k–‘
k[U

X
pk‘ ¼ p‘ðn 2 1Þ; ‘ [ U
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4.3.1. Some new estimators

Four new variance estimators (named Estimators 2, 3, 4, 5) can be constructed as follows.

Estimator 2 ðdvarvar2Þ

cvarvar2½bYYp� ¼
1

12
P

k[U
d2

k

pk
k[S

X
ð12 pkÞ

yk

pk

2
bYYp

n

 !2

ð24Þ

where

dk ¼
pkð12 pkÞP

‘[Up‘ð12 p‘Þ
ð25Þ

Estimator 3 ðdvarvar3Þ

cvarvar3½bYYp� ¼
1

12
P

k[U
d2

k

pk
k[S

X
ð12 pkÞ

yk

pk

2

P
‘[Sð12 p‘Þ

y‘

p‘P
‘[Sð12 p‘Þ

� �2

ð26Þ

where dk is defined as in (25).

Estimator 4 ðdvarvar4Þ

cvarvar4½bYYp� ¼
1

12
P

‘[Ub‘=n2
k[S

X bk

p3
k

ðyk 2 byy*

kÞ
2 ð27Þ

where

byy*

k ¼ pk

P
‘[Sb‘y‘=p

2
‘P

‘[Sb‘=p‘

ð28Þ

and the coefficients bk are defined in the same way as in Expression (9).

Estimator 5 ðdvarvar5Þ

cvarvar5½bYYp� ¼
1

12
P

‘[Ub‘=n2
k[S

X bk

p3
k

ðyk 2 byy*

kÞ
2 ð29Þ

where byy*

k is defined as in (28) and the coefficients bk are defined in the same way as in

Expression (12).

4.3.2. The Brewer family

A set of high-entropy estimators was presented by Brewer (2002) and by Brewer and

Donadio (2003). According to Brewer, a plausible sample estimator of the

approximate design variance of the Horvitz-Thompson estimator, and one that can

be constructed so as to be exactly design-unbiased under simple random sampling
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without replacement, is

cvarvarBr½bYYp� ¼
k[S

X
ðe21

k 2 pkÞ
yk

pk

2
‘[S

X y‘

np‘

0@ 1A2

ð30Þ

Four particular values for ek were proposed (see Brewer 2002, pp. 152, 153, 158):

Brewer Estimator 1 ðdvarvarBr1Þ

ek ¼
n 2 1

n 2

P
‘[U

p2
‘

n

Brewer Estimator 2 ðdvarvarBr2Þ

ek ¼
n 2 1

n 2 pk

In this case, the estimator defined in (30) could have been placed in the second

category, since it uses the inclusion probabilities only for the sample. In order, however,

to keep the Brewer estimators in a single category, we place it here.

Brewer Estimator 3 ðdvarvarBr3Þ

ek ¼
ðn 2 1Þ=n

12 2pk=n þ

P
‘[U

p2
‘

n 2

Brewer Estimator 4 ðdvarvarBr4Þ

ek ¼
ðn 2 1Þ=n

12 ð2n21Þpk

nðn21Þ
þ

P
‘[U

p2
‘

nðn21Þ

5. Simulations

Three data sets have been used for Monte-Carlo simulations: the mu284 population from

Särndal et al. (1992), and two artificial populations. A set of 10,000 independent samples

without replacement have been selected for each different sample size, n ¼ 10; 20, and 40,

using the rejective sampling. Table 3 gives the expected number of the rejected samples

(which have sample sizes different from the fixed size n) under the simulations. From the

mu284 population, two data items have been taken: the “revenues from 1985 municipal

taxation” for the principal characteristic, and the “1985 population” for the auxiliary

variable. Three observations (numbers 16, 114, 137) with large xk were deleted from

this population. Thus, N ¼ 281; Y ¼ 53; 151 £ 106: The first artificial population

was generated using the model N ¼ 100; xk ¼ k; yk ¼ 5xkð1þ 1kÞ (see Fig. 1), where

1k , Nð0; 1=3Þ; k ¼ 1; · · ·;N: In this case, Y ¼ 25; 482:917: For the second artificial

population the model used is N ¼ 100; xk ¼ k; yk ¼ 1=pk; pk ¼ nxk=
P

k[Uxk;

k ¼ 1; · · ·;N (see Fig. 2). In this case, for n ¼ 10; Y ¼ 2; 619:625; for n ¼ 20; Y ¼
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1; 309:812; and for n ¼ 40; Y ¼ 654:906: Three measures are used to compare the

variance estimators:

. the ratio of bias

RBðcvarvarÞ ¼
EsimðcvarvarÞ2 varffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varsimðcvarvarÞ
p

where Esim() is the average calculated under simulations, varsim() is the variance

calculated under simulations, cvarvar is a variance estimator, and var is the true variance

computed from Expression (7).

. the mean squared error

MSEðcvarvarÞ ¼ varsimðcvarvarÞ þ ðEsimðcvarvarÞ2 varÞ2

. the coverage rate (CR) of an interval estimate for the 95% level.

The 95% confidence intervals for the value Y are computed using the t distribution with

n 2 1 degrees of freedom ½Yp
þ
2

tn21;0:975

ffiffiffiffiffiffifficvarvar
p

�: We use the 97.5 quantile of the

t–distribution with n 2 1 degrees of freedom instead of 1.96 even for n ¼ 40 to improve

the coverage rate (see Särndal et al. 1992, p. 281).

Table 1 (for the mu284 population), Table 2 (for the first artificial population) and Table

4 (for the second artificial population) summarize the performance of the approximations

and estimators via simulations. The upper sections of Tables 1, 2, and 4 give the values of

the variance approximations presented in Section 3, and the true value, var ½bYYp�; computed

from (7). The bottom sections of these tables give the values of RB, MSE, and CR for the

variance estimators presented in Section 4. The ratio of the bias and the coverage rates are

expressed in percentages. For clarity, the exponents are added in brackets (for example the

Hájek approximation 1 is 3:808 £ 1018 in the case of the mu284 population, n ¼ 10).

6. Discussion of the Empirical Results

The reliable comparison between the different variance approximations is ensured by the

fact that the true variance var½bYYp� can be calculated using Formula (7). Without any doubt,
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Fig. 1. Scatter plot for the first artificial population (x versus y)
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the fixed-point approximation is the best. The approximations varHajek1 ; varH2Rao1 ;

varH2Rao2 and varHajek2 are less precise. The worst results are given by varrepl (particularly

in the case of the first two populations) and varnaive (for all populations).

In the case of the variance estimators, the Horvitz-Thompson estimator has the largest

MSE in Tables 1 and 2. In both populations, the variable of interest yk and the auxiliary

variable xk are strongly correlated (for the mu284 population the coefficient of correlation

is 0.99, and for the first artificial population 0.86). For the third population (which is badly

adapted to the design), the correlation coefficient is approximately 20.40. In this case,cvarvarHT performed nearly the same as the other estimators studied. We are led to the same

conclusion using an additional simulation study (results not shown in tables), where the

variable of interest yk and the auxiliary variable xk are not correlated. As can be seen from

the examples above, cvarvarHT has a large MSE in the cases where yk and xk are strongly

correlated, which is the usual case in practice. An analytic study of the Horvitz-Thompson

variance estimator is given in Stehman and Overton (1994).

Both population mu284 and the first artificial population arise from a structural

model of the form EðyÞ ¼ bx; varðyÞ ¼ s2x2: In such populations, for sufficiently

small sample mean x and b2=s2 . 1; Cumberland and Royall (1981) showed thatcvarvarHT may take negative values. In artificial Population 1, b2=s2 ¼ 9: We included in

Table 5 the number of times that cvarvarHT , 0 among the 10,000 simulated samples. This

could partially explain the large MSE for cvarvarHT in Population mu284 and artificial

Population 1.

When it comes to the Sen-Yates-Grundy estimator as compared to the rest of the

estimators (without taking into account cvarvarHT; cvarvarrepl and cvarvarnaiveÞ;which use only the first-

order inclusion probabilities, we see that no big differences in the variance estimation are

revealed by the simulations. However, for the second case and in Table 2, cvarvarSYG does not

perform better than the other estimators. From the above and if we take seriously into

account the fact that the Sen-Yates-Grundy estimator uses both first- and second-order

inclusion probabilities (which makes it harder to compute), we find no reason why it

should be preferred to the other estimators.
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Fig. 2. Scatter plot for the second artificial population, n ¼ 10 (x versus y)
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Table 1. Results of simulations for the mu284 population

n ¼ 10 (1018) n ¼ 20 (1018) n ¼ 40 (1018)

varHajek1 3.808 1.778 1.005
varFix 3.816 1.782 1.007
varH-Rao1 3.818 1.788 1.059
varH-Rao2 3.821 1.789 1.043
varHajek2 3.794 1.772 1.002
varrepl 4.056 2.031 1.455
varnaive 3.912 1.887 1.248
True value 3.817 1.782 1.007

RB (%) MSE (1036) CR (%) RB (%) MSE (1035) CR (%) RB (%) MSE (1034) CR (%)

cvarvarHT 21.285 24.239 72.69 0.122 83.829 68.75 20.657 225.587 71.87cvarvarSYG 20.666 6.145 95.19 20.013 6.041 95.20 20.638 5.735 94.81cvarvarDev1 20.862 6.097 95.16 20.343 5.939 95.27 20.871 5.603 94.83cvarvarDev2 20.814 6.101 95.17 20.173 5.947 95.27 20.192 5.621 94.85cvarvarrepl 27.339 5.655 94.89 18.168 7.221 96.05 134.734 2.679 97.97cvarvarnaive 3.414 6.466 95.45 13.307 6.800 95.85 90.026 1.333 97.04cvarvarFix 20.698 6.104 95.15 20.054 5.948 95.20 20.824 5.612 94.84cvarvarR 20.835 6.098 95.17 20.183 5.943 95.27 1.478 5.644 94.89cvarvarDev3 20.699 6.104 95.18 0.539 5.963 95.30 12.945 5.919 95.18cvarvar1 20.494 6.129 95.22 0.139 5.969 95.29 20.146 5.626 94.85cvarvarBer 20.697 6.141 95.19 20.118 6.031 95.23 20.762 5.719 94.81cvarvarT 20.593 6.148 95.19 0.565 6.053 95.28 11.509 6.500 95.15cvarvar2 20.694 6.105 95.18 0.546 5.964 95.30 12.949 5.918 95.18
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Table 1. Continued

n ¼ 10 (1018) n ¼ 20 (1018) n ¼ 40 (1018)

cvarvar3 20.808 6.102 95.17 20.166 5.948 95.28 20.187 5.620 94.85cvarvar4 21.429 6.104 95.14 21.146 5.979 95.24 22.112 5.755 94.77cvarvar5 21.019 6.089 95.16 20.645 5.929 95.25 21.409 5.594 94.80cvarvarBr1 20.869 6.093 95.20 0.177 5.944 95.29 12.746 5.885 95.17cvarvarBr2 20.748 6.101 95.17 0.369 5.955 95.29 12.278 5.889 95.18cvarvarBr3 20.627 6.109 95.17 0.561 5.966 95.30 11.809 5.894 95.14cvarvarBr4 20.614 6.111 95.17 0.571 5.966 95.29 11.797 5.894 95.14
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Table 2. Results of simulations for the first artificial population

n ¼ 10 (106) n ¼ 20 (106) n ¼ 40 (106)

varHajek1 5.429 2.306 0.745
varFix 5.444 2.312 0.746
varH-Rao1 5.441 2.331 0.858
varH-Rao2 5.455 2.324 0.758
varHajek2 5.374 2.283 0.737
varrepl 6.245 3.123 1.563
varnaive 5.621 2.499 0.938
True value 5.444 2.312 0.746

RB (%) MSE (1012) CR (%) RB (%) MSE (1011) CR (%) RB (%) MSE (1010) CR (%)

cvarvarHT 20.758 7.504 93.71 0.358 8.528 93.09 21.800 12.931 89.76cvarvarSYG 20.827 6.979 94.80 0.669 5.663 94.89 20.147 2.949 95.31cvarvarDev1 20.949 6.914 94.78 0.299 5.503 94.88 22.338 2.582 95.19cvarvarDev2 20.887 6.917 94.78 0.557 5.512 94.88 20.428 2.601 95.24cvarvarrepl 6.444 7.254 95.11 73.064 12.878 97.08 285.872 68.302 99.33cvarvarnaive 6.444 7.254 95.11 25.752 6.349 95.65 114.931 6.545 97.41cvarvarFix 20.895 6.936 94.78 0.581 5.534 94.89 20.524 2.622 95.23cvarvarR 20.936 6.914 94.78 0.346 5.504 94.88 22.074 2.583 95.19cvarvarDev3 20.833 6.919 94.78 0.774 5.518 94.90 1.115 2.609 95.29cvarvar1 20.350 6.939 94.79 1.047 5.519 94.89 21.576 2.587 95.19cvarvarBer 20.848 6.973 94.79 0.565 5.648 94.89 21.165 2.917 95.28cvarvarT 20.826 6.978 94.80 0.663 5.661 94.89 20.258 2.921 95.29
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Table 2. Continued

n ¼ 10 (106) n ¼ 20 (106) n ¼ 40 (106)

cvarvar2 20.826 6.920 94.78 0.787 5.518 94.90 1.152 2.610 95.29cvarvar3 20.880 6.918 94.78 0.569 5.513 94.88 20.392 2.602 95.24cvarvar4 21.699 6.962 94.75 20.781 5.601 94.84 23.848 2.659 95.16cvarvar5 21.052 6.893 94.77 20.010 5.481 94.80 23.147 2.572 95.17cvarvarBr1 20.935 6.893 94.77 0.426 5.480 94.87 21.003 2.559 95.23cvarvarBr2 20.895 6.916 94.78 0.514 5.508 94.89 20.791 2.588 95.22cvarvarBr3 20.855 6.939 94.77 0.601 5.537 94.88 20.581 2.617 95.24cvarvarBr4 20.850 6.942 94.77 0.605 5.539 94.88 20.576 2.618 95.25 Jo
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Concerning the bias, the unbiased Horvitz-Thompson and Sen-Yates-Grundy estimators

show nonzero bias due to the measurement error contingent on the finite size of the

simulations.

The estimator with replacement and the naive estimator are highly biased in the first two

populations and overestimate the variance. Therefore the coverage rates are very good in

the case of these populations. In the third population, cvarvarrepl and cvarvarnaive perform better

than all the other estimators concerning the RB and MSE, but we must take into account

that this population is badly adapted to a real case.

The estimators (different from cvarvarHT; cvarvarSYG; cvarvarrepl; cvarvarnaiveÞ which use only the first-

order inclusion probabilities have similar performances and deserve consideration as

practical alternatives. However, in the first population study, which is a real case, for

n ¼ 40; the estimators cvarvarDev3; cvarvarT ; cvarvar2; cvarvarBr1; cvarvarBr2; cvarvarBr3 and cvarvarBr4 get highly biased.

Concerning the coverage rate, cvarvarHT gives poor coverage rates compared to all the other

estimators in the first two populations. Its coverage ranges from 68.75% to 72.69% in the

mu284 population and from 89.76% to 93.71% in artificial Population 1. The estimatorcvarvarSYG gives better coverage percentages, and lies closer to the other estimators (without

taking into account cvarvarrepl and cvarvarnaiveÞ: In the first two populations the coverage rate is

close to the nominal 95% for all the presented estimators (without cvarvarHT; cvarvarrepl; cvarvarnaiveÞ:

In the same populations, the estimators cvarvarrepl and cvarvarnaive give very rich coverage rates

with coverage above the nominal 95%.

Artificial Population 2 is a special case: all the presented estimators give very poor

coverage rates from 35% to 40%. This is due to the fact that “the exactness of the normal

approximation used in computation of the 95% confidence interval depends significantly

on the shape of the finite population” and “we can expect the approach to normality of the

variable ðbYYp 2 YÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarvarðbYYpÞ

q
to be slower” in the case of a highly skewed population, or

with outlying values or other abnormal features (see Remark 2.11.2 in Särndal et al. 1992,

p. 57). Fig. 3 gives the histogram for y. Artificial Population 2 is highly skewed (for

example for n ¼ 10; g1 ¼ 6:019) and has 12 outlying observations. We have deleted these

12 observations and we have rerun the simulations. Even if the nominal 95% was not

reached, the CR was highly improved for all the presented estimators (for n ¼ 10; CR <
72%; for n ¼ 20; CR < 79%; and for n ¼ 40; CR < 83%).

Table 3. Expected number of the rejected samples

under the simulations

n ¼ 10 n ¼ 20 n ¼ 40

mu284 6.643 9.457 12.372
artificial pop. 1 6.535 8.715 9.841
artificial pop. 2 6.391 8.634 10.013
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Table 4. Results of simulations for the second artificial population

n ¼ 10 (108) n ¼ 20 (107) n ¼ 40 (106)

varHajek1 1.575 1.966 2.458
varFix 1.559 1.948 2.434
varH-Rao1 1.559 1.948 2.438
varH-Rao2 1.559 1.948 2.437
varHajek2 1.559 1.947 2.433
varrepl 1.579 1.978 2.490
varnaive 1.421 1.583 1.494
True value 1.559 1.948 2.434

RB (%) MSE (1019) CR (%) RB (%) MSE (1016) CR (%) RB (%) MSE (1014) CR (%)

cvarvarHT 0.900 1.075 36.13 0.105 6.844 36.98 0.299 5.623 38.73cvarvarSYG 0.995 1.078 36.12 0.098 6.829 36.87 0.260 5.584 38.60cvarvarDev1 0.919 1.043 36.06 20.028 6.603 36.84 0.007 5.314 38.47cvarvarDev2 0.921 1.044 36.06 20.020 6.618 36.84 0.055 5.364 38.52cvarvarrepl 0.476 0.874 35.65 20.241 6.229 37.35 0.167 5.443 40.34cvarvarnaive 0.476 0.874 35.65 1.705 4.418 35.97 26.356 2.070 35.46cvarvarFix 0.989 1.074 36.12 0.105 6.844 36.97 0.300 5.624 38.65cvarvarR 0.921 1.044 36.06 20.019 6.619 36.85 0.052 5.359 38.56cvarvarDev3 0.930 1.048 36.08 0.015 6.679 36.89 0.221 5.532 38.91cvarvar1 0.878 1.026 36.04 20.096 6.486 36.77 20.088 5.219 38.43cvarvarBer 0.993 1.077 36.12 0.091 6.817 36.86 0.215 5.537 38.53cvarvarT 0.994 1.078 36.12 0.100 6.831 36.91 0.282 5.598 38.91cvarvar2 0.929 1.048 36.07 0.014 6.676 36.89 0.216 5.527 38.90cvarvar3 0.920 1.044 36.06 20.022 6.615 36.84 0.051 5.359 38.52cvarvar4 0.905 1.027 36.03 20.055 6.498 36.78 20.029 5.230 38.44
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Table 4. Continued

n ¼ 10 (108) n ¼ 20 (107) n ¼ 40 (106)

cvarvar5 0.862 1.019 35.97 20.122 6.442 36.75 20.124 5.184 38.43cvarvarBr1 0.869 1.022 35.99 20.089 6.497 36.81 0.036 5.339 38.70cvarvarBr2 0.927 1.047 36.06 0.007 6.665 36.89 0.173 5.481 38.84cvarvarBr3 0.984 1.072 36.13 0.101 6.835 36.99 0.306 5.625 39.01cvarvarBr4 0.990 1.075 36.13 0.106 6.844 36.99 0.310 5.629 39.01
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E
va

lu
a

tio
n

o
f

V
a

ria
n

ce
A

p
p

ro
xim

a
tio

n
s

a
n

d
E

stim
a

to
rs

in
M

a
xim

u
m

E
n

tro
p

y
S

a
m

p
lin

g
5
6
5



7. Conclusions

Using the method of Chen et al. (1994) and Deville (2000), the joint inclusion probabilities

can be computed exactly for a maximum entropy sampling design with fixed sample size

and unequal probabilities. The joint inclusion probabilities are used in the formulae of two

variance estimators, the Horvitz-Thompson and the Sen-Yates-Grundy. An empirical

study demonstrates that inferiority of cvarvarHT is restricted to populations having high

correlation between the variable of interest yk and the auxiliary variable xk, and wherecvarvarHT , 0: Except in the case of these populations, cvarvarHT performs nearly the same ascvarvarSYG: In the same case, these two estimators have a comportment similar to those of

the estimators which use only the first-order inclusion probabilities (except cvarvarrepl andcvarvarnaiveÞ: Under simulations, the estimators which use only the first-order inclusion

probabilities (different from cvarvarrepl and cvarvarnaive which overestimate the variance)

have similar performances, regardless of correlation between yk and xk. The use of

first-order inclusion probabilities over the whole population and joint inclusion

probabilities does not lead to more accurate variance estimators in the case of a

maximum entropy sampling design with fixed sample size and unequal probabilities.

So we recommend the use of a simple estimator such as Deville Estimator 1, and, in

the approximation class, the fixed-point approximation.
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Fig. 3. The second artificial population, n ¼ 10

Table 5. Number of times that var̂HT , 0 among 10,000

simulated samples

n ¼ 10 n ¼ 20 n ¼ 40

mu284 population 2312 2708 2450

artificial population 1 61 65 278

artificial population 2 0 0 0
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Appendix 1

Proof of Result 1

If we note Cðl;SnðUÞÞ ¼
P

s[SnðUÞ expl
0s; then

pkðl; nÞ ¼

P
s[SnðUÞsk expl

0s

Cðl;SnðUÞÞ

¼
exp lk

Cðl;SnðUÞÞ
s[Sn21ðU\{k}Þ

X
exp l0s

¼
exp lk

Cðl;SnðUÞÞ
s[Sn21ðUÞ

X
expl0s2

s[Sn21ðUÞ

X
sk expl0s

0@ 1A
¼

exp lkCðl;Sn21ðUÞÞ

Cðl;SnðUÞÞ
ð12 pkðl; n 2 1ÞÞ

Since
P

k[Upkðl; nÞ ¼ n; we finally get

pkðl; nÞ ¼ n
exp lk{12 pkðl; n 2 1Þ}P

‘[U exp l‘{12 p‘ðl; n 2 1Þ}

Appendix 2

Proof of Result 2

If we note Cðl;SnðUÞÞ ¼
P

s[SnðUÞ expl
0s; then

pk‘ðl; nÞ ¼
s[SnðUÞ

X
sks‘pðsÞ

¼

P
s[SnðUÞsks‘ expl‘s

Cðl;SnðUÞÞ

¼

k;‘[s
s[SnðUÞ

X Q
j[S exp lj

Cðl;SnðUÞÞ

¼

exp lk exp l‘

P
k;‘�s

s[Sn22ðUÞ

Q
j[s exp lj

Cðl;SnðUÞÞ

¼ exp lk exp l‘ Pr {k; ‘ � sjs [ Sn22}
Cðl;Sn22ðUÞÞ

Cðl;SnðUÞÞ

¼ exp lk exp l‘ð12 pkðl; n 2 2Þ2 p‘ðl; n 2 2Þ

þ pk‘ðl; n 2 2ÞÞ
Cðl;Sn22ðUÞÞ

Cðl;SnðUÞÞ
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Since
P

k[U

P
‘–k
‘[Upk‘ðl; nÞ ¼ nðn 2 1Þ; we finally get

pk‘ðl;nÞ¼
nðn21Þ explk expl‘ð12pkðl;n22Þ2p‘ðl;n22Þþpk‘ðl;n22ÞÞP

i[U

P
j–i

j[U expliexpljð12piðl;n22Þ2pjðl;n22Þþpijðl;n22ÞÞ

k;‘[U;k–‘

Appendix 3

Justification of Algorithm 1

Suppose that
P

k[Ulk ¼ 0; in order to have a unique definition of l. Indeed,

pðs;SnðUÞ;lÞ ¼ pðs;SnðUÞ;l* Þ; for all s [ SnðUÞ

when l
*

k ¼ lk þ c for any c [ R: The inclusion probability vector can be written as a

function of l and n:

pðl; nÞ ¼
s[SnðUÞ

X
pðs;SnðUÞ;lÞ

Since
P

k[Upk ¼ n; pðl; nÞ is a one to one application from

l [ RN

k[U

X
lk ¼ 0

������
8<:

9=;
to

p [�0; 1½N

k[U

X
pk ¼ n

������
8<:

9=;
Define p(l, n) as a function of ~p; that will be denoted fð ~p; nÞ; and

fð ~p; nÞ ¼ pðl; nÞ ¼

P
s[SnðUÞs expl

0sP
s[SnðUÞ expl

0s
¼

P
s[SnðUÞs

Q
k[s

~pk

12 ~pkP
s[SnðUÞ

Q
k[s

~pk

12 ~pk

Since ~p can be derived from l and vice versa (see Result 1), fð ~p; nÞ can be computed

recursively by means of Expression (3)

fð ~p; nÞ ¼ n

~pk

12 ~pk
{12 fkð ~p; n 2 1Þ}P

‘[U
~p‘

12 ~p‘
{12 f‘ð ~p; n 2 1Þ}

If the vector of inclusion probabilities p (such that
P

k[Upk ¼ n) is given, Chen et al.

(1994) have proposed solving the equation

fð ~p; nÞ ¼ p

Journal of Official Statistics568



in ~p by the Newton method, which gives the algorithm

~pðiÞ ¼ ~pði21Þ þ
›fð ~p; nÞ

› ~p

���� ����21

~p¼ ~pði21Þ

ðp2fð ~pði21Þ; nÞÞ

where i ¼ 1; 2; : : : and with ~pð0Þ ¼ p: Unfortunately, the matrix

›fð ~p; nÞ

› ~p

���� ����
~p¼ ~pði21Þ

ð31Þ

is not easy to compute. However, Deville (2000) pointed out that Matrix (31) is very close

to the identity matrix, which allows significantly simplifying the algorithm. Finally we can

use

~pðiÞ ¼ ~pði21Þ þ p2fð ~pði21Þ; nÞ ð32Þ

which makes is possible to pass quite quickly from p to ~p and thus to l. The number of

operations needed to compute ~p is O(N 2 £ n £ number of iterations i).
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